COMBINING DIFFERENTIAL PRIVACY AND CRYPTOGRAPHY FOR

MODERN APPLICATIONS

by

Amrita Roy Chowdhury

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN-MADISON

2022

Date of final oral examination: 15 December, 2021

The dissertation is approved by the following members of the Final Oral Committee:
Somesh Jha, Professor, Computer Sciences

Kassem Fawaz, Assistant Professor, Electrical and Computer Engineering

Earlence Fernandes, Assistant Professor, Computer Sciences

Parameswaran Ramanathan, Professor, Electrical and Computer Engineering

©) Copyright by Amrita Roy Chowdhury 2022
All Rights Reserved

Dedicated to my mom and grandfather

ii

TABLE OF CONTENTS

Page

ABSTRACT] e e e vi
[1___Introductionl e 1
1.1 __Contributions| 2

2 Crypte: Crypto-Assisted Differential Privacy on Untrusted Servers|. . . 6

2.1 Crypte Overview| o o e e e 8
[2.1.1 System Architecture| oL 8
[2.1.2 Crypte Design Principles] 9

2.2 Background| 11
[2.2.1 Differential Privacy|. 12
[2.2.2 Cryptographic Primitives| 13

2.3 Crypte System Description| 0. 14
2.3.1 Crypte Workflow| 14
[2.3.2 Crypte Modules|. 15
233 Trust Modell. o 16

2.4 Crypte Operators| 17
[2.4.1 Transformation operators| 17
[2.4.2 Measurement operators| oo 19

2.5 Implementation| oo 19
[2.5.1 General n-way Multiplication for labHE| 20
[2.5.2 Operator Implementation| 20
[2.5.3 Classification of Crypte Programs| 24

2.6 Crypte Security Analysis|. oo 25

iii

Page

2.7 Crypte Optimizations| 27
[2.7.1 DP Index Optimization| 28
[2.7.2 Crypto-Engineering Optimizations| 31

2.8 Experimental Evaluation|. 0o oo 32
[2.8.1 Methodology| 33
[2.8.2 End-to-end Accuracy Comparison| 33
[2.8.3 Performance Gain From Optimizations|. 35
[2.8.4 Scalability|. 37
285 Communication Costd oL 37

[2.9 Extension of Crypte to the Malicious Model| 38
[2.9.1 Approach 1| 39
2.9.2 Approach 2| 41
2.10 Related Workl oo 44
211 Conclusionsl e 46

Strengthening Order Preserving Encryption with Differential Privacy| . 47

[3.1 Brief Overview of Key Ideas| 48
3.2 Background| 50
[3.2.1 Difterential Privacy|. oo oo 50
[3.2.2 Order Preserving Encryption|, 52
[3.3 edLDP Order Preserving Encoding (OPec)[. 54
[3.3.1 Definition of OPed oo o oo 54
B.3.2 Construction of OPed 55
[3.4 e-dDP Order Preserving Encryption (OPe)|. 59
341 Definitionof OPe.o oo oo 59
13.4.2 New Security Definition for OP¢ 60
3.5 OPe and Inference Attacksl. 66

v

Page

3.7 LDP Mechanisms using OPeq| 72
[3.7.1 Ordinal Queries|. 73
8.7.2 Frequency Estimation| oo 0oL, 74

3.8 Experimental Evaluation|. 76
[3.8.1 Experimental Setup| Lo 78
[3.8.2 Experimental Results| 80

3.9 Discussionl 88
[3.10 Related Work| oo 90
B.11 Conclusion| e 91
[4 ElFFel: Ensuring Integrity for Federated Le- arning|. 92
4.1 Problem Overviewl L 93
[4.1.1 Problem Setting] o 0o 94
[4.1.2 Security Goals| 95
413 Threat Modello 95
[4.1.4 Solution Overview| 96

4.2 Secure Aggregation with Verified Inputs|00 96
4.3 ElFFel System Description| 98
4.3.1 Cryptographic Building Blocks| 98
[4.3.2 System Building Blocks]o oo o0 o000 102
433 ElFFel Workflow] L 103
4.3.4 Complexity Analysis| oo 107

4.4 Security Analysig 109
4.5 ElFFel Optimizations| L 113
[4.50.1 Probabilistic Reconstruction|. 113
4.5.2 Crypto-Engineering Optimizations| 114

4.6 Experimental Evaluation|.o 000000 115

14.6.2 Integrity Guarantee Evaluation|

4.7 Extension to Differential Privacy| . . .

vi

ABSTRACT

Data is the new oil of the 21st century. The modern data economy is built on a two-pronged
approach: (1) collect large amounts of data from diverse domains, and (2) efficiently analyze
the data at scale to glean useful information. Its success and continued sustenance is rooted
in the ubiquity of technology in our daily lives — every individual carrying a smart device
today constitutes a source of data. This has resulted in a distributed data ecosystem where
the data collected often comprises sensitive, personal information. Hence, there is an urgent
need to develop technical solutions that can support analysis over distributed data without

violating data privacy.

Over the past few years, differential privacy (DP) has emerged as the de-facto standard for
achieving data privacy. On the other hand, modern cryptography has been the backbone of
building secure systems in the presence of mutually distrusting parties for over three decades
now. Traditionally, DP and cryptography have been studied in isolation from each other.
In this dissertation, we show that moving forward, privacy concerns of modern applications
can be addressed by combining techniques from both DP and cryptography. We present three
directions for leveraging this synergy to develop privacy-first solutions that (1) provide formal
privacy guarantees, (2) support high utility data analysis, and (3) are practical for real-world
usage. First, we present Crypte, a system that demonstrates how cryptography can enable
high utility differentially private query analytics on distributed data. Second, we present
OPe, a novel differentially private order-preserving encryption scheme that allows efficient
data analysis involving the order of the data on an untrusted server. Finally, we present

EIFFeL that allows privacy-preserving decentralized learning by co-designing both DP and

vii

cryptography. Through the work presented in this dissertation, we show that it is possible

for us to enjoy the benefits of modern computing while protecting the privacy of our data.

Chapter 1
Introduction

The landscape of data privacy has changed in the 21st century due to a multitude of reasons.
First, machine learning (ML) has become ubiquitous in our lives. Ranging from spam filtering
for emails to diagnosing cancer, ML is driving almost all the decision-making in modern
society. The success of ML is rooted in the continued availability of large amounts of data
from diverse domains. Consequently, there has been an explosion in the amount of personal
data being collected and analyzed. In fact, every individual today constitutes a source of
data, owing to our daily interactions with smart devices. This has led to the development of
a decentralized data ecosystem which consists of multiple resource constrained data owners
(clients) and a resource-heavy service provider (server), aiming at performing analysis on
the joint dataset. Second, we spend more than quarter of our lives online today |[Lov19),
leaving behind a massive digital footprint. With access to such rich auxiliary information
about individuals just a Google search away, adversaries are now more powerful than ever
— the extent of privacy attacks range from de-identification of anonymized records to full
data reconstruction |[Cen20|. Hence, the threat of privacy violation is becoming increasingly
real, as evident from the plethora of recent privacy breach incidents [dat16a,dat16b,dat17al
dat17bi|dat18,|dat19]. Finally, public awareness about the urgency of ensuring data privacy
is growing. For instance, in 2017, a landmark decision by the Supreme Court of India
granted her 1.3 billion citizens the Right to Privacy [SC17]. Additionally, several government
agencies across the world have introduced privacy regulations, such as EU’s GDPR [gdp|
and California’s CCPA [ccp|, that make companies legally obligated to uphold the privacy

of individuals. Hence, a key question facing us today is:

How to disseminate results of data analysis on sensitive data, that is distributed

across multiple parties, without violating privacy?

An emerging answer to the question of safe dissemination of the outputs of data analysis

is differential privacy (DP). DP limits the amount of information leaked by an algorithm.

Semantically, this provides a rigorous guarantee of privacy for individuals in a dataset, regard-
less of an adversary’s auxiliary knowledge [TSD20]. DP is currently the de-facto standard for
data privacy and has been adopted by both government agencies |[Cen20, MKAT08,[VSA17]
as well as major commercial organizations, such as Microsoft [DKY17], Apple |Grel6,
Google [EPK14, FPE15] and Uber [JNS18]. It is characterized by a parameter ¢ > 0 where

lower the value of €, greater the privacy achieved.

On the other hand, modern cryptography is the backbone of building secure systems and
holds the key to the problem of secure data analysis over distributed data. Specifically,
multi-party computation (MPC) enables multiple mutually distrusting parties to collaborate
and compute over their joint dataset without seeing the data. Tremendous advancement
have been made over the past few decades towards the goal of making secure computation

practical for real-world usage.

Traditionally, DP and cryptography have been studied in isolation from each other. However,
as motivated above, DP and cryptography are complementary techniques that are key to
addressing the privacy concerns of modern applications. We argue that combining techniques
from the two areas would lead to mutually beneficial solutions that pushes the frontiers of
practical deployment of privacy-first technologies. In this dissertation, we explore the
synergy between DP and cryptography through novel algorithms that expose
the rich interconnections between the two areas, both in theory and practice.
Specifically, we explore three paradigms: (1) Cryptography for DP, (2) DP for Cryptography,
and (3) Co-design of DP and Cryptography.

1.1 Contributions

(1) Cryptography for DP

Two popular models of DP are centralized differential privacy (CDP) and local differential
privacy (LDP). In CDP, data from individuals are collected and stored in the clear in a
trusted centralized data curator which then executes DP programs on the sensitive data
and releases outputs to an untrusted data analyst. However, this assumption of a trusted
server is ill-suited in practice as it constitutes a single point of failure for data breaches,
and saddles the trusted curator with legal and ethical obligations to uphold data privacy.
Hence, most commercial deployments have opted for the alternative LDP model which does
not require a trusted curator; each individual perturbs their data using a DP algorithm. The
data analyst uses these noisy data to infer aggregate statistics of the datasets. For instance,
Microsoft follows the LDP model to collect Window’s usage statistics. LDP’s attractive
privacy properties, however, come at a cost. Under the CDP model, the expected additive

error for an aggregate count over a dataset of size n is at most ©(1/¢) to achieve e-DP. In

contrast, under the LDP model, at least Q(y/n/¢) additive expected error must be incurred
by any e-DP program, owing to the randomness of each data owner. In other words, under
the LDP model, for a database of a billion people, one can only learn properties that are
common to at least 30,000 people. Under CDP, on the other hand, one can learn properties
that are shared by as few as a 100 people. The LDP model imposes additional penalties on
the algorithmic expressibility; there exists an exponential separation between the accuracy
and sample complexity of LDP and CDP algorithms. Thus, the LDP model operates under
more practical trust assumptions than CDP, but as a result incurs higher loss in data utility.

This raises the following question:

Is it possible to design a practical system that can bridge the trust-utility gap between
LDP and CDP?

Proposed Solution. Chapter [2| of the dissertation discusses Crypte [RCWHT 20|, a sys-
tem and a programming framework for executing DP programs that: (1) never stores or
computes on sensitive data in the clear (2) achieves the accuracy guarantees and algorith-
mic expressibility of the CDP model. Crypte employs a pair of untrusted but non-colluding
servers — Analytics Server (AS) and Cryptographic Service Provider (CSP). The AS executes
DP programs (like the data curator in CDP) but on encrypted records. The CSP initializes
and manages the cryptographic primitives, and collaborates with the AS to generate the pro-
gram outputs. Under the assumption that the AS and the CSP are semi-honest and do not
collude (a common assumption in cryptographic systems), Crypte ensures e-DP guarantee
for its programs via two cryptographic primitives — linear homomorphic encryption (LHE)

and garbled circuits.

(2) DP for Cryptography

Resource-constrained data owners often rely on outsourcing their data for efficient data
storage and management. However, as exposed by frequent mass data breaches, such out-
sourced data storage is vulnerable to privacy threats in practice. This has lead to a rapid
development of systems that aim to protect the data (even in the event of a whole-system
compromise) while enabling statistical analysis on the dataset. Encrypted database systems
that allow query computation over the encrypted data is a popular approach in this regard.
Typically such systems rely on property-preserving encryption schemes to enable efficient
computation. Order-preserving encryption (OPE) is one such cryptographic primitive that
preserves the numerical order of the plaintexts even after encryption. This allows actions like
sorting, ranking, and answering range queries to be performed directly over the encrypted

data. However, this efficiency of encrypted databases comes at a cost — such systems are

vulnerable to inference attacks that can reveal the plaintexts with good accuracy. Most
of these attacks are inherent to any property-preserving encryption scheme — they do not
leverage any weakness in the cryptographic security guarantee of the schemes but are rather
carried out based on just the preserved property. For example, the strongest cryptographic
guarantee for OPEs (IND-FA-OCPA) informally states that only the order of the plaintexts
will be revealed from the ciphertexts. However, inference attacks can be carried out by lever-
aging only this ordering information. In contrast, an appealing property of DP is that any
post-processing (inferential) computation performed on the noisy output of a DP algorithm

does not incur additional privacy loss. This prompts the following question:

Is it possible to leverage the properties of DP for providing a formal security guarantee

for OPEs even in the face of inference attacks?

Proposed Solution. Chapter [3] discusses a novel differentially private order preserving
encryption scheme, OPe |[CDJ"21], that combines the two approaches. Recall that standard
OPE schemes are designed to reveal nothing but the order of the plaintexts. Our proposed
scheme, OPe, ensures that this leakage of order is differentially private. In other words, the
cryptographic guaratantee of OPEs is bolstered with a layer of DP guarantee. As a result,
even if the cryptographic security guarantee of standard OPEs proves to be inadequate (in
the face of inference attacks), the DP guarantee would continue to hold true. Intuitively, the
reason behind is DP’s resilience to post-processing computations. To the best of our knowl-

edge, this is the first work to combine DP with a property-preserving encryption scheme.

(3) Co-design of DP and Cryptography

Federated learning (FL; [MMR™17]) is a learning paradigm for decentralized data in which
multiple clients collaborate with a server to train a machine-learning (ML) model. Each
client computes an update on its local training data and shares it with the server; the server
aggregates the local updates into a global model update. This allows clients to contribute to
model training without sharing their private data. However, the local updates can still reveal
information about a client’s private data [MSDCS19/BDF ™ 18,|ZLH19,[YMV ™21 /NSH19]. FL
addresses this problem via a two-fold mechanism. First, a federated learner performs secure
aggregation — clients mask the updates they share, and the server can only recover the
aggregate in the clear. Next, suitable noise is added to the aggregate to guarantee DP which

protects the clients from any privacy violation arising from the aggregate itself.

An additional challenge is that the distributed nature of federated learning makes it vulnera-
ble to Byzantine failures wherein clients submit malformed updates to the server [BCMC19,

KMA™19, SKSM19a]. Specifically, one or more (colluding) malicious clients can ingest

specially crafted inputs to stage poisoning attacks that can either reduce model accuracy
[BNL12,MZ15,[FCJG20] or implant targeted back-doors in that model that can be exploited
later [CLLT17,BVH™1§|. Even a single malformed update can significantly alter the trained
model [BMGS17b|. Thus, ensuring the well-formedness of the updates, i.e., upholding their
integrity is a primary task for ensuring robustness in federated learning. This problem is
especially challenging in the context of secure aggregation where the individual updates are
masked from the server which prevents any audits on them. These vulnerabilities in FL lead

to the research question:

How can a federated learner efficiently verify the integrity of clients’ updates without

violating their privacy?

Proposed Solution. In Chapter [4] we formalize this problem by proposing secure aggrega-
tion of verified inputs (SAVI, [CGJvdM21]) protocols that: (1) securely verify the integrity
of each local update, (2) aggregate only well-formed updates, and (3) release only the final
aggregate in the clear. A SAVI protocol allows for checking the well-formedness of updates

without observing them, thereby ensuring both the privacy and integrity of updates.

In order to demonstrate the feasibility of SAVI, we propose EIFFelL: a system that instantiates
a SAVI protocol that can perform any integrity check that can be expressed as an arithmetic
circuit with public parameters. This provides EIFFeL the flexibility to implement a plethora of
modern ML approaches that ensure robustness to Byzantine errors by checking the integrity
of per-client updates before aggregating them [SKSM19b,SKL17,XKG20,XKG19,[LCW 20,
DMG™18BVH 18, SH21]. EIFFeL is a general framework that empowers a federated learner
to deploy (multiple) arbitrary integrity checks of their choosing on the “masked” updates.
With EIFFel, we take the first step towards designing aggregation protocols for federated
learning that ensures both input privacy and integrity. EIFFeL can be used as a building

block and easily extended to release differentially private aggregates.

In this dissertation, we show that it is possible to build practical systems that address the
privacy needs of modern applications by combining techniques from differential privacy and
cryptography. We present three directions for leveraging this synergy to develop privacy-first
solutions that (1) provide formal privacy guarantees, (2) support high utility data analysis,

and (3) are practical for real-world usage.

Chapter 2

Crypte: Crypto-Assisted Differential Pri-
vacy on Untrusted Servers

Differential privacy (DP) is typically implemented in one of two models — centralized differ-
ential privacy (CDP) and local differential privacy (LDP). In CDP, data from individuals are
collected and stored in the clear in a trusted centralized data curator which then executes DP
programs on the sensitive data and releases outputs to an untrusted data analyst. In LDP,
there is no trusted data curator. Rather, each individual perturbs his/her own data using a
(local) DP algorithm. The data analyst uses these noisy data to infer aggregate statistics of
the datasets. In practice, CDP’s assumption of a trusted server is ill-suited for many appli-
cations as it constitutes a single point of failure for data breaches, and saddles the trusted
curator with legal and ethical obligations to uphold data privacy. Hence, recent commercial
deployments of DP [EPK14,Grel6]| have preferred LDP over CDP. However, LDP’s attractive
privacy properties comes at a cost. Under the CDP model, the expected additive error for
a aggregate count over a dataset of size n is at most ©(1/¢) to achieve e-DP. In contrast,
under the LDP model, at least Q(y/n/e€) additive expected error must be incurred by any
e-DP program [BNOOS8|/CSS12a,DJW13], owing to the randomness of each data owner. In
other words, under the LDP model, for a database of a billion people, one can only learn
properties that are common to at least 30,000 people. Under CDP, on the other hand, one
can learn properties that are shared by as few as a 100 people. The LDP model in fact im-
poses additional penalties on the algorithmic expressibility; the power of LDP is equivalent
to that of the statistical query model [Kea98] and there exists an exponential separation

between the accuracy and sample complexity of LDP and CDP algorithms [KLNT08].

In this chapter, we strive to bridge the gap between LDP and CDP. We propose, Crypte, a

system and a programming framework for executing DP programs that:
e never stores or computes on sensitive data in the clear, but still

e achieves the accuracy guarantees and algorithmic expressibility of the CDP model

Crypte employs a pair of untrusted but non-colluding servers — Analytics Server (AS) and
Cryptographic Service Provider (CSP). The AS executes DP programs (like the data curator
in CDP) but on encrypted data records. The CSP initializes and manages the cryptographic
primitives, and collaborates with the AS to generate the program outputs. Under the as-
sumption that the AS and the CSP are semi-honest and do not collude (a common assumption
in cryptographic systems [NWIT13NIWT13|GSB™17a, KKK 16,MZ17,GJJ"18,GSBT16]),
Crypte ensures e-DP guarantee for its programs via two cryptographic primitives — linear ho-
momorphic encryption (LHE) and garbled circuits. One caveat here is that due to the usage
of cryptographic primitives, the DP guarantee obtained in Crypte is that of computational
differential privacy or SIM-CDP [MPRV09] (details in Chapter [3.4.2)).

Crypte provides a data analyst with a programming framework to author logical DP programs
just like in CDP. Like in prior work [McS09,[ES15,[ZMK™18|, access to the sensitive data is
restricted via a set of predefined transformations operators (inspired by relational algebra)
and DP measurement operators (Laplace mechanism and Noisy-Max [DR14a]). Thus, any
program that can be expressed as a composition of the above operators automatically satisfies
e-DP (in the CDP model) giving the analyst a proof of privacy for free. Crypte programs
support constructs like looping, conditionals, and can arbitrarily post-process outputs of

measurement operators.
The main contributions of this work are:

e New Approach. We present the design and implementation of Crypte, a novel system
and programming framework for executing DP programs over encrypted data on two

non-colluding and untrusted servers.

e Algorithm Expressibility. Crypte supports a rich class of state-of-the-art DP pro-
grams expressed in terms of a small set of transformation and measurement operators.
Thus, Crypte achieves the accuracy guarantees of the CDP model without the need for

a trusted data curator.

e Ease Of Use. Crypte allows the data analyst to express the DP program logic using
high-level operators. Crypte automatically translates this to the underlying imple-
mentation specific secure protocols that work on encrypted data and provides a DP
guarantee (in the CDP model) for free. Thus, the data analyst is relieved of all concerns

regarding secure computation protocol implementation.

e Performance Optimizations. We propose optimizations that speed up computation

on encrypted data by at least an order of magnitude. A novel contribution of this work

Data Owners (Analytics Server \
| ‘.‘ i D, 3.Program Executor
o > T {5
I 1 >
I & D
1 ! -
i - 03 . Program translated to
| | 1") § underlying secure
: | m computation protocols ; ; ;
E& | — \ P P J Differentially Private Output
Data Collection Phase \— Program Execution Phase
1.Key 4.Privacy 5. Data
\ Manager Engine Decryption
= Ip & | s
7z, sk
P | $

J

Cryptographic Service Provider

Figure 2.1: Crypte System

is a DP indexing optimization that leverages the fact that noisy intermediate statistics

about the data can be revealed.

e Practical for Real World Usage. For the same tasks, Crypte programs achieve
accuracy comparable to CDP and 50x more than LDP for a dataset of size ~ 30, 000.
Crypte runs within 3.6 hours for a large class of programs on a dataset with 1 million

rows and 4 attributes.

e Generalized Multiplication Using LHE. Our implementation uses an efficient way

for performing n-way multiplications using LHE which maybe of independent interest.

2.1 Crypte Overview

2.1.1 System Architecture

Figure shows Crypte’s system architecture. Crypte has two servers: Analytics server
(AS) and Cryptographic Service Provider (CSP). At the very outset, the CSP records the
total privacy budget, €® (provided by the data owners), and generates the key pair, (sk, pk)
(details in Chapter , for the encryption scheme. The data owners, DO;,i € [m] (m =
number of data owners), encrypt their data records, D;, in the appropriate format with
the public key, pk, and send the encrypted records, D;, to the AS which aggregates them
into a single encrypted database, D. Next, the AS inputs logical programs from the data

analyst and translates them to Crypte’s implementation specific secure protocols that work

on D. A Crypte program typically consists of a sequence of transformation operators followed
by a measurement operator. The AS can execute most of the transformations on its own.
However, each measurement operator requires an interaction with the CSP for (1) decrypting
the answer, and (2) checking that the total privacy budget, ¢?, is not exceeded. In this way,
the AS and the CSP compute the output of a Crypte program with the data owners being

offline.

2.1.2 Crypte Design Principles

Minimal Trust Assumptions. As mentioned above, the overarching goal of Crypte is to
mimic the CDP model but without a trusted server. A natural solution for dispensing with the
trust assumption of the CDP model is using cryptographic primitives [BEM ™17, CSUT 18|,
EFM ™18, SHCGR™11}|CSS12b, AHKM18b, RN10, DKM ™06, BNO11, BHT"18|. Hence, to
accommodate the use of cryptographic primitives, we assume a computationally bounded
adversary in Crypte. However, a generic m-party SMC would be computationally expensive.
This necessitates a third-party entity that can capture the requisite secure computation
functionality in a 2-party protocol instead. This role is fulfilled by the CSP in Crypte. For
this two-server model, we assume semi-honest behaviour and non-collusion. This is a very
common assumption in the two-server model [NWIT13,NITW 13, GSB™17a, KKK 16,MZ17,
GJJT18,|GSBT16].

Programming Framework. Conceptually, the aforementioned goal of achieving the best
of both worlds can be obtained by implementing the required DP program using off-the-self
secure multi-party computation (SMC) tools like [EMP, MPCl|Sca, ABY]. However, when it

comes to real world usage, Crypte outperforms such approaches due to the following reasons.

First, without the support of a programming framework like that of Crypte, every DP pro-
gram must be implemented from scratch. This requires the data analyst to be well versed
in both DP and SMC techniques; he/she must know how to implement SMC protocols, esti-
mate sensitivity of transformations and track privacy budget across programs. In contrast,
Crypte allows the data analyst to write the DP program using a high-level and expres-
sive programming framework. Crypte abstracts out all the low-level implementation details
like the choice of input data format, translation of queries to that format, choice of SMC
primitives and privacy budget monitoring from the analyst thereby reducing his/her burden
of complex decision making. Thus, every Crypte program is automatically translated to

protocols corresponding to the underlying implementation.

10

Second, SMC protocols can be prohibitively costly in practice unless they are carefully tuned
to the application. Crypte supports optimized implementations for a small set of operators,

which results in efficiency for all Crypte programs.

Third, a DP program can be typically divided into segments that (1) transform the private
data, (2) perform noisy measurements, and (3) post-process the noisy measurements without
touching the private data. A naive implementation may implement all the steps using SMC
protocols even though post-processing can be performed in the clear. Given a DP program
written in a general purpose programming language (like Python), automatically figuring out
what can be done in the clear can be subtle. In Crypte programs, however, transformation
and measurement are clearly delineated, as the data can be accessed only through a pre-
specified set of operators. Thus, SMC protocols are only used for transformations and

measurements, which improves performance.

For example, the AHP algorithm for histogram release [ZCXT| works as follows: first, a
noisy histogram, H, is released using budget €. This is followed by post-processing steps of
thresholding, sorting and clustering resulting in H. Then a final histogram, H, is computed
with privacy budget € — €;. An implementation of the entire algorithm in a single SMC
protocol using the EMP toolkit [EMP| takes 810s for a dataset of size ~ 30K and histogram
size 100. In contrast, Crypte uses SMC protocols only for the first and third steps. Crypte
automatically detects that the second post-processing step can be performed in the clear. A
Crypte program for this runs in 238s (3.4 less time than that of the EMP implementation)

for the same dataset and histogram sizes.

Last, the security (privacy) proofs for just stand-alone cryptographic and DP mechanisms
can be notoriously tricky [BRO6,/LSL17]. Combining the two thus exacerbates the technical
complexity, making the design vulnerable to faulty proofs [HMFS17|. For example, given any
arbitrary DP program written under the CDP model, the distinction between intermediate
results that can be released and the ones which have to be kept private is often ambiguous.
An instance of this is observed in the Noisy-Max algorithm, where the array of intermediate
noisy counts is private. However, these intermediate noisy counts correspond to valid query
responses. Thus, an incautious analyst, in a bid to improve performance, might reuse a
previously released noisy count query output for a subsequent execution of the Noisy-Max
algorithm leading to privacy leakage. In contrast, Crypte is designed to reveal nothing other
than the outputs of the DP programs to the untrusted servers; every Crypte program comes
with an automatic proof of security (privacy). Referring back to the aforementioned exam-

ple, in Crypte, the Noisy-Max algorithm is implemented as a secure measurement operator

11

thereby preventing any accidental privacy leakage. The advantages of a programming frame-
work is further validated by the popularity of systems like PINQ [McS09|, Featherweight
PINQ [ES15], Ektelo |[ZMK™ 18] - frameworks for the CDP setting.

Data Owners are Offline. Recall, Crypte’s goal is to mimic the CDP model with untrusted
servers. Hence, it is designed so that the data owners are offline after submitting their

encrypted records to the AS.

Low Burden on CSP. Crypte views the AS as an extension of the analyst; the AS has a
vested interest in obtaining the result of the programs. Thus, we require the AS to perform
the majority of the work for any program; interactions with the CSP should be minimal
and related to data decryption. Keeping this in mind, the AS performs most of the data
transformations by itself (Table. Specifically, for every Crypte program, the AS processes
the whole database and transforms it into concise representations (an encrypted scalar or
a short vector) which is then decrypted by the CSP. An example real world setting can be
when Google and Symantec assumes the role of the AS and the CSP respectively.

Separation of Logical Programming Framework and Underlying Physical Imple-
mentation. The programming framework is independent of the underlying implementation.
This allows certain flexibility in the choice for implementation. For example, we use one-
hot-encoding as the input data format (Chapter [4.1)). However, any other encoding scheme
like range based encoding can be used instead. Another example is that for Crypte, we use
e-DP (pure DP) for our privacy analysis. However, other DP notions like (e, 0)-DP, Reényi
DP [Mirl7a] can also be used instead. Similarly, it is straightforward to replace LHE with
the optimized HE scheme in [BGP™19| or garbled circuits with the ABY framework [DSZ15].

Yet another alternative implementation for Crypte could be where the private database
is equally shared between the two servers and they engage in a secret share-based SMC
protocol for executing the DP programs. This would require both the servers to do almost
equal amount of work for each program. Such an implementation would be justified only if
both the servers are equally invested in learning the DP statistics and is ill-suited for our
context. A real world analogy for this can be if Google and Baidu decide to compute some

statistics on their combined user bases.

2.2 Background

In this chapter, we give a brief introduction to the definitions and primitives relevant to

Crypte.

12

2.2.1 Differential Privacy

Differential privacy is a quantifiable measure of the stability of the output of a randomized

mechanism to changes to its input.

Definition 1. An algorithm A satisfies e-differential privacy (e-DP), where e > 0 is a privacy
parameter, iff for any two neighboring datasets D and D’ such that D = D'—t or D' = D—t,

we have

VS C Range(A),Pr[A(D) € S] < e“Pr[A(D’) € 5] (2.1)

The above definition is sometimes called unbounded DP. A variant is bounded-DP where
neighboring datasets D and D’ have the same number of rows and differ in one row. Any
e-DP algorithm also satisfies 2e-bounded DP [LLSY16].

When applied multiple times, the DP guarantee degrades gracefully as follows.

Theorem 1. (Sequential Composition) If A1 and Ay are e1-DP and ea-DP algorithms with
independent randomness, then releasing A1 (D) and Ax(D) on database D satisfies €1+€a-DP.

Another important result is that any post-processing computation performed on the noisy

output of a differentially private algorithm does not degrade privacy.

Theorem 2. (Post-Processing) Let A : D — R be a randomized algorithm that is e-DP. Let
f: R R be an arbitrary randomized mapping. Then fo A: D~ R’ is e- DP.

The stability of a transformation operation is defined as

Definition 2. A transformation T is defined to be t-stable if for two datasets D and D', we

have
IT(D)eT(D)| <t DD (2.2)
where (i.e., D& D' = (D —D')U (D' — D).

Transformations with bounded stability scale the DP guarantee of their outputs, by their
stability constant [McS09).

Theorem 3. If T is an arbitrary t-stable transformation on dataset D and A is an e-DP
algorithm which takes output of T as input, the composite computation AoT provides (€-t)-
DP.

13

2.2.2 Cryptographic Primitives

Linearly Homomorphic Encryption (LHE). If (M, +) is a finite group, an LHE scheme

for messages in M is:

e Key Generation (Gen). This algorithm takes the security parameter s as input and

outputs a pair of secret and public keys, (s, px) & Gen(k).

e Encryption (Enc). This is a randomized algorithm that encrypts a message, m € M,

using the public key, pg, to generate the ciphertext, c ﬁ Encpr(m).

e Decryption (Dec). This uses the secret key, sg, to recover the plaintext, m, from the

ciphertext, c, deterministically.

In addition, LHE supports the operator & that allows the summation of ciphers as follows:
Operator @. Let ¢ < Encpp(ml),...,cq < Encpr(m,) and a € Z59. Then we have
Decgp(c1 @ ca... ®cg) =mi+ ...+ mg.

One can multiply a cipher ¢ < Encg(m) by a plaintext positive integer a by a repetitions

of ®. We denote this operation by cMult(a,c) such that Decg,(cMult(a,c)) = a-m.

Labeled Homomorphic Encryption(labHE). Let (Gen, Enc, Dec) be an LHE scheme
with security parameter £ and message space M. Assume that a multiplication operation
exists in M, i.e., is a finite ring. Let F : {0,1}* x £ — M be a pseudo-random function
with seed space {0, 1}*(s= poly(x)) and the label space £. A labHE scheme is defined as

e labGen(k). Runs Gen(k) and outputs (sk, pk).

e localGen(pk). For each user i and with the public key as input, it samples a random
seed o; € {0,1}* and computes pk; = Encyi(0;) where o; is an encoding of o; as an

element of M. It outputs (o, pk;).

e labEnc,(o;,m,7). On input a message m € M with label 7 € £ from user i, it
computes b = F(o;,7) (mask) and outputs the labeled ciphertext ¢ = (a,d) € M x C
with a = m — b (hidden message) in M and d = Enc,(b). For brevity we just use

notation labEnc,;(m) to denote the above functionality, in the rest of paper.

e labDecy;(c). This functions inputs a cipher ¢ = (a,d) € M x C and decrypts it as
m = a — Decg(d).

e labMult(cy,c2): On input two labHE ciphers ¢; = (a1,d;) and ¢co = (a2, ds), it com-
putes a "multiplication” ciphertext e = labMult(cq, c2) = Encpy (a1, az)®cMult(dy, az)®
cMult(dz,ar). Observe that Decgi(e) = my - mg — by - ba.

14

e labMultDec,(d;,d2,e): On input two encrypted masks dy,ds of two labHE ciphers
c1,C2, this algorithm decryts the output e of labMult(cq,c2) as mg = Decgi(e) +

Decgy(dy) - Decgi(d2) which is equals to my - ma.

Garbled Circuit. Garbled circuit [Yao86,|[LP09a] is a generic method for secure computa-
tion. Two data owners with respective private inputs x1 and x5 run the protocol such that,
no data owner learns more than f(xz1,z2) for a function f. One of the data owners, called
generator, builds a “garbled” version of a circuit for f and sends it to the other data owner,
called evaluator, alongside the garbled input values for x1. The evaluator, then, obtains the

garbled input for xs from the generator via oblivious transfer and computes f(x1,x2).

2.3 Crypte System Description

In this chapter, we describe Crypte in detail. First, we start with workflow (Chapter [2.3.1)),
followed by its modules (Chapter [2.3.2)) and trust assumptions (Chapter [2.3.3]).

2.3.1 Crypte Workflow

Crypte operates in three phases:

e Setup Phase. At the outset, data owners initialize the CSP with a privacy budget, 7,
which is stored in its Privacy Engine module. Next, the CSP’s Key Manager module
generates key pair (sk,pk) for labHE, publishes pk and stores sk.

e Data Collection Phase. In the next phase, each data owner encodes and encrypts
his/her record using the Data Encoder and Data Encryption modules and sends the
encrypted data records to the AS. The data owners are relieved of all other duties and
can go completely offline. The Aggregator module of the AS, then, aggregates these

encrypted records into a single encrypted database, D.

e Program Execution Phase. In this phase, the AS executes a Crypte program pro-
vided by the data analyst. Crypte programs (details in Chapters and access
the sensitive data via a restricted set of transformation operators, that filter, count or
group the data, and measurement operators, which are DP operations to release noisy
answers. Measurement operators need interactions with the CSP as they require (1) de-
cryption of the answer, and (2) a check that the privacy budget is not exceeded. These

functionalities are achieved by CSP’s Data Decryption and Privacy Engine modules.

The Setup and Data Collection phases occur just once at the very beginning, every subse-

quent program is handled via the corresponding Program Ezecution phase.

15

2.3.2 Crypte Modules

Cryptographic Service Provider (CSP)

Key Manager. The Key Manager module initializes the labHE scheme for Crypte
by generating its key pair, (sk, pk). It stores the secret key, sk, with itself and releases
the public key, pk. The CSP has exclusive access to the secret key, sk, and is the only
entity capable of decryption in Crypte.

Privacy Engine. Crypte starts off with a total privacy budget of €® chosen by
the data owners. The choice of value for €? should be guided by social preroga-
tives [AS19,HGH ™ 14,]LC11] and is currently outside the scope of Crypte. For execut-
ing any program, the AS has to interact with the CSP at least once (for decrypting
the noisy answer), thereby allowing the CSP to monitor the AS’s actions in terms of
privacy budget expenditure. The Privacy Engine module gets the program, P, and its
allocated privacy budget, €, from the data analyst, and maintains a public ledger that
records the privacy budget spent in executing each such program. Once the privacy
cost incurred reaches €?, the CSP refuses to decrypt any further answers. This ensures
that the total privacy budget is never exceeded. The ledger is completely public allow-

ing any data owner to verify it.

Data Decryption. The CSP being the only entity capable of decryption, any mea-
surement of the data (even noisy) has to involve the CSP. The Data Decryption module

is tasked with handling all such interactions with the AS.

Data Owners (DO)

Data Encoder. Each data owner, DO;,i € [m], has a private data record, D;, of
the form (Aj,...A;) where A; is an attribute. At the very outset, every data owner,
DO;, represents his/her private record, D;, in its respective per attribute one-hot-
encoding format. The one-hot-encoding is a way of representation for categorical at-
tributes and is illustrated by the following example. If the database schema is given
by (Age, Gender), then the corresponding one-hot-encoding representation for a data

owner, DO;, i € [m], with the record (30, Male), is given by D; = ([0,...,0,1,0,...,0],[1,0]).
29 70

Data Encryption. The Data Encryption module stores the public key pk of labHE
which is announced by the CSP. Each data owner, DO;,i € [m], performs an element-

wise encryption of his/her per attribute one-hot-encodings using pk and sends the

16

encrypted record, Dj, to the AS via a secure channel. This is the only interaction

that a data owner ever participates in and goes offline after this.

Analytics Server (AS)

e Aggregator. The Aggregator collects the encrypted records, D;, from each of the

data owners, DO;, and collates them into a single encrypted database, D.

e Program Executor. This module inputs a logical Crypte program, P, and privacy
parameter, €, from the data analyst, translates P to the implementation specific secure

protocol and computes the noisy output with the CSP’s help.

2.3.3 Trust Model

There are three differences in Crypte from the LDP setting:

e Semi-honest Model. We assume that the AS and the CSP are semi-honest, i.e., they
follow the protocol honestly, but their contents and computations can be observed by
an adversary. Additionally, each data owner has a private channel with the AS. For
real world scenarios, the semi-honest behaviour can be imposed via legal bindings.
Specifically, both the AS and the CSP can swear to their semi-honest behavior in legal
affidavits; there would be loss of face in public and legal implications in case of breach

of conduct.

e Non-collusion. We assume that the AS and the CSP are non-colluding, i.e., they avoid
revealing information [KMR11] to each other beyond what is allowed by the protocol
definition. This restriction can be imposed via strict legal bindings as well. Addition-
ally, in our setting the CSP is a third-party entity with no vested interested in learning
the program outputs. Hence, the CSP has little incentive to collude with the AS. Phys-
ical enforcement of the non-collusion condition can be done by implementing the CSP
inside a trusted execution environment (TEE) or via techniques which involve using a

trusted mediator who monitors the communications between the servers [AKLT09).

e Computational Boundedness. The adversary is computationally bounded. Hence,
the DP guarantee obtained is that of computational differential privacy or SIM-CDP
[MPRV09]. There is a separation between the algorithmic power of computational
DP and information-theoretic DP in the multi-party setting [MPRV09]. Hence, this

assumption is inevitable in Crypte.

17

Table 2.1: Crypte Operators

Types Name ‘ Notation ‘ Input ‘ Output ‘ Functionality
- o Generates a new attribute A’ (in one-hot-coding) to represent
CrossProduct X 4,4, -0 (7) T T i
the data for both the attributes A; and A;
Project a-(+) T T Discards all attributes but A*
Transformation | Filter 210! T B’ Zeros out records not satisfying ¢ in B
Count count(-) T c Counts the number of 1s in B
GroupByCount Ut (. T \4 Returns encrypted histogram of A
GroupByCountEncoded | 754" (-) T v Returns encrypted histogram of A in one-hot-encoding
CountDistinct countD(+) \4 c Counts the number of non-zero values in V'
Laplace Lapea(-) Vne 14 Adds Laplace noise to V
Measurement - — k = — - -
NoisyMax Nozsy]\faxEYA(») \4 P Returns indices of the top k noisy values

2.4 Crypte Operators

., A;). In this
chapter, we define the Crypte operators (summarized in Table [2.1)) and illustrate how to

Let us consider an encrypted instance of a database, D, with schema (Aq,..

write logical Crypte programs for DP algorithms on D. The design of Crypte operators are
inspired by previous work [ZMK ™18, McS09).

2.4.1 Transformation operators

Transformation operators input encrypted data and output a transformed encrypted data.
These operators thus work completely on the encrypted data without expending any privacy
budget. Three types of data are considered in this context: (1) an encrypted table, T, of
x rows and y columns/attributes where each attribute value is represented by its encrypted
one-hot-encoding; (2) an encrypted vector, V'; and (3) an encrypted scalar, e¢. In addition,
every encrypted table, T, of x rows has an encrypted bit vector, B, of size z to indicate
whether the rows are relevant to the program at hand. The i-th row in T will be used for
answering the current program only if the i-th bit value of B is 1. The input to the first
transformation operator in Crypte program is D with all bits of B set to 1. For brevity, we
use just T to represent both the encrypted table, T, and B. The transformation operators

are:

e CrossProduct x4, 4,4 (T). This operator transforms the two encrypted one-hot-
encodings for attributes A; and A; in T into a single encrypted one-hot-encoding of
a new attribute, A’. The domain of the new attribute, A’, is the cross product of the
domains for A; and A;. The resulting table, T , has one column less than T. Thus,
the construction of the one-hot-encoding of the entire y-dimensional domain can be

computed by repeated application of this operator.

18

e Project 7 A(f‘). This operator projects T on a subset of attributes, A, of the input
table. All the attributes that are not in A are discarded from the output table 1.

e Filter 04(T). This operator specifies a filtering condition that is represented by a
Boolean predicate, ¢, and defined over a subset of attributes, A, of the input table, T.
The predicate can be expressed as a conjunction of range conditions over A, i.e., for a
row r € T, o(r) = /\AieA (r.A; € Va,), where r.A; is value of attribute A; in row r
and Vy is a subset of values (can be a singleton) that A; can take. For example, Age €
[30,40] A Gender = M can be a filtering condition. The Filter operator affects only the
associated encrypted bit vector of T and keeps the actual table untouched. If any row,
r e f‘, does not satisfy the filtering condition, ¢, the corresponding bit in B will be set
to labEncy,(0); otherwise, the corresponding bit value in B is kept unchanged. Thus
the Filter transformation suppresses all the records that are extraneous to answering
the program at hand (i.e., does not satisfy ¢) by explicitly zeroing the corresponding
indicator bits and outputs the table, T , with the updated indicator vector.

e Count count(T). This operator simply counts the number of rows in T that are
pertinent to the program at hand, i.e. the number of 1s in its associated bit vector B.

This operator outputs an encrypted scalar, c.

count (T

e GroupByCount v{**(T). The GroupByCount operator partitions the input table,
T, into groups of rows having the same value for an attribute, A. The output of this
transformation is an encrypted vector, V, that counts the number of unfiltered rows for
each value of A. This operator serves as a preceding transformation for other Crypte

operators specifically, NoisyMax, CountDistinct and Laplace.

~count (T

e GroupByCountEncoded 55" (T). This operator is similar to GroupByCount. The
only difference between the two is that GroupByCountEncoded outputs a new table
that has two columns — the first column corresponds to A and the second column
corresponds to the number of rows for every value of A (in one-hot-encoding). This
operator is useful for expressing computations of the form “count the number of age
values having at least 200 records” (see P7 in Table [2.2)).

e CountDistinct countD (V). This operator is always preceded by GroupByCount. Hence
the input vector, V, is an encrypted histogram for attribute, A, and this operator
returns the number of distinct values of A that appear in D by counting the non-zero

entries of V.

19

‘ Crypte Program Description ‘
P1: Vi € [1,100], & La,p(‘.1((‘ou,nf,(nAggg(m](Age(l_))))): posteaf([ér,-.., 2100]) Outputs the c.d.f of Age with domain [1,100].
P2: P« A\"uzsgz/ﬂlaxf_l(ﬂ,j{;‘e””(ﬁ)) Outputs the 5 most frequent age values.
P3: V Lape 2 (V3! render (Race x Gender (X Race Gender— Racex Ge nder(D)))) Outputs the marginal over the attributes Race and Gender.
P4 V Lupf,?('7_21(3515(;,,,d¢37»(UNatlUr(?mmh-y*.‘\lsru‘o(:’\ge><GsndeT.Nntwe(?uuntry(xAgé.Ge7ld€r~>.4gF><Ge71d€r(ﬁ))))) Outputs the marginal over Age and Gender for Mexican employees.
P5: ¢+ L(l,pti(CDlLnt(O'Aq”:_';“,/\(;,m,l(.,.:M,,/{,AN(,L,,.“(7(,,”,/,,.”:A‘\lm,“,,(_,y!,(..(,'u,(],;,vy;\c,,;w(.(,'m‘,,I,y(lz_))))) Counts the number of male employees of Mexico having age 30.
P6: ¢« Lapﬂz((;()'rmtD('>f{;g”((erder:M&k(Aqagmdﬂ(b))))) Counts the number of distinct age values for the male employees.
PT7: ¢ < Lap. ,2(('ount(ﬁmumdznn.,,,](‘y‘j‘j’f”’(,xw(ﬁ))))) Counts the number of age values having at least 200 records.

Table 2.2: Examples of Crypte Program

2.4.2 Measurement operators

The measurement operators take encrypted vector of counts, V' (or a single count, ¢), as input
and return noisy measurements on it in the clear. These two operators correspond to two
classic DP mechanisms — Laplace mechanism and Noisy-Max [DR14a]. Both mechanisms

add Laplace noise, 7, scaled according to the transformations applied to D.

Let the sequence of transformations applied on D to get V be T(D) = T;(--- Tz((T1(D)))).
The sensitivity of a sequence of transformations is defined as the maximum change to the out-
put of this sequence of transformations [McS09] when changing a row in the input database,
i.e., Ay =maxp p || T(D)—T(D")||y where D and D’ differ in a single row. The sensitivity
of T can be upper bounded by the product of the stability [McS09] of these transformation
operators, i.e., A7_’=(Tz,...,7'1) = Hé:l AT;. The transformations in Table have a stability
of 1, except for GroupByCount and GroupByCountEncoded which are 2-stable. Given € and

Az, we define the measurement operators:

e Laplace Lap. A(V/c). This operator implements the classic Laplace mechanism [DR14a].
Given an encrypted vector, V', or an encrypted scalar, ¢, a privacy parameter € and
sensitivity A of the preceding transformations, the operator adds noise drawn from

Lap(%) to V or ¢ and outputs the noisy answer.

e NoisyMax NoisyM axf A (V). Noisy-Max is a differentially private selection mechanism

[DR14a, GHIM19| to determine the top k highest valued queries. This operator takes
2kA

in an encrypted vector V' and adds independent Laplace noise from Lap(=2=) to each

count. The indices for the top k£ noisy values, P, are reported as the desired answer.

2.5 Implementation

In this chapter, we describe the implementation of Crypte. First, we discuss our proposed
technique for extending the multiplication operation of labHE to support n > 2 multiplicands
which will be used for the CrossProduct operator. Then, we describe the implementations of

Crypte operators.

20

miXm; mzXmy . Mp_3XMy_y My XMy,
X X
flogn] —_ .
rounds

X
My XMy X -+ XMy XMy,

Figure 2.2: genLabMult() - Batching of multiplicands for labHE

2.5.1 General n-way Multiplication for labHE

The labMult() operator of a labHE scheme allows the multiplication of two ciphers. However,
it cannot be used directly for a n-way muplication where n > 2. It is so because the
"multiplication” cipher e = labMult(cq,c2) does not have a corresponding label, i.e., it is
not in the correct labHE cipher representation. Hence, we propose Algorithm [I]to generate a
label 7/ and a seed b’ for every intermediary product of two multiplicands so that it we can do
a generic n-way multiplication on the ciphers. Note that the mask r protects the value of (m; -
ms) from the CSP (Step 3) and b hides (my-ms2) from the AS (Step 6). For example, suppose
we want to multiply the respective ciphers of 4 messages {mi, mo, ms, ms} € M* and obtain
e = labEncpk(ml -mg - mg - my). For this, the AS first generates e1,2 = labEncy(my - ma)
and eg 4 = labEncy,(m3 - my4) using Algorithm (1, Both operations can be done in parallel in
just one interaction round between the AS and the CSP. In the next round, the AS can again
use Algorithm [1| with inputs e 2 and es 4 to obtain the final answer e. Thus for a generic
n — way multiplication the order of multiplication can be, in fact, parallelized as shown in

Figure to require a total of [logn]| rounds of communication with the CSP.

2.5.2 Operator Implementation

We now summarize how Crypte operators are translated to protocols that the AS and CSP

can run on encrypted data.

Project 7 4(T'). The implementation of this operator simply drops off all but the attributes
in A from the input table, T, and returns the truncated table, T

Filter 0'¢(T). The predicate ¢ in this operator is a conjunction of range conditions over A,
defined as: for a row r in input table T, ¢(r) = Naea (r-Aj € Va,), where r.4; is the
value of attribute A; in row r and Vs, C {0,1,...,s4,} (the indices for attribute values of

A; with domain size s4,).

21

Algorithm 1: genLabMult - generate label for labMult
Input: ¢1 = (a1,d1) = labEncyi(m) and ca = labEncy,(m2) where a; = my — by,

di = Encyr(b1), az = ma — by, da = Encyy(ba)
Output: e = labEncy,(m1 - ma)
AS:
1: Computes € = labMult(c1, c2) ® Ency(r) where r is a random mask
e’ corresponds to mq - mg — by - by + 1
2: Sends €/, dq,ds to CSP
CSP:
3: Computes ¢’ = Decgi(€') + Decgk(dy) - Decgy(dz)
e’ corresponds to mq - mg + 1
4: Picks a seed o’ and label 7" and computes v/ = F(o’, ")
5: Sends € = (a,d’) to AS, where a = " — ' and d' = Ency (V)
>>a corresponds to mq - mag +1r — b
AS:

6: Computes true cipher e = (a/,d') where ' =a —r

First, we will show how to evaluate whether a row r satisfies r.A; € Vya,. Let v; be the

encrypted one-hot-encoding of A;, then the indicator function can be computed as
Iraseva, = @ v;lI].
leVa;

If the attribute of A; in 7 has a value in V4, then I, A€V, equals 1; otherwise, 0.

Next, we can multiply all the indicators using genLabMult() to check whether all attributes
in A; € A of r satisfy the conditions in ¢. Let A = {A1,..., Ay}, then

o(r) = genLab]Wult(IAlEVA1 v daeva)

Last, we update the bit of r in B, i.e., B'[i] = labMult(B]i], ¢(r)), given r is the ith row
in the input table. This step zeros out some additional records which were found to be

extraneous by some preceding filter conditions.

Note that when the Filter transformation is applied for the very first time in a Crypte
program and the input predicate is conditioned on a single attribute A € V4, we can directly
compute the new bit vector using I, gcv,, i.e., for the ith record r in input table T, we have
B'[i] = @cy, V;[l]. This avoids the unnecessary multiplication labMult(Bli], $(r)).

CrossProduct x4, 4, 4/ (’f’) This operator replaces the two attributes A; and A; by a single

attribute A’. Given the encrypted input table T, where all attributes are in one-hot-encoding

22

and encrypted, the attributes of T except A4; and A; remain the same. For every row in T,
we denote the encrypted one-hot-encoding for A; and A; by vi and vo. Let s and sz be the
domain sizes of A; and A;j respectively. Then the new one-hot-encoding for A’, denoted by

v, has a length of s = s1 - s9. For [€ {0,1,...,s — 1}, we have
V[l = labMult(v1[l/s32], V2[l%s2]).

Only one bit in v for A’ will be encrypted 1 and the others will be encrypted 0s. When
merging more than two attributes, Crypte uses the genLabMult() described in Chapter m

to speed up the computation.

Count count(T').This operator simply adds up the bits in B corresponding to input table
T, ie., @, Bli.

count (rp

GroupByCount 5" (T). The implementations for Project, Filter and Count are reused here.

First, Crypte projects the input table T on attribute A, i.e. Tj =4 (’f) Then, Crypte loops
each possible value of A. For each value v, Crypte initializes a temporary B, = B and filters

T' on A = v to get an updated B/ Finally, Crypte outputs the number of 1s in B,

~count (T

GroupByCountEncoded 79" (T). The implementation detail of this operator is given by Al-

gorithm 7?7 and described below. First, the AS uses GroupByCount to generate the encrypted
histogram, V', for attribute A. Since each entry of V is a count of rows, its value ranges
from {0, ..., |1~’]} The AS, then, masks V and sends it to the CSP. The purpose of this
mask is to hide the true histogram from the CSP. Next, the CSP generates the encrypted
one-hot-coding representation for this masked histogram V and returns it to the AS. The

AS can simply rotate V[i],i € [|V]] by its respective mask value M[i] and get back the true

encrypted histogram in one-hot-coding V.

CountDistinct countD(V'). The implementation of this operator involves both AS and CSP.
Given the input encrypted vector of counts V' of length s, the AS first masks V to form a new
encrypted vector V with a vector of random numbers M, i.e., for i € {0,1,...,s—1}, V[i] =
V[i] ® labEnc,,(M][i]). This masked encrypted vector is then sent to CSP and decrypted by
CSP to a plaintext vector V using the secret key.

Next, CSP generates a garbled circuit which takes (i) the mask M from the AS, and (ii) the
plaintext masked vector V and a random number r from the CSP as the input. This circuit
first removes the mask M from V to get V' and then counts the number of non-zero entries
in V, denoted by c¢. A masked count ¢’ = ¢+ r is outputted by this circuit. CSP send both

the circuit and the encrypted random number labEncy(r) to AS.

23

Algorithm 2: GroupByCountEncoded ﬁj"“”t(T)
Input: T
Output: V
AS:
1: Computes V = " (T).
2: Masks the encrypted histogram V for attribute A as follows

VI[i] = VI[i] & labEncy (M[i])
M} eg [m],i € [[V]]

3: Sends V to CSP.
CSP:
4: Decrypts V as V[i] = labDecg(V),i € [|V]].
5: Converts each entry of V to its corresponding one-hot-coding and encrypts it,
Vi] = labEncy,(V]i]),i € [|[V]]
6: Sends V to AS.
AS:
7: Rotates every entry by its corresponding mask value to obtain the desired encrypted

one-hot-coding V[i].

V'[i] = RightRotate(V, M[i]),i € [|V]]

Last, the AS evaluates this circuit to the masked count ¢’ and obtains the final output to

this operator: ¢ = labEncyi(c’) — labEncy(r).

Laplace Lap. A(V /c): The Laplace operator has two phases (since both the AS and the CSP
adds Laplace noise). In the first phase, the AS adds an instance of encrypted Laplace noise,
Ny~ Lap(%), to the encrypted input to generate €. In the second phase, the CSP first
checks whether 22:1 €; + € < €8 where ¢; represents the privacy budget used for a previously
executed program, P; (presuming a total of ¢ € N programs have been executed hitherto the
details of which are logged into the CSP’s public ledger). Only in the event the above check
is satisfied, the CSP proceeds to decrypt ¢, and records € and the current program details
(description, sensitivity) in the public ledger. Next, the CSP adds a second instance of the
Laplace noise, 1o ~ Lap(%), to generate the final noisy output, ¢, in the clear. The Laplace

operator with an encrypted scalar, V', as the input is implemented similarly.

NoisyMax NoisyMaa:fA(Valid). The input to this operator is an encrypted vector of counts
V of size s. Similar to Laplace operator, both AS and CSP are involved. First, the AS

24

adds to V' an encrypted Laplace noise vector and a mask M, i.e., for ¢ € {0,1,...,s},
Vi] = V[i] @ labEncy(n;) ® Ml[i], where 7; ~ Lap(#:2). This encrypted noisy, masked
vector V is then sent to the CSP.

The CSP first checks whether 25:1 €; + € < €8 where ¢; represents the privacy budget used
for a previously executed program P; (we presume that a total of t € N programs have been
executed hitherto the details of which are logged into the CSP’s public ledger). Only in the
event the above check is satisfied, the CSP proceeds to decrypt \% using the secret key, i.e.,
for i € {0,1,...,s}, V[i] = labDecg,(V'[i]). Next the CSP records € and the current program
details in the public ledger. This is followed by the CSP adding another round of Laplace
noise to generate V'[i] = V[i] @ labEncyy(1}), where 7} ~ Lap(#2),i € {0,1,...,s}. (This
is to ensure that as long as one of the parties is semi-honest, the output does not violate
DP.) Finally, the CSP generates a garbled circuit which takes (i) the noisy, masked vector 1%
from the CSP, and (ii) the mask M from the AS as the input. This circuit will remove the

mask from V to get the noisy counts V' and find the indices of the top-k values in V.

Finally, the AS evaluates the circuit above and returns the indices as the output of this

operator.

2.5.3 Classification of Crypte Programs

Crypte programs are grouped into three classes based on the number and type of interaction
between the AS and the CSP.

Class I: Single Decrypt Interaction Programs

For releasing any result (noisy) in the clear, the AS needs to interact at least once with the
CSP (via the two measurement operators) as the latter has exclusive access to the secret key.
Crypte programs like P1, P2 and P3 (Table that require only a single interaction of this
type fall in this class.

Class II: LabHE Multiplication Interaction Programs
Crypte supports a n-way multiplication of ciphers for n > 2 as described in Chapter [2.5.1]
which requires intermediate interactions with the CSP. Thus all Crypte programs that require

multiplication of more than two ciphers need interaction with the CSP. Examples include P4

and P5 (Table [2.2).

Class III: Other Interaction Programs
The GroupByCountEncoded operator requires an intermediate interaction with the CSP. The

CountDistinct operator also uses a garbled circuit and hence requires interactions with the

25

CSP. Therefore, any program with the above two operators, like P6 and P7 (Table ,

requires at least two rounds of interaction.

2.6 Crypte Security Analysis

In this chapter, we analysis the security guarantees of Crypte in the semi-honest model using
the well established simulation argument [Ode09]. Crypte takes as input a DP program, P,
and a privacy parameter, €, and translates P into a protocol, II, which in turn is executed
by the AS and the CSP. In addition to revealing the output of the program P, II also reveals
the number of records in the dataset, D. Let P¢PP(D, ¢/2) denote the random variable
corresponding to the output of running P in the CDP model under €/2-DP (Definition [1]).

We make the following claims:

e The views and outputs of the AS and CSP are computationally indistinguishable from

that of simulators with access to only P“PP(D,¢/2) and the total dataset size |D|.

e For every P that satisfies ¢/2-DP (Definition [1]), revealing its output (distributed identi-
cal to PPP (D, ¢/2)) as well as |D| satisfies e-bounded DP, where neighboring databases

have the same size but differ in one row.

e Thus, the overall protocol satisfies computational differential privacy under the SIM-
CDP model.

Now, let Pg bp (D, €) denote the random variable corresponding to the output of running P
in the CDP model under e-bounded DP such that PSPF (D, ¢) = (PYPP(D,¢/2),|D|).

Theorem 4. Let protocol II correspond to the execution of program P in Crypte. The views
and outputs of the AS and the CSP are denoted as Viewi!(P, D, ¢), Outputl!(P,D,¢) and
Viewl (P, D, €), Outputl (P, D, €) respectively. Let =. denote computational indistinguisha-
bility. There exists Probabilistic Polynomial Time (PPT) simulators, Sim; and Sims, such
that:

o Simi(PSPT(D,e)) is =, to (View! (P, D, e), Output' (P, D, ¢)), and
o Sima(PSPY(D,¢)) is = to (Viewl (P, D,¢), Output (P, D, ¢)).
Output (P, D, €)) is the combined output of the two partiesﬂ

First, we present a proof sketch of the above theorem which is followed by the formal proof.

!Note that the simulators are passed a random variable PSP? (D, €)), i.e., the simulator is given
the ability to sample from this distribution.

26

Proof Sketch. The main ingredient for the proof is the composition theorem [Ode09|, which
informally states: suppose a protocol, ch, implements functionality f and uses function g as
an oracle (uses only input-output behavior of g). Assume that protocol II; implements g and
calls to g in H?c are replaced by instances of I, (referred to as the composite protocol). If
II; and II, are correct (satisfy the above simulator definition), then the composite protocol
is correct. Thus, the proof can be done in a modular fashion as long as the underlying
operators are used in a blackbox manner (only the input-output behavior are used and none

of the internal state are used).

Next, every Crypte program expressed as a sequence of transformation operators followed
by a measurement operator, satisfies €¢/2-DP (as in Definition . It is so because recall that
the measurement operators add noise from Lap(%) (Chapter where A denotes the
sensitivity of P (computed w.r.t to Definition [I) [DR14a,GHIM19]. However, Crypte reveals
both the output of the program as well as the total size of the dataset D. While revealing
the size exactly would violate Definition [1} it does satisfy bounded-DP albeit with twice the
privacy parameter, € — changing a row in D is equivalent to adding a row and then removing

a Irow.

Finally, since every program P executed on Crypte satisfies e-bounded DP, it follows from

Theorem [4 that every execution of Crypte satisfies computational DP.

Formal Proof. Crypte has nine operators (see Table .

e NoisyMax and CountDistinct use “standard” garbled circuit construction and their se-

curity proof follows from the proof of these schemes.

e All other operators except Laplace essentially use homomorphic properties of our en-

cryption scheme and thus there security follows from semantic-security of these scheme.
e The proof for the Laplace operator is given below.

The proof for an entire program P (which is a composition of these operators) follows from

the composition theorem |[Ode09, Section 7.3.1]

We will prove the theorem for the Laplace operator. In this case the views are as follows (the
outputs of the two parties can simply computed from the views):
View?(P,D, €) = (pk,’ﬁ,m, P(D)+mn2+m)
View(pk, sk, P,D,e) = (no, labEncy,(P(D) +m))

The random variables n; and 7y are random variables generated according to the Laplace

distribution Lap(%) where A is the program sensitivity (computed w.r.t Definition .

27

The simulators Sim; (z) (where z1 = (y1, |D|) is the random variable distributed according

to ,€)), y1 being the random variable distributed as , € performs the
P{PP(D Yy, being th d iable distributed as P¢PP(D, /2 f h

following steps:

e Generates a pair of keys (pki, ski) for the encryption scheme and generates random

data set D; of the same size as D and encrypts it using pki to get D;.
e Generates 7] according to the Laplace distribution Lap(%).

The output of Simy(z1) is (D1, 17, y1 +1,). Recall that the view of the AS is (D, n1, P(D) +
72 + 1m1). The computational indistinguishability of D, and D follows from the semantic
security of the encryption scheme. The tuple (n,y1 + n]) has the same distribution as
(m, P(D) 4+ n2 + m) and hence the tuples are computationally indistinguishable. Therefore,

Simi(z1) is computational indistinguishable from Viewl! (P, D, e).

The simulators Simg(z2) (where zo = (y2,|D]) is the random variable distributed according
to PSPT(D,¢€)), y2 being the random variable distributed as PYPP(D, ¢/2)) performs the

following steps:
e Generates a pair of keys (pka, sky) for our encryption scheme.
e Generates 7} according to the Laplace distribution Lap(%).

The output of Sima(22) is (15, labEncyi(y2) + 15). By similar argument as before Sima(22)

is computationally indistinguishable from Viewl (P, D, ¢).

Corollary 1. Protocol 11 satisfies computational differential privacy under the SIM-CDP
notion [MPRV0Y].

Note that Theorem (4] assumes that AS and the CSP do not collude with the users (data
owners). However, if the AS colludes with a subset of the users, U, then Sim; (Simsz) has
to be given the data corresponding to users in U as additional parameters. This presents no
complications in the proof (see the proof in [GJJT18|). If a new user u joins, their data can

be encrypted and simply added to the database.

2.7 Crypte Optimizations

In this chapter, we present the optimizations used by Crypte.

28

2.7.1 DP Index Optimization

This optimization is motivated by the fact that several programs, first, filter out a large
number of rows in the dataset. For instance, P5 in Table constructs a histogram over
Age and Gender on the subset of rows for which NativeCountry is Mexico. Crypte’s filter
implementation retains all the rows as the AS has no way of telling whether the filter condition
is satisfied. As a result, the subsequent GroupbyCount is run on the full dataset. If there were
an index on NativeCountry, Crypte could run the GroupbyCount on only the subset of rows
with NativeCountry=Mexico. But an exact index would violate DP. Hence, we propose a

DP index to bound the information leakage while improving the performance.

At a high-level, the DP index on any ordinal attribute A is constructed as follows: (1)
securely sort the input encrypted database, D, on A and (2) learn a mapping, F, from the
domain of A to [1,|D|] such that most of the rows with index less than F(v),v € domain(A),
have a value less than v. The secure sorting is done via the following garbled circuit that (1)
inputs D (just the records without any identifying features) and indexing attribute A from
the AS (2) inputs the secret key sk from the CSP (3) decrypts and sort D on A (4) re-encrypt
the sorted database using pk and outputs Dy = labEncyy(sort(D)). The mapping, F, must
be learned under DP, and we present a method for that below. Let P = (Py,..., P;) be an
equi-width partition on the sorted domain of A such that each partition (bin) contains %+
consecutive domain values where s4 is the domain size of A. The index is constructed using
a Crypte program that firstly computes the noisy prefix counts, V[z] = ZUEU;:1 p Ctaw +ni
for i € [k], where n; ~ Lap(2-k/es) and ct 4, denotes the number of rows with value v for A.
Next, the program uses isotonic regression [HRMS10a| on V to generate a noisy cumulative
histogram C with non-decreasing counts. Thus, each prefix count in C gives an approzrimate
index for the sorted database where the values of attribute A change from being in P; to a
value in P;11. When a Crypte program starts with a filter ¢ = A € [vs, ve|, we compute two
indices for the sorted database, is and 4., as follows. Let vy and v, fall in partitions P; and
P;j respectively. If P; is the first partition, then we set is = 0; otherwise set i; to be 1 more
than the 7 — 1-th noisy prefix count from C. Similarly, if P;j is the last partition, then we set
le = |’1~?|, otherwise, we set i. to be the j + 1-th noisy prefix count from C. This gives us the
DP mapping F. We then run the program on the subset of rows in [is, i.]. For example, in
Figure the indexing attribute with domain {vy,--- ,v10} has been partitioned into k = 5
bins and if ¢ € [vs,vg], is = C[1] + 1 = 6 and i, = C[3] = 13.

Lemma 1. Let P be the program that computes the mapping F. Let I1 be the Crypte
protocol corresponding to the construction of the DP index. The views and outputs of the
AS and the CSP are denoted as Viewi (P, D, e4), Output!!(P,D,e4) and Viewl (P, D, ea),
Outputl (P, D, e4) respectively. There exists PPT simulators Simy and Simg such that:

29

o Simi(PSPY(D,en)) = (Viewl (P, D,e4), Output™ (D, e4)), and
o Sima(PSPY(D,€)) =. (ViewS (P, D, e4), Output™ (D, e4)).

Output!(P, D, e4)) is the combined output of the two parties

Proof. Recall that protocol II consists of two parts; in the first part II;, the AS obtains
the sorted encrypted database D, via a garbled circuit. Next IIs computes F via a Crypte
program. The security of the garbled circuit in Iy follows from standard approaches [LP09b].
Hence, in this chapter we concentrate on IIs. The proof of the entire protocol II follows from
the composition theorem | [Ode09], Section 7.3.1]. The views of the servers for IIy are as

follows:

View?z(P,D, €4) = (pk‘,'b,'bsa}_)
‘/’L'G’wg[2 (pk, 5k7 P7 Dv EA) = (‘F)

The simulators Sim;(z1) (where z; = (y1,|D|) is the random variable distributed according
to PSPP(D,e4), y1 being the random variable distributed as PYPF(D, e4/2)) performs the

following steps:

e Generates a pair of keys (pky, sk;) for the encryption scheme and generates random

data set D; of the same size as D and encrypts it using pk; to get Dy

e Generates another random dataset Do of the same size and encrypts it with pk to get
Ds.

The computational indistinguishability of D; and D follows directly from the semantic se-
curity of the encryption scheme. From the construction of the secure sorting algorithm, it
is evident that the records in Dy cannot be associated back with the data owners by the
AS. This along with the semantic security of the encryption scheme ensures that Dy and
D, are computationally indistinguishable as well. The tuples (pk1, D1, Do, y1) has the same
distribution as (pk:,’b,’f)s,]-') and hence are computationally indistinguishable. Therefore,
Simy(z1) is computational indistinguishable from View((P, D, e4).

For the simulator Sima(z2) (where z2 = (y2, |D|) is the random variable distributed accord-
ing to PSPP(D,e4), y2 being the random variable distributed as PYPP (D, e4/2)), clearly
tuples (y2) and (F) have identical distribution. Thus, Sima(z2) is also computationally in-
distinguishable from

Viewé12 (P, D,ea) thereby concluding our proof. O

e Optimized feature. This optimization speeds up the program execution by reducing

the total number of rows to be processed for the program.

30

-P,
SPy (V| Wy Vo | Wy | Vg | W | Vg Vg Vg |V | Vs Vs | Vs | Vg | Ve | Vo [V | Vg | Vg | Vg | Vg | Va0
-P,
-P,
-Pg _

Cl1]

Cl4]

C[5]

Figure 2.3: Illustrative example for DP Index

e Trade-off. The trade-off is a possible increase in error as some of the rows that satisfy

the filter condition may not be selected due to the noisy index.

e Privacy Cost. Assuming the index is constructed with privacy parameter €4, the
selection of a subset of rows using it will be e4-bounded DP (Lemma [1f). If €7, is the
parameter used for the subsequent measurement primitives, then by Theorem 1, the

total privacy parameter is €4 + €.

Discussion. Here, we discuss the various parameters in the construction of a DP index.
The foremost parameter is the indexing attribute A which can be chosen with the help of
the following two heuristics. First, A should be frequently queried so that a large number of
queries can benefit from this optimization. Second, choose A such that the selectivity of the
popularly queried values of A is high. This would ensure that the first selection performed
alone on A will filter out the majority of the rows, reducing the intermediate dataset size to be
considered for the subsequent operators. The next parameter is the fraction of the program
privacy budget, p (e4 = p-€ where € is the total program privacy budget) that should be used
towards building the index. The higher the value of p, the better is the accuracy of the index
(hence better speed-up). However, the privacy budget allocated for the rest of the program
decreases resulting in increased noise in the final answer. This trade-off is studied in Figures
and in Chapter Another parameter is the number of bins k. Finer binning
gives more resolution but leads to more error due to DP noise addition. Coarser binning
introduces error in indexing but has lower error due to noise. We explore this trade-off in
Figures [2.5d and [2.5d] To increase accuracy we can also consider bins preceding is and bins
succeeding 7.. This is so because, since the index is noisy, it might miss out on some rows
that satisfy the filter condition. For example, in Figure both the indices iy = C [1]+1=6
and i, = C[3] = 14 miss a row satisfying the filter condition ¢ = A € [v3, vg]; hence including

an extra neighboring bin would reduce the error.

31

Thus, in order to gain in performance, the proposed DP index optimization allows some DP
leakage of the data. This is in tune with the works in [MG18a,HMFS17,CCMS19a,/GRR19a].
However, our work differs from earlier work in the fact that we can achieve pure DP (albeit
SIM-CDP). In contrast, previous work achieved a weaker version of DP, approximate DP
[BNS14], and added one-sided noise (i.e., only positive noise). One-sided noise requires
addition of dummy rows in the data, and hence increases the data size. However, in our

Crypte programs, all the rows in the noisy set are part of the real dataset.

2.7.2 Crypto-Engineering Optimizations

DP Range Tree. If range queries are common, pre-compu-ted noisy range tree is a useful
optimization. For example, building a range tree on Age attribute can improve the accuracy
for P1 and P2 in Table The sensitivity for such a noisy range tree is log s4 where s4
is the domain size of the attribute on which the tree is constructed. Any arbitrary range
query requires access to at most 2log s4 nodes on the tree. Thus to answer all possible range
queries on A, the total squared error accumulated is O(M) In contrast for the naive
case, we would have incurred error O(%) [HRMS10a]. Note that, if we already have a DP

index on A, then the DP range tree can be considered to be a secondary index on A.

e Optimized Feature. The optimization reduces both execution time and expected

error when executed over multiple range queries.

e Trade-off. The trade-off for this optimization is the storage cost of the range tree

(O(2-s4)).

e Privacy Cost. If the range tree is constructed with privacy parameter e, then any

measurement on it is post-processing. Hence, the privacy cost is eg-bounded DP.

Precomputation. The CrossProduct primitive generates the one-hot-coding of data across
two attributes. However, this step is costly due to the intermediate interactions with the
CSP. Hence, a useful optimization is to pre-compute the one-hot-codings for the data across
a set of frequently used attributes A so that for subsequent program executions, the AS can

get the desired representation via simple look-ups. For example, this benefits P3 (Table .

e Optimized Feature. This reduces the execution time of Crypte programs. The

multi-attribute one-hot-codings can be re-used for all subsequent programs.

e Trade-off. The trade-off is the storage cost (O(m -sz = m - [[4c154), m = the

number of data owners) incurred to store the multi-attribute one-hot-codings for A.

32

e Privacy Cost. The computation is carried completely on the encrypted data, no

privacy budget is expended.

(3) Offline Processing. For GroupByCountEncoded, the CSP needs to generate the en-
crypted one-hot-codings for the masked histogram. Note that the one-hot-encoding represen-
tation for any such count would simply be a vector of (|D|—1) ciphertexts for ‘0, labEnc,(0)
and 1 ciphertext for ‘1’, labEnc,,(1). Thus one useful optimization is to generate these ci-
phertexts offline (similar to offline generation of Beaver’s multiplication triples [Bea95] used

in SMC). Hence, the program execution will not be blocked by encryption.

e Optimized Feature. This optimization results in a reduction in the run time of

Crypte programs.
e Trade-off. A storage cost of O(m-s4) is incurred to store the ciphers for attribute A.

e Privacy Cost. The computation is carried completely on the encrypted data, no

privacy budget is expended.

2.8 Experimental Evaluation

In this chapter, we describe our evaluation of Crypte along two dimensions, accuracy and

performance of Crypte programs. Specifically, we address the following questions:

e Q1. Do Crypte programs have significantly lower errors than that for the correspond-
ing state-of-the-art LDP implementations? Additionally, is the accuracy of Crypte

programs comparable to that of the corresponding CDP implementations?

e Q2. Do the proposed optimizations provide substantial performance improvement over

unoptimized Crypte?

e Q3. Are Crypte programs practical in terms of their execution time and do they scale

well?
Evaluation Highlights:

e Crypte can achieve up to 50x smaller error than the corresponding LDP implementation
on a data of size ~ 30K (Figure[4.3). Additionally, Crypte errors are at most 2x more
than that of the corresponding CDP implementation.

e The optimizations in Crypte can improve the performance of unoptimized Crypte by
up to 5667x (Table [2.3).

33

e A large class of Crypte programs execute within 3.6 hours for a dataset of size 10%, and
they scale linearly with the dataset size (Figure . The AS performs majority of the
work for most programs (Table [2.3)).

2.8.1 Methodology

Programs. To answer the aforementioned questions, we ran the experiments on the Crypte
programs previously outlined in Table Specifically, we choose P1, P3, P5 and P7 since
these four cover all three classes of programs (Chapter [2.5.3) and showcase the advantages

for all of the four proposed optimizations.

Dataset. We ran our experiments on the Adult dataset from the UCI repository [AN10].
The dataset is of size 32,651. For the scaling experiments (Figure, we create toy datasets
of sizes 100K and 1 million by copying over the Adult dataset.

Accuracy Metrics. Programs with scalar outputs (P5, P7) use absolute error |c— ¢ where
¢ is the true count and ¢ is the noisy output. Programs with vector outputs (P1, P3) use
the L1 error metric given by Error = Y, [V[i] — V[i]|,i € [|V|] where V is the true vector

and V is the noisy vector. We report the mean and s.t.d of error values over 10 repetitions.

Performance Metrics. We report the mean total execution time in seconds for each

program, over 10 repetitions.

Configuration. We implemented Crypte in Python with the garbled circuit implemented
via EMP toolkit [EMP]. We use Paillier encryption scheme [Pai99]. All the experiments have
been performed on the Google Cloud Platform |[GCP] with the configuration c2-standard-8.
For Adult dataset, Crypte constructs a DP index optimization over the attribute NativeCoun-
try that benefits programs like P4 and P5. Our experiments assign 20% of the total program
privacy parameter towards constructing the index and the rest is used for the remaining pro-
gram execution. Crypte also constructs a DP range tree over Age. This helps programs like

P1, P2 and P3. This is our default Crypte implementation.

2.8.2 End-to-end Accuracy Comparison

In this chapter, we evaluate Q1 by performing a comparative analysis between the empirical
accuracy of the aforementioned four Crypte programs (both optimized and unoptimized) and
that of the corresponding state-of-the-art LDP [WBLJ17a] and CDP (under bounded DP;
specifically, using the CDP view Crypte is computationally indistinguishable from as shown
in Chapter [DR14a] implementations.

Mean Absolute Error in Log Scale

34

0.1 03 05 0.7 09 11 13 15 1.7 1.9

Privacy Parameter e

(a) Program 1

o 10! FF Unoptimized Crypte 10°
G ¥4 Crypte <
@ &6 LDP s
an B8 CDP) 10" 4
Q o0

Q
= 10()7 =
g = 10]
- .

e
é e [
M & 10 % 982.2 X Speed Up
3 1071 g 5667 X Speed Up - & :
- e X

@
E o
3 5 10" 4 & @
S g
102 =
10°

0.7 0.9 1.1 1.3 1.5 1.7 1.9

Privacy Parameter ¢

0.1 0.3 0.5

(b) Program 3

60

104

103,

102 4

41 X Speed

Mean Absolute Error

50

40

30

102 X Speed Up

=3

Bas

—

0.7 0.9 1.1 1.3 1.5

Privacy Parameter ¢

0.1 0.3 0.5

(c) Program 5

07 09 L1 13 1719
Privacy Parameter ¢

0.1 0.3 0.5

(d) Program 7

Figure 2.4: Accuracy Analysis of Crypte Programs

The first observation with respect to accuracy is that the mean error for a single frequency
count for Crypte is at least 50x less than that of the corresponding LDP implementation.
For example, Figure shows that for P3, € = 0.1 results in a mean error of 599.7 as
compared to an error of 34301.02 for the corresponding LDP implementation. Similarly, P5
(Figure gives a mean error of only 58.7 for ¢ = 0.1. In contrast, the corresponding LDP
implementation has an error of 3199.96. For P1 (c.d.f on Age), the mean error for Crypte
for € = 0.1 is given by 0.82 while the corresponding LDP implementation has an error of 9.2.
The accuracy improvement on P7 (Figure by Crypte is less significant as compared
to the other programs, because P7 outputs the number of age values ([1 — 100]) having 200
records. At e = 0.1, at least 52 age values out of 100 are reported incorrectly on whether
their counts pass the threshold. Crypte reduces the error almost by half. Note that the
additive error for a single frequency count query in the LDP setting is at least Q(y/n/¢), thus
the error increases with dataset size. On the other hand, for Crypte the error is of the order
O(1/¢€), hence with increasing dataset size the relative the error improvement for Crypte over

that of an equivalent implementation in LDP would increase.

35

Table 2.3: Execution Time Analysis for Crypte Programs

Time in (s) Program
1 3 | 5 | 7
AS 1756.71 | 6888.23 | 650.78 290
Unoptimized Crypte CSP 0.26 6764.64 | 550.34 | 30407.73
Total 1756.97 | 13652.87 | 1201.12 | 30697.73
Total 0.31 13.9 29.21 299.5
Crypte
Speed Up x | 5667.64 982.2 41.1 102.49

For P1 (Figure , we observe that the error of Crypte is around 5x less than that
of the unoptimized implementation. The reason is that P1 constructs the c.d.f over the
attribute Age (with domain size 100) by first executing 100 range queries. Thus, if the total
privacy budget for the program is €, then for unoptimized Crypte, each query gets a privacy
parameter of just i55. In contrast, the DP range tree is constructed with the full budget
e and sensitivity [log100] thereby resulting in lesser error. For P5 (Figure however,
the unoptimized implementation has slightly better accuracy (around 1.4x) than Crypte. It
is because of two reasons; first, the noisy index on NativeCountry might miss some of the
rows satisfying the filter condition (NativeCountry=Mexico). Second, since only 0.8% of
the total privacy parameter is budgeted for the Laplace operator in the optimized program
execution, this results in a higher error as compared to that of unoptimized Crypte. However,
this is a small cost to pay for achieving a performance gain of 41x. The optimizations for
P3 (Figure and P7 (Figure work completely on the encrypted data and do not

expend the privacy budget. Hence they do not hurt the program accuracy in any way.

Another observation is that for frequency counts the error of Crypte is around 2x higher
than that of the corresponding CDP implementation. This is intuitive because we add two
instances of Laplace noise in Crypte (Chapter [2.5.2). For P1, the CDP implementation also

uses a range tree.
2.8.3 Performance Gain From Optimizations
In this chapter, we evaluate Q2 (Table by analyzing how much speed-up is brought

about by the proposed optimizations in the program execution time.

DP Index. For P5, we observe from Table that the unoptimized implementation takes
around 20 minutes to run. However, a DP index over the attribute NativeCountry reduces

the execution time to about 30s giving us a 41x speed-up. It is so because, only about 2%

36

of the data records satisfy NativeCountry=Mexico. Thus the index drastically reduces the

number of records to be processed for the program.

Additionally, we study the dependency of the accuracy and execution time of P5 implemented
with the DP index on three parameters — (1) fraction of privacy budget p used for the index
(2) total number of domain partitions (bins) considered (3) number of neighboring bins
considered. The default configuration for Crypte presented in this chapter uses € = 2.2,

p = 0.2, total 10 bins and considers no extra neighboring bin.

In Figure and we study how the mean error and execution time of the final result
varies with p for P5. From Figure we observe that the mean error drops sharply from
p = 0.1 to p = 0.2, stabilises till p = 0.5, and starts increasing again. This is because, at
p = 0.2, the index correctly identifies almost all the records satisfying the Filter condition.
However, as we keep increasing p, the privacy budget left for the program after Filter (Laplace
operator) keeps decreasing resulting in higher error in the final answer. From Figure
we observe that the execution time increases till p = 0.5 and then stabilizes; the reason is

that the number of rows returned after p = 0.5 does not differ by much.

We plot the mean error and execution time for P5 by varying the total number of bins from
2 to 40 (domain size of NativeCountry is 40) in Figure and respectively. From
Figure [2.5¢, we observe that the error of P5 increases as the number of bins increase. It is
so because from the computation of the prefix counts (Chapter , the amount of noise
added increases with & (as noise is drawn from Lap(%)). Figureshows that the execution
time decreases with k. This is intuitive because increase in k results in smaller bins, hence

the number of rows included in [is, i.] decreases.

To avoid missing relevant rows, more bins that are adjacent to the chosen range [is, ic] can be
considered for the subsequent operators. We increase the number of neighbouring bins from
0 to 8. As shown in Figure the error decreases and all the relevant rows are included
when 4 neighbouring bins are considered. However, the execution time naturally increases

with extra neighbouring bins as shown in Figure [2.5

DP Range Tree. For P1, we see from Table that the total execution time of the
unoptimized Crypte implementation is about half an hour. However, using the range tree
optimization reduces the execution time by 5667 x. The reason behind this huge speed-up is
that the time required by the AS in the optimized implementation becomes almost negligible
because it simply needs to do a memory fetch to read off the answer from the pre-computed

range tree.

37

Pre-computation. For P3, the unoptimized execution time on the dataset of 32561 records
is around 4 hours (Table . This is so because the CrossProduct operator has to perform
10 - 32561 labMwult operations which is very time consuming. Hence, pre-computing the
one-hot-codings for 2-D attribute over Race and Gender is very useful; the execution time

reduces to less than a minute giving us a 982.2x speed up.

Offline Processing. The most costly operator for P7 is the GroupByCountEncoded operator
since the CSP has to generate =~ 3300K ciphertexts of 0 and 1 for the encrypted one-hot-
codings. This results in a total execution time of about 8.5 hours in unoptimized Crypte.
However, by generating the ciphertexts off-line, the execution time can be reduced to just 5

minutes giving us a speed up of 102.49x.

Another important observation from Table is that the AS performs the major chunk of

the work for most program executions. This conforms with our discussion in Chapter [2.1.2]

2.8.4 Scalability

In this chapter, we evaluate Q3 by observing the execution times of the aforementioned four
Crypte programs for dataset sizes up to 1 million. As seen from Figure the longest
execution time (P7) for a dataset of 1 million records is ~ 3.6 hours; this shows the practical
scalability of Crypte. All the reported execution times are for default setting. For P1 we
see that the the execution time does not change with the dataset size. This is so because
once the range tree is constructed, the program execution just involves reading the answer
directly from the tree followed by a decryption by the CSP. The execution time for the P3
and P7 is dominated by the @ operation for the GroupByCount operator. The cost of @ is
linear to the data size. Hence, the execution time for P3 and P7 increases linearly with the
data size. For P5, the execution time depends on the % of the records in the dataset that
satisfy the condition NativeCountry = Mexico (roughly this many rows are retrieved from

the noisy index).

2.8.5 Communication Costs

We use Paillier encryption scheme [Pai99] in our prototype Crypte. This means that each
ciphertext is a random number in the group (Z/N2Z)* where N is a RSA moduli. Thus
sending an encrypted data record entails in each data owner sending), [domain(A;)|, where
Aj is an attribute of the database schema, such numbers to the AS. Communication is also
needed for the measurement operators and GroupByCountEncoded where the AS needs to send
a ciphertext (or a vector of ciphertexts) to the CSP. Additionally operators like NoisyMax and

CountDistinct need a round of communication for the garbled circuit however these circuits

20

Mean Absolute Error

0 T T T T f T T T T
0.0 0.1 02 03 04 05 06 07 08 09

p = Fraction of Privacy Parameter used for Index

(a)

20

38

35

Mean Execution Time in s

25 T T T T + T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p = Fraction of Privacy Parameter used for Index

(b)

w
= g
g 16 Q
A g 60
=
8., o
5 12 g
=
o ‘540
2 =
=< ¥ § 30
g A 20
Q 44 o
= S 10+
(A : =} EE— ‘ ;
2 4 810 20 40 2 4 810 20 40
Total Number of Bins in CDF Total Number of Bins in CDF
(c) (d)
5 @ 120
< 10
s'é ; 110
= g 100
= =
8 B 90
3
%’ .g 80
i)
4 2 g ™
i £ 60
) Mo
1 o -
= S 04
0 =

0 8

2 4 6
Number of Neighboring Bins Considered

(e)

+ +
6 8

2 4 6
Number of Neighboring Bins Considered

(f)

0

Figure 2.5: Accuracy and performance of P5 at different settings of the DP index optimiza-

tion

are simple and dataset size independent.

The most communication intensive operator is

the CrossProduct which requires logom where m is the dataset size rounds of interactions.

However, this can be done as a part of pre-processing and hence does not affect the actual

program execution time. Hence overall, Crypte programs are not communication intensive.

2.9 Extension of Crypte to the Malicious Model

Here, we discuss how to extend the current Crypte system to account for malicious adver-

saries. There can be two approaches for achieving this as follows.

39

1014

10% 4

102 4

»— Program 1
V-V Program 3
®—@ Program 5
B8 Program 7

10! 4

10° 4

Time in seconds in Log Scale

10% 10t 32561 10° 106
Dataset size in Log Scale

Figure 2.6: Scalability of Crypte Programs

2.9.1 Approach 1

The first approach to extend Crypte to the malicious threat model is to implement the CSP
inside a trusted execution environment (TEE) [NIWT13BEMT17/ABFMOO08|. This ensures
non-collusion (as the CSP cannot collude with the AS since its operations are vetted). The
measurement operators are implemented as follows (the privacy budget over-expenditure
checking remains unchanged from that in Chapter and we skip re-describing it here).

Laplace Lap.a(V/c). The new implementation requires only a single instance of noise
addition by the CSP. The AS sends the ciphertext ¢ to the CSP. The CSP decrypts the
ciphertext, adds a copy of noise, 1 ~ Lap(%), and sends it to the AS.

NoisyMax NoisyM aazf A(V). The new implementation works without the garbled circuit
as follows. The AS sends the vector of ciphertexts, V, to the CSP. The CSP computes

V'[i] = labDecrypts(V'[i]) +nli], i € [|V|], where n[i] ~ Lap(2kA/e) and outputs the indices
of the top k values of V.

Malicious AS. Recall that a Crypte program, P, consists of a series of transformation
operators that transform the encrypted database, ’13, to a ciphertext, ¢ (or an encrypted
vector, V). This is followed by applying a measurement operator on ¢ (or V). Let P
represent the first part of the program P up to the computation of ¢ and let P, represent the
subsequent measurement operator (performed by the CSP inside a TEE). In the malicious
model, the AS is motivated to misbehave. For example, instead of submitting the correct
cipher ¢ = P; (’f)) the AS could run a different program P’ on the record of a single data
owner only. Such malicious behaviour can be prevented by having the CSP validate the AS’s
work via zero knowledge proofs (ZKP) [Ode09] as follows (similar proof structure as prior
work [NWIT13]). Specifically, the ZKP statement should prove that the AS 1) runs the

correct program P; 2) on the correct dataset D. For this, the CSP shares a random one-

time MAC key, mk;,i € [m] with each of the data owners, DO;. Along with the encrypted

40

record f)i, DO; sends a Pedersen commitment [Ped92] C'om; to the one-time MAC |KIL14a]
on D; and a short ZKP that the opening of this commitment is a valid one-time MAC on
D;. The AS collects all the ciphertexts and proofs from the data owners and computes
c = Pl(f)l,--~ ,f)m). Additionally, it constructs a ZKP that ¢ is indeed the output of
executing P; on D = {Dy,--- ,D,,} [CM99]. Formally, the proof statement is

c¢= P (Dy, - ,D,,) AVi Open(Com;) = MAC,, (D;) (2.3)

The AS submits the ciphertext ¢ along with all the commitments and proofs to the CSP.
By validating the proofs, the CSP can guarantee ¢ is indeed the desired ciphertext. The
one-time MACs ensure that the AS did not modify or drop any of the records received from

the data owners.

Efficient Proof Construction. Here we will outline an efficient construction for the afore-
mentioned proof. First note that our setting suits that of designated verifier non-interactive
zero knowledge (DV NIZK) proofs. In a DV NIZK setting, the proofs can be verified by a
single designated entity (as opposed to publicly verifiable proofs) who possesses some secret
key for the NIZK system. Thus in Crypte, clearly the CSP can assume the role of the desig-
nated verifier. This relaxation of public verifiability leads to boast in efficiency for the proof

system.

The authors in [CC17] present a framework for efficient DV NIZKs for a group-dependent
language £ where the abelian group £ is initiated on is of order IV and Zy is the plaintext-
space of an homomorphic cryptosystem. In other words, this framework enables proving
arbitrary relations between cryptographic primitives such as Pedersen commitments or Pail-
lier encryptions via DV NIZK proofs, in an efficient way. In what follows, we show that the
proof statement given by Eq. falls in the language £ and consists of simple arithmetic

computations.

The construction of the proof works as follows. First the AS creates linearly homomorphic
commitments (we use Pederson commitments) Com{ on the encrypted data records D; and
proves that Com, = Pi(Com§,...,Com¢,) where Open(Com,.) = c. This is possible because
of the homomorphic property of the Pederson commitment scheme; all the operations in
Py can be applied to {Com{} instead. We use Paillier encryption scheme [Pai99] for our
prototype Crypte construction and hence base the rest of the discussion on it. Paillier
ciphertexts are elements in the group (Z/N2Z)* where N is an RSA modulus. Pedersen
commitments to such values can be computed as Com = g*h" € F;,0 < r < N2, g.h €
[y, Order(g) = Order(h) = N2, pis a prime such that p = 1mod N?. This allows us to
prove arithmetic relations on committed values modulo N2. Finally, the AS just needs to

show that C'om; opens to a MAC of the opening of Com§. For this, the MACs we use are

41

built from linear hash functions H(z) = ax + b [NWIT13] where the MAC signing key is
the pair of random values (a,b) € (Z/N?Z). Proving to the CSP that the opening of Com;
is a valid MAC on the opening of Com{ is a simple proof of arithmetic relations. Thus,
quite evidently an efficient DV NIZK proof for eq can be supported by the framework
in [CC17|]. To get an idea of the execution overhead for the ZKPs, consider constructing a
DV NIZK for proving that a Paillier ciphertext encrypts the products of the plaintexts of two
other ciphertexts requires (this could be useful for proving the validity of our Filter operator).
In the framework proposed in in |[CC17], this involves 4logN bits of communication and the
operations involve addition and multiplication of group elements. Each such operation takes
order of 10~°s execution time, hence for proving the above statement for 1 mil ciphers will

take only a few tens of seconds.

Malicious CSP. Recall that our extension implements the CSP inside a TEE. Hence, this
ensures that the validity of each of CSP’s actions in the TEE can be attested to by the data
owners. Since the measurement operators (P») are changed to be implemented completely
inside the CSP, this guarantees the bounded e-DP guarantee of Crypte programs even under

the malicious model. Additionally sending the CSP the true ciphers ¢ = P;(D) also does

not cause any privacy violation as it is decrypted inside the TEE.

Validity of the Data Owner’s Records. The validity of the one-hot-coding of the
data records, ﬁi, submitted by the data owners DQO; can be checked as follows. Let ﬁij
represent the encrypted value for attribute A; in one-hot-coding for DO;. The AS selects
a set of random numbers R = {r; | k € [|domain(A;)|]} and computes the set Pj; =
{labMult(D;[k],

labEncy(ry))}. Then it sends sets P;; and R to the CSP who validates the record only if
|P;; N R| = 1VA;. Note that since the CSP does not have access to the index information
of P;; and R (since they are sets), it cannot learn the value of D;;. Alternatively each data

owner can provide a zero knowledge proof for Vj, k, D;jk] € {0,1} A", Dj;[k] = 1.

2.9.2 Approach 2

Here, we describe the second approach to extend Crypte to account for a malicious adver-
sary. For this we propose the following changes to the implementation of the measurement

operator.

Laplace Lapa (c/V). Instead of having both the servers, AS and CSP add two separate
instances of Laplace noise to the true answer, single instance of the Laplace noise is jointly
computed via a SMC protocol [NH12,[DKM™06] as follows. First the AS adds a random
mask M to the encrypted input ¢ to generate ¢ and sends it to the CSP. Next the CSP

42

generates a garbled circuit that 1) inputs two random bit strings S1 and Ry from the AS 2)
inputs another pair of random strings So and Ry and a mask M’ from the CSP 3) uses S1
and S5 to generate an instance of random noise, 7 ~ Lap(%) using the fundamental law of
transformation of probabilities 4) uses R; @ Ry as the randomness for generating a Pedersen
commitment for M’, Com(M") 4) outputs ¢’ = ¢ + labEncyi(n) + labEncy(M'), Com(M'),
and labEncyy(r) (r is the randomness used for generating Com(M")). The CSP sends this cir-
cuit to the AS who evaluates the circuit and sends ¢/, Com(M’), and labEncyy(r) back to the
CSP. Now, the CSP decrypts ¢’ and subtracts the mask M’ to return & = labDecg(¢") — M’
to the AS. Finally the AS can subtract out M to compute the answer ¢ = ¢ — M. Note
that one can create an alternative circuit to the one given above which decrypts ¢ inside
the circuit. However, decrypting Pailler ciphertexts inside the garbled circuit is costly. The
circuit design given above hence results in a simpler circuit at the cost of an extra round of
communication.

NoisyMax NoisyMaa:f,A(-). The AS sends a masked encrypted vector, V' to the CSP V[z] =

V[i] + MJi],i € [|V|]. The CSP generates a garbled circuit that 1) inputs the mask vector
M, a vector of random strings Si, a random number r and its ciphertext ¢, = labEncy(r)
from the AS 2) inputs the secret key sk and another vector of random strings Sz the from the

CSP 3) checks if labDecg(cy) == 7, proceed to the next steps only if the check succeeds else
2.k-A

return —1 4) uses S1 and Sa to generate a vector n[i] ~ Lap(=+=) using the fundamental law

of transformation of probabilities 5) computes V[i] = labDecg;(V'[i]) + n]i] — M[i] 6) finds
the indices of the top k highest values of V' and outputs them. The CSP sends this circuit to
the AS who evaluates it to get the answer. Note that here we are forced to decrypt Paillier
ciphertexts inside the circuit because in order to ensure DP in the Noisy-Max algorithm, the
noisy intermediate counts cannot be revealed.

Malicious AS. Recall that a Crypte program P consists of a series of transformation oper-

ators that transforms the encrypted database D to a ciphertext ¢ (or a vector of ciphertexts
V). This is followed by applying a measurement operator on ¢ (V'). Additionally, as shown
in the above discussion, in the very first step of the measurement operators the AS adds a
mask to ¢ and sends the masked ciphertext ¢ = ¢+ M to the CSP. For a given program P, let
Py represent first part of the program up till the computation of ¢ (V). The zero knowledge
proof structure is very similar to the one discussed in the preceding chapter except for the
following changes. Now the CSP sends a one-time MAC key kag to the AS as well and the
AS sends the masked ciphertext ¢é(or V), along with the commitments and zero knowledge

proofs from the data owners and an additional commitment to the one-time MAC on the

43

mask M, Com g and a proof for the statement
¢ =P (D1, -, D) AVi Open(Com;) = M ACyy, (D)
Né = c+labEncyy(M) N Open(Comag) = MAC, (M)

The CSP proceeds with the rest of the computation only if it can validate the above proof.
As long as one of the bit strings (or vectors of bit strings) in {S1, S2} (and {R2, R2} in case of
the Laplace operator) is generated truly at random (in this case the honest CSP will generate
truly random strings), the garbled circuits for the subsequent measurement operators will
add the correct Laplace noise. Additionally, the mask M’ prevents the AS from cheating in
the last round of communication with the CSP in the protocol. It is so because, if the AS
does not submit the correct ciphertext to the CSP in the last round, it will get back garbage
values (thereby thwarting any privacy leakage). Hence, this prevents a malicious AS from
cheating during any Crypte program execution. Note that the construction of the ZKP is
similar to the one discussed in the preceding chapter and can be done efficiently via the
framework in |CC17].

Malicious CSP. As discussed in Chapter the CSP maintains a public ledger with the

following information
e total privacy budget € which is publicly known
e the privacy budget € used up every time the AS submits a ciphertext for decryption

Since the ledger is public, the AS can verify whether the per program reported privacy budget

is correct preventing any disparities in the privacy budget allocation.

Recall that the CSP receives a masked cipher ¢ from the AS at the beginning of the measure-
ment operators. The mask M protects the value of ¢ from the CSP. We discuss the setting

of a malicious CSP separately for the two measurement operators as follows.

Laplace. In case of the Laplace operator, a malicious CSP can cheat by 1) the generated
garbled circuit does not correspond to the correct functionality 2) reports back incorrect
decryption results. The correctness of the garbled circuit can be checked by standard mech-
anisms [WRK17] where the AS specifically checks that a) the circuit functionality is correct
b) the circuit uses the correct value for ¢. For the second case, the CSP provides the AS with

a zero knowledge proof for the following statement

Open(Com(M'),r) = labDecg,(¢') — &

NoisyMax. The garbled circuit for the NoisyMax operator is validated similarly by standard

mechanisms [WRK17| where the AS checks a) whether the circuit implements the correct

44

functionality b) the correct value of V is used. Note that the equality check of step (3) in
the circuit validates if the CSP has provided the correct secret key sk thereby forcing it to
decrypt the ciphertexts correctly.

Note that certain operators like CrossProduct, GroupByCount* and CountDistinct the involve
interactions with the CSP as well but their validity can also be proven by standard techniques
similar to the ones discussed above. Specifically CrossProduct and GroupByCount* can use
zero knowledge proof in the framework [CC17] while the garbled circuit in CountDistinct can
use [WRK17].

2.10 Related Work

Differential Privacy. Introduced by Dwork et al. [DR14a], differential privacy has enjoyed
immense attention from both academia and industry in the last decade. We will discuss the
recent directions in two models of differential privacy: the centralized differential privacy
(CDP), and local differential privacy (LDP).

The CDP model assumes the presence of a trusted server which can aggregate all users’
data before perturb the query answers. This allows the design of a complex algorithm
that releases more accurate query answers than the basic DP mechanisms. For example, an
important line of work in the CDP model has been towards proposing “derived” mechanisms”
[CDPM18]| or “revised algorithms” [BBDS12] from basic DP mechanisms (like exponential
mechanism, Laplace mechanism, etc.). The design of these mechanisms leverages on specific
properties of the query and the data, resulting in a better utility than the basic mechanisms.
One such technique is based on data partition and aggregation [ZCX T, [HRMS10b,QYL13b,
ACC12,CPST12,|XZX"12,|QYL13a, XWG10,|/CRJ20| and is helpful in answering histogram
queries. The privacy guarantees of these mechanisms can be ensured via the composition
theorems and the post-processing property of differential privacy [DR14a]. We would like
to extend Crypte to support many of these algorithms. Recent work have also extended the
applicability of DP from its traditional domain of tabular data to other modalities such as
speech [ACFR20|, eye-tracking data [LCFK21] and graphical models [CRJ20|. Extending

Crypte to support different data modalities is an interesting direction.

The notion of LDP and related ideas has been around for a while |[KLNT08,EGS03,War65].
Randomized response proposed by Warner in 1960s [War65| is one of the simplest LDP tech-
niques. The recent LDP research techniques [BS15EPK14] focus on constructing a frequency
oracle that estimates the frequency of any value in the domain. However, when the domain
size is large, it might be computationally infeasible to construct the histogram over the entire

domain. To tackle this challenge, specialized and efficient algorithms have been proposed to

45

compute heavy hitters [WLJ17,FPE15|, frequent itemsets [QYY 16, WLJ18|, and marginal
tables [CKS18,[ZWL™18|. As the LDP model does not require a trusted data curator, it
enjoyed significant industrial adoption, such as Google [EPK14,[FPE15], Apple [Grel6|, and
Samsung [NXY"16].

Recently, it has been showed that augmenting randomized response mechanism with an
additional layer of anonymity in the communication channel can improve the privacy guar-
antees [BEMT17,EFM ™18 MCCJ21]. The first work to study this was PROCHLO [BEM™17]
implementation by Google. PROCHLO necessitates this intermediary to be trusted, this is
implemented via trusted hardware enclaves (Intel’s SGX). However, as showcased by recent
attacks [VBMW 18|, it is notoriously difficult to design a truly secure hardware in practice.
Motivated by PROCHLO, the authors in [EFMT18|, present a tight upper-bound on the
worst-case privacy loss. Formally, they show that any permutation invariant algorithm satis-

fying e-LDP will satisfy O(ey/ '25) | §)-CDP, where n is the data size. Cheu et al. [CSUT18)]

n

demonstrate privacy amplification by the same factor for 1-bit randomized response by using
a mixnet architecture to provide the anonymity. This work also proves another important
result that the power of the mixnet model lies strictly between those of the central and local

models.

A parallel line of work involves efficient use of cryptographic primitives for differentially
private functionalities. Agarwal et al. [AHKM18b| proposed an algorithm for computing
histogram over encrypted data. Rastogi et al. [RN10] and Shi et al. [SHCGR™11] proposed
algorithms that allow an untrusted aggregator to periodically estimate the sum of n users’
values in a privacy preserving fashion. However, both schemes are irresilient to user failures.

Chan et al. [CSS12b| tackled this issue by constructing binary interval trees over the users.

Two-Server Model. The two-server model is a popular choice for privacy preserving ma-
chine learning techniques. Researchers have proposed privacy preserving ridge regression sys-
tems with the help of a cryptographic service provider [NWIT13,GJJT18,|GSB™17a]. While
the authors in [GSB'17a] use a hybrid multi-party computation scheme with a secure inner
product technique, Nikolaenko et al. propose a hybrid approach in [NWIT13| by combin-
ing homomorphic encryptions and Yao’s garbled circuits. Gascon et al. [GSBT16] extended
the results in [NWIT13] to include vertically partitioned data and the authors in [GJJT1§]
solve the problem using just linear homomorphic encryption. Zhang et al. in [MZ17] also
propose secure machine learning protocols using a privacy-preserving stochastic gradient
descent method. Their main contribution includes developing efficient algorithms for se-
cure arithmetic operations on shared decimal numbers and proposing alternatives to non-
linear functions such as sigmoid and softmax tailored for MPC computations. In [NIW™13]

and [KKK™16] the authors solve the problem of privacy-preserving matrix factorization.

46

Both the papers use a hybrid approach combining homomorphic encryptions and Yao’s gar-

bled circuits for their solutions.

Homomorphic Encryption. With improvements made in implementation efficiency and
new constructions developed in the recent past, there has been a surge in practicable pri-
vacy preserving solutions employing homomorphic encryptions. A lot of the aforementioned
two-server models employ homomorphic encryption [NWIT13,[NTW™13,/GJJ 18, KKK ™'16].
In [HTG17,GBDL'16,CAWM™17] the authors enable neural networks to be applied to ho-
momorphically encrypted data. Linear homomorphic encryption is used in |[GJK™18] to
enable privacy-preserving machine learning for ensemble methods while uses fully homomor-
phic encryption to approximate the coefficients of a logistic-regression model. [BCIV17| uses
somewhat-homomorphic encryption scheme to compute the forecast prediction of consumer

usage for smart grids.

2.11 Conclusions

We have proposed a system and programming framework, Crypte, for differential privacy
that achieves the constant accuracy guarantee and algorithmic expressibility of CDP without
any trusted server. This is achieved via two non-colluding servers with the assistance of
cryptographic primitives, specifically LHE and garbled circuits. Our proposed system Crypte

can execute a rich class of programs that can run efficiently by virtue of four optimizations.

Recall that currently the data analyst spells out the explicit Crypte program to the AS.
Thus, an interesting future work is constructing a compiler for Crypte that inputs a user
specified query in a high-level-language. The compiler should next formalize a Crypte pro-
gram expressed in terms of Crypte operators with automated sensitivity analysis. Another
direction is to support a larger class of programs in Crypte. For example, inclusion of aggre-
gation operators such as sum, median, average is easily achievable. Support for multi-table
queries like joins would require protocols for computing sensitivity [JNS17] and data trun-
cation [KTH™19]. Yet another direction is enabling learning algorithms on Crypte; linear
regression can be based on |GJJT 18] which also uses LHE and a two-server model. For this,
we need to extend Crypte with a new primitive for matrix multiplications. For more in-
volved models like deep learning, DP techniques of [ACGT16| could be combined with the
homomorphic encryption techniques of CryptoNet |[GBDL™16].

47

Chapter 3

Strengthening Order Preserving Encryption
with Differential Privacy

Frequent mass data breaches |dat16a,dat16bl|dat17a,dat17bl/dat18l|dat19] of sensitive infor-
mation have exposed the privacy vulnerability of data storage in practice. This has lead to a
rapid development of systems that aim to protect the data while enabling statistical analysis
on the dataset, both in academia [ABE™13,|CLM13,|GbF14|[KGM™14,[PRZB11| and indus-
try [com16¢}, com16a,IQr16,/Sch16,/com16b|. Encrypted database systems that allow query
computation over the encrypted data is a popular approach in this regard. Typically, such
systems rely on property-preserving encryption schemes [BBO07,BCLO09| to enable efficient
computation. Order-preserving encryption (OPE) [Kerl5,MRS18||PLZ13a] is one such cryp-
tographic primitive that preserves the numerical order of the plaintexts even after encryption.
This allows actions like sorting, ranking, and answering range queries to be performed di-
rectly over the encrypted data |[AKSX04LGZ07, HILMO02,|KAK10,LPL™09,[LW12, LW13].

However, encrypted databases are vulnerable to inference attacks [BGCT18,DDC16,GLMP18|,
GLMP19al,|GSB™17b}[LP15,[LMP18,[NKW15, KPT20, [KPT21, KPT19] that can reveal the
plaintexts with good accuracy. Most of these attacks are inherent to any property-preserving
encryption scheme — they do not leverage any weakness in the cryptographic security guaran-
tee of the schemes but rather exploit just the preserved property. For example, the strongest
cryptographic guarantee for OPEs (IND-FA-OCPA, see Chapter informally states that
only the order of the plaintexts will be revealed from the ciphertexts. However, inference
attacks [GLMP18,GLMP19a,GSB™17b| can be carried out by leveraging only this ordering
information. The basic principle of these attacks is to use auxiliary information to estimate
the plaintext distribution and then correlate it with the ciphertexts based on the preserved
property [FVY™T17].

Differential privacy (DP) has emerged as the de-facto standard for data privacy and is an

information theoretic guarantee that provides a rigorous guarantee of privacy for individuals

48

in a dataset regardless of an adversary’s auxiliary knowledge [TSD20]. An additional ap-
pealing property of DP is that any post-processing computation, such as inference attacks,

performed on the noisy output of a DP algorithm does not incur additional privacy loss.
In this work, we ask the following question:

Is it possible to leverage the properties of DP for providing a formal security

guarantee for OPEs even in the face of inference attacks?

To this end, we propose a novel differentially private order preserving encryption scheme,
OPe. Recall that standard OPE schemes are designed to reveal nothing but the order of the
plaintexts. Our proposed scheme, OPe, ensures that this leakage of order is differentially
private. In other words, the cryptographic guaratantee of OPEs is strengthened with a
layer of DP guarantee (specifically, a relaxed definition of DP as discussed in the following
paragraph). As a result, even if the cryptographic security guarantee of standard OPEs
proves to be inadequate (in the face of inference attacks), the DP guarantee would continue
to hold true. Intuitively, the reason behind is DP’s resilience to post-processing computations
as discussed above. To our best knowledge, this is the first work to combine DP with a

property-preserving encryption scheme.

3.1 Brief Overview of Key Ideas

The standard DP guarantee requires any two pairs of input data to be indistinguishable from
each other (Chapter and is generally catered towards answering statistical queries over
the entire dataset. However, in our setting we require the output of the DP mechanism to
retain some of the ordinal characteristics of its input — the standard DP guarantee is not
directly applicable to this case. Hence, we opt for a natural relaxation of DP— only pairs
of data points that are “close” to each other should be indistinguishable. Specifically, the
privacy guarantee is heterogeneous and degrades linearly with the /;-distance between a pair
of data points. It is denoted by e-dLDP (or e-dDP in the central model of DP, Chapter
3.2). This relaxation is along the lines of dy-privacy [CABP13] and is amenable to many
practical settings. For instance, consider a dataset of annual sale figures of clothing firms.
The information whether a firm is a top selling or a mid-range one is less sensitive than its
actual sales figures. Similarly, for an age dataset, whether a person is young or middle-aged

is less sensitive than their actual age.

DP guarantee inherently requires randomization — this entails an inevitable loss of utility,
i.e., some pairs of output might not preserve the correct order of their respective inputs.

In order to reduce the instances of such pairs, OPe offers the flexibility of preserving only

49

a partial order of the plaintexts. Specifically, a (user specified) partition is defined on the
input domain and the preserved order is expected at the granularity of this partition. The
output domain is defined by a numeric encoding over the intervals of the partition and all
the elements belonging to the same interval are mapped to the corresponding encoding for
the interval (with high probability). Due to the linear dependence of the DP guarantee (and
consequently, the ratio of output probabilities) on the distance between the pair of inputs,
lower is the number of intervals in the partition, higher is the probability of outputting the
correct encoding in general (Chapter and Chapter . OPe preserves the order
over this encoding. The reason why this results in better utility for encrypted databases
is illustrated by the following example. The typical usecase for OPE encrypted databases
is retrieving a set of records from the outsourced database that belong to a queried range.
Suppose a querier asks for a range query [a, b] and let P be a partition that covers the range
with k intervals {[s1,e1], -+ ,[sk,er]} such that s; < a < e and s < b < e. A database
system encrypted under OPe and instantiated with the partition P will return all the records
that are noisily mapped to the range [s1, ex] (since the order is preserved at the granularity
of P). Thus, the querier has to pay a processing overhead of fetching extra records, i.e., the
records that belong to the ranges {[si;,a — 1], [b+ 1, ex]}. However, if £ < b — a, then with
high probability it would receive all the correct records in [a, b] which can be decrypted and
verified (Chapter . To this end, we first propose a new primitive, OPec, that enables
order preserving encoding under e-dLDP. The encryption scheme, OPe, is then constructed
using the OPec primitive and a OPE (Chapter . Beyond OPEs, the OPec primitive
can be used as a building block for other secure computation that require ordering, such
as secure sorting or order-revealing encryptions (Chapter . Additionally, OPec can be
of independent interest for LDP in answering a variety of queries, such as ordinal queries,
frequency and mean estimation (Chapter .

In what follows, we answer some key questions pertinent to our work that a reader might

have at this point.

Q1. What is the advantage of a OPe scheme over just OPec primitive or a OPE scheme?
A. OPe satisfies a new security guarantee, e-IND-FA-OCPA, (see Chapter that bolsters
the cryptographic guarantee of a OPE scheme (IND-FA-OCPA) with a layer of e-dDP guar-
antee. As a result, OPe enjoys strictly stronger security than both OPec primitive (e-dDP)
and OPE (IND-FA-OCPA).

Q2. What are the security implications of OPe in the face of inference attacks?
A. In the very least, OPe rigorously limits the accuracy of inference attacks for every record
for all adversaries (Theorem |§|7 Chapter [3.5). In other words, OPe guarantees that none

50

of the attacks can infer the value of any record beyond a certain accuracy that is allowed
by the dLDP guarantee. For instance, for an age dataset and an adversary with real-world
auxiliary knowledge, no inference attack in the snapshot model can distinguish between two
age values (z,2’) such that |z — 2’| <8 for e = 0.1 (Chapter [3.8.2).

Q3. How is OPe’s utility (accuracy of range queries)?

A. We present a construction for the OPec primitive (and hence, OP¢) and our experimental
results on four real-world datasets demonstrate its practicality for real-world use (Chapter
. Specifically, OPe misses only 4 in every 10K correct records on average for a dataset
of size ~ 732K with an attribute of domain size 18K and € = 1. The overhead of processing
extra records is also low — the average number of extra records returned is just 0.3% of the

total dataset size.

Q4. When to use OPe?

A. As discussed above, OPe gives a strictly stronger guarantee than any OPE scheme (even
in the face of inference attacks) with almost no extra performance overhead (Chapter [3.6)).
Additionally, it is backward compatible with any encrypted database that is already using
a OPE scheme (satisfying IND-FA-OCPA, see Chapter . Hence, OPe could be used for
secure data analytics in settings where (1) the e-dDP guarantee is acceptable, i.e, the main
security concern is preventing the distinction between input values close to each other (such
as the examples discussed above) and (2) the application can tolerate a small loss in utility.
Specifically in such settings, replacing encrypted databases with an encryption under OPe
would give a strictly stronger security guarantee against all attacks with nominal change in

infrastructure or performance — a win-win situation.

3.2 Background

3.2.1 Differential Privacy

As mentioned in Chapter [2 there are two popular models of differential privacy, local and

central. The LDP guarantee is formally defined as follows.

Definition 3 (Local Differential Privacy, LDP). A randomized algorithm M : X — Y is
e-LDP if for any pair of private values x,x’ € X and any subset of output, T C Y

PrM(z) € T] < e -Pr[M(z') € T] (3.1)

e-LDP guarantees the same level of protection for all pairs of private values. However, as

discussed in the preceding chapter, in this dissertation we use an extension of LDP which

o1

uses the ¢ distance between a pair of values to customize heterogeneous (different levels of)

privacy guarantees for different pairs of private values.

Definition 4 (Distance-based Local Differential Privacy, dLDP). A randomized algorithm
M X — Y is e-distance based locally differentially private (or e-dLDP), if for any pair of
private values x,r’ € X and any subset of output T C),

PrM(z) € T] < eI . PriM(2) € T] (3.2)

The above definition is equivalent to the notion of metric-based LDP [ACPP18, CABP13]

where the metric used is ¢1-norm.

Definition [1] in Chapter refers to the central differential privacy (CDP) model. We

re-iterate it here for the reader’s conveience.

Definition 5 (Central Differential Privacy, CDP). A randomized algorithm M : X" — Y
satisfies e-differential privacy (e-DP) if for all T C Y and for all adjacent datasets X, X' €
X™ it holds that

PrIM(X) € T] < ¢ - PrfM(X’) € T (3.3)

The notion of adjacent inputs is application-dependent, and typically means that X and X’
differ in a single element (corresponding to a single individual). Particularly in our setting,
the equivalent definition of the distance based relaxation of differential privacy in the CDP

model is given as follows.

Definition 6 (Distance-based Central Differential Privacy, dDP). A randomized algorithm
M X" — Y is e-distance based centrally differentially private (or e-dDP), if for any pair
of datasets X and X' such that they differ in a single element, x; and x, and any subset of
output T C),

Pr[M(X) € T] < edvil. PrM(X") € T] (3.4)

We define X and X', as described above, to be t-adjacent where ¢ > |x; — x}|, i.e., the
differing elements differ by at most t. Trivially, any pair of t-adjacent datasets are also t'-
adjacent for ¢ > t.

Next, we formalize the resilience of dLDP (and dDP) to post-processing computations.

Theorem 5 (Post-Processing [DR14b]). Let M : X +— Y (M : X™ — V) be a e-dLDP (dDP)
algorithm. Let g : Y — V' be any randomized mapping. Then g o M is also e-dLDP (dDP).

52

3.2.2 Order Preserving Encryption

Here, we discuss the necessary definitions for OPEs.

Definition 7 (Order Preserving Encryption [MRS18|]). An order preserving encryption
(OPE) scheme € = (K, E, D) is a tuple of probabilistic polynomial time (PPT) algorithms:

o Key Generation (K). The key generation algorithm takes as input a security parameter

k and outputs a secret key (or state) S as S <+ K(1%).

e Encryption (E). Let X = (x1,--- ,xy) be an input dataset. The encryption algorithm
takes as input a secret key S, a plaintext x € X, and an order T' (any permutation of

{1, ,n}). It outputs a new key S and a ciphertext y as (S,y) + E(S,z,T).

e Decryption (D). Decryption recovers the plaintext x from the ciphertext y using the
secret key S, x < D(S,y) .

Additionally, we have
e Correctness Property. x < D(E(S,x,f‘)), VS, Vx, VI

e Order Preserving Property. x > 12/ = y >y, Vo, 2’ where y (y') is the ciphertext

corresponding to the plaintext x (x')

The role of I' in the above definition is discussed later. The strongest formal guarantee
for a OPE scheme is indistinguishability against frequency-analyzing ordered chosen plaintext
attacks (IND-FA-OCPA). We present two definitions in connection to this starting with the

notion of randomized orders as defined by Kerschbaum [Kerl5|.

Definition 8. (Randomized Order [Kerld]) Let X = (x1,--- ,xzy,) be a dataset. An order
I'=(y1, -+ V), where v; € [n] and i # j = i # ~;, for all i, j, of dataset X, is defined

to be a randomized order if it holds that

Vi,j (i > x5 = 7% >7) N (v > = 2 >x5)

For a plaintext dataset X of size n, a randomized order, I', is a permutation of the plaintext
indices {1,---,n} such that its inverse, ™!, gives a sorted version of X. This is best
explained by an example: let X = (9,40, 15,76, 15,76) be a dataset of size 6. A randomized
order for X can be either of I'; = (1,4,2,5,3,6), I's = (1,4,3,5,2,6), I's = (1,4,2,6,3,5)
and T'y = (1,4,3,6,2,5). It is so because the order of the two instances of 76 and 15 does

not matter a sorted version of X.

53

Definition 9 (IND-FA-OCPA |[MRS18,Kerl5|). An order-preserving encryption scheme €& =
(K, E, D) has indistinguishable ciphertexts under frequency-analyzing ordered chosen plaintext

attacks if for any PPT adversary Appt:
Pr[gﬁf(T)CPA(’% 1) =1] - Pr[gﬁ%CPA(’ia 0) = 1]| < negl(x) (3.5)

where K s a security parameter, negl(-) denotes a negligible function and Q;_-AA}’%CPA(K, b) is

the random variable denoting Appt’s output for the following game:

A
Game G"ocpalr; b)

1. (Xo,X1) < Appr where | Xo| = |X1| = n and Xy and Xy have at least one common

randomized order
2. Select I'* uniformly at random from the common randomized orders of Xg, X1
3. Sp + K(1%)
4. ForYi e [n], run (Si, ypi) < E(Si—1,xp4, ')
5. « Appr(ypa,- -+ Ybn) where V' is Appr’s guess for b
Appt is said to win the above game iff b=1'.

Informally, this guarantee implies that nothing other than the order of the plaintexts, not
even the frequency, is revealed from the ciphertexts. Stated otherwise, the ciphertexts only
leak a randomized order of the plaintexts (randomized orders do not contain any frequency
information since each value always occurs exactly once) which is determined by the in-
put order I' in Definition [7] In fact, if " itself happens to be a randomized order of the
input X then, the randomized order leaked by the corresponding ciphertexts is guaran-
teed to be I'. For example, for X = (9,40,15,76,15,76) and I' = (1,4,2,5,3,6), we
have y1 < y3 < y5 < y2 < Y4 < ys (y; denotes the corresponding ciphertext for x; and
I'~!'=(1,3,5,2,4,6)). Thus, the IND-FA-OCPA guarantee ensures that two datasets with a
common randomized order — but different plaintext frequencies — are indistinguishable. For
example, in the aforementioned game g,é‘k’_"écpA(-), AppT would fail to distinguish between the
plaintext datasets Xy = (9,40,15,76,15,76) and X; = (22,94,23,94,36,94) both of which
share the randomized order I'* = (1,4, 2,5, 3,6).

Note. Although the notion of IND-FA-OCPA was first introduced by Kerschbaum et al.
[Ker15|, the proposed definition suffered from a subtle flaw which was subsequently rectified
by Maffei et al. [MRS18|. The above definition, hence, follows from the one in [MRS18]

54

(denoted by in IND-FA-OCPA* in [MRS18]). Additionally, Definition [7| in our paper corre-
sponds to the notion of augmented order-preserving encryption scheme (denoted by OPE*
in [MRS18]) which is crucial for the above security definition. The augmented OPE scheme is
in fact a generalization of the standard OPE scheme (the only difference being the encryption

algorithm E has an additional input, T').

3.3 edLDP Order Preserving Encoding (OPec)

In this chapter, we discuss our proposed primitive — e-dLDP order preserving encoding, OPec.
First, we define the OPec primitive and its construction. Next, we describe how to use the

OPec primitive to answer queries in the LDP setting.

Notations. Here, we introduce the necessary notations. [n],n € N denotes the set {1,2,---,
n—1,n}. If X = [s,e] is an input domain, then a k-partition P on X denotes a set
of k non-overlapping intervals X; = (s;, €] EI , Sj+1 = e;,1 € [k],j € [k — 1] such that
Ule X; = X. For example, for X = [1,100], P = {][1,10], (10,20],---,(90,100]} denotes
a 10-partition. Let X denote the domain of partitions defined over X. Additionally, let
O ={o1, - ,0k},0; < 0j+1,1 € [k — 1] represent the output domain where o; is the corre-
sponding encoding for the interval &; and let P(x) = o; denote that = € X;. Referring back
to our example, if O = {1,2,---,10}, then P(45) = 5.

3.3.1 Definition of OPecc

OPec is a randomised mechanism that encodes its input while maintaining some of its ordi-

nality.

Definition 10 (e-dLDP Order Preserving Encoding, OPec). For a given k-partition P € X,
a e-dLDP order preserving encoding scheme, OPec: X x X x Rsg — O is a randomized mech-

anism such that
1. k=10|,k < |X]

{o1,02} if P(x) = o1
2. Forallx € X and o' € O\ T, where To = < {op_1,00} if P(x) = o,

{0i-1,0i,0;11} otherwise

do € T, such that,

Pr[OPec(z, P, €) = o] > Pr[OPec(z,P,€) = 0] (3.6)

IThe first interval, X; = [s1,e1], is a closed interval.

55

3. For all x,2’ € X,0 € O, we have
Pr[OPec(z, P,€) = o] < ecle=2'l - Pr[OPec(z’, P, €) = 0]

The first property in the above definition signifies the flexibility of the OPec primitive to
provide only a partial ordering guarantee. For instance, in our above example k = 10 < |X| =
100. Thus, P acts as a utility parameter — it determines the granularity at which the ordering
information is maintained by the encoding (this is independent of the privacy-accuracy trade-
off arising from the choice of €). For example, for the same value of € and X = [1,100],
P = {[1,10],(10,20],-- -, (90,100]} gives better utility than P’ = {[1, 33], (33, 66], (66, 100]}
since the former preserves the ordering information at a finer granularity. P = O = X
denotes the default case where effectively no partition is defined on the input domain and
P(x) = x,x € X trivially. We discuss the significance of the parameter P in Chapter

Due to randomization (required for to the dLDP guarantee), OPec is bound to incur some
errors in the resulting numerical ordering of its outputs. To this end, the second property
guarantees that the noisy output is most likely to be the either the correct one or the ones
immediately next to it. For instance, for the aforementioned example, OPec(45, P, €) is most
likely to fall in {4,5,6}. This ensures that the noisy outputs still retain sufficient ordinal
characteristics of the corresponding inputs. Note that the actual value of the encodings in
O does not matter at all as long as the ordinal constraint 0; < 0;41,7 € [k — 1] is maintained.
For instance for P = {[1,10], (10,20],---,(90,100]}, O = {1,2,3,4,5,6,7 ,8,9,10}, O’ =
{5,15,25,35,45,55,65,75,85,95} and 0" = {81, 99,120, 150, 234, 345, 400, 432, 536,637} are
all valid.

Finally, the third property ensures that the primitive satisfies e-dLDP. Note that e = cc
represents the trivial case OPec(X, P, 00) = P(X). %

3.3.2 Construction of OPecc

In this chapter, we describe a construction for the OPec primitive (Algorithm |3). The
algorithm is divided into two stages. In Stage I (Steps 1-3), it computes the central tendency
(a typical value for a distribution) [R.B84], d;,i € [k], of each of the intervals of the given
k-partition P. Specifically, we use weighted median |[CLRS09] as our measure for the central
tendency where the weights are determined by a prior on the input data distribution, D.
This maximizes the expected number of inputs that are mapped to the correct encoding,
i.e., z is mapped to P(z). In the context of encrypted databases, the data owner has access
to the entire dataset in the clear (Chapter [3.6). Hence, they can compute the exact input
distribution, D, and use it to instantiate the OPec primitive (for OPe). In the LDP setting,
D can be estimated from domain knowledge or auxiliary datasets. In the event such a prior

is not available, D is assumed to be the uniform distribution (d; is the median).

56

Algorithm 3: Construction of OPec
Setup Parameters: D - Prior input distribution over X, its default value is the

uniform distribution;
O - Output domain {o1,- - , 0k}
Input: x - Number to be encoded via OPec; € - Privacy budget;
P - A k-partition {[s1,e1],-- -, (sk,ex]} over X
Output: o - Output encoding;

Stage I: Computation of central tendency for each interval

1: for i € [k]
2: d; = Weighted median of (s;,e;] where D gives the corresponding weights
3: end for
Stage II: Computation of the output probability distributions
4: for x € X:
5. for i € [k]
6:
e—|x—dil-€/2
Pxi = > pxi = Pr[OPec(x,P, €) = oi]
S e lx—dsle/2
j=1
7: end for
8 pPx = 1{Px,1, " s Pxk) > Encoding (output) probability distribution for x
9: end for
10: 0~ p, > Encoding drawn at random from the distribution p,

11: Return o

In Stage II (Steps 4-9), the encoding probability distributions are computed such that the
probability of z outputting the i-th encoding, o;, is inversely proportional to its distance
from the ¢-th central tendency, d;. Specifically, we use a variant of the classic exponential
mechanism [GTT*19,DR14b| (Step 6).

Illustration of Algorithm Here, we illustrate Algorithm [3| with an example. We illus-
trate the algorithm with the following example. Consider a partition P = {[1,20], [21, 80],
[81,100]} for the domain X = (1,---,100) and let O = {1,2,3} denote the set of its corre-
sponding encodings. Let us assume the a uniform prior, D (default value), on X. Thus, in
Stage I, median is our measure from central tendency which gives d; = 10.5,dy = 50.5 and
ds = 90.5.

In Stage II (Steps 4-9), the encoding probability distributions are computed using a variant
of the classic exponential mechanism |[GTTT19,[DR14b| (Step 6). For instance, for the

57

aforementioned example we have Pr[OPec(40, P, €) = 2] = pso2 1/e(40—d2)e/2 — 7 /£b-25¢

The final encoding is then sampled from p, (Steps 10-11).

Theorem 6. Algorithm [gives a construction for OPec.

Proof. Here, we need to prove that Algorithm |3| satisfies the Eq. and [3[(e-dLDP) from
Definition We do this with the help of the following two lemmas.

Lemma 2. Algorithm[3 satisfies Eq. from Definition [10,

Proof. Let x € X;,i € [k].
Case I. d;,1 < j <i—1,i € [2,k] In this case, we have d; < d;_;. Thus,

Pr[OPec(z, P, €) = 0;—1] > Pr[OPec(z, P, €) = 0;] (3.7)

Case II. dj s.t. i +1 < j <k,iel[k—2]
In this case, we have d; 1 < d;. Thus,

Pr[OPec(z, P, €) = 0i41] > Pr[OPec(z, P, €) = 05 (3.8)

Clearly, this concludes our proof. O
Next, we prove that Algorithm [3] satisfies e-dLDP.
Lemma 3. Algorithm[3 satisfies e-dLDP.

Proof. For all z € X and o; € O = {01, ,01}, we have

Pr[OPec(z,P,e) = 0i]
Pr[OPec(z + ¢, P, €) = 0;] -

—|ett—d,|-e/2

k

e
(e\x+tfdi|f\x7di|-e/2 J=1

k
Ze—|z—dj\-e/2
j=1
< 6t6/2 . 6t6/2
[lz—dj| —t<|z+t—d;| <|z—dj| +1]
=e'* (3.9)

58

Similarly,

Pr [OPEC(QZ,P, €) = 0} S e
Pr[OPec(z + ,P.c) = 0] —

O

Hence, from Lemmas [J] and we conclude that Algorithm [3] gives a construction for the

OPec primitive.

O

Size of partition |P|. From Step 6, we observe that for every input z, the encoding prob-
ability distribution p, is an exponential distribution centered at P(z) — its correct encoding.
Moreover, the smaller is the size of P (number of intervals in P), the larger is the probability
of outputting P(x) (or its immediate neighbors). This is demonstrated in Figure which

plots p, for x = 50 and € = 0.1 under varying equi-length partitioning of the input domain

[100].

< X Pl =3
> 0.6 —&— |P|=5 -
= —— [P|=15
@ No partition
0
oY0)
e
< 0.21 -
o)
O
L0
0.01 - . e . -}
0 20 40 60 80 100
Encoding

Figure 3.1: Encoding probability distribution for different partition sizes for x = 50, ¢ = 0.1
and X = [100]

59

Remark 1. The e-dLDP guarantee of the OPec primitive (Theorem [6) does not
depend on the partition P. Thus, the partition size could range from k = |O| = |X|
(no effective partitioning at all) to k& = 2. Additionally, the dLDP guarantee (and
utility) is also independent of the encoding domain, O, as long as the appropriate

ordering constraint is valid.

Note that for k£ = 1 is a trivial case which destroys all ordinal information.

3.4 e-dDP Order Preserving Encryption (OPe)

In this chapter, we describe our proposed e-dDP order preserving encryption scheme, OPe.
First, we define OPe followed by a new cryptographic security definition for OPe (Chapter
3.4.2).

3.4.1 Definition of OPe

The e-dDP order preserving encryption (OPe) scheme is an encryption scheme that bolsters
the cryptographic guarantee of a OPE scheme with an additional dDP guarantee. Here, we
detail how our proposed primitive OPec can be used in conjunction with a OPE scheme
(Definition [7) to form a OPe scheme.

Definition 11 (e-dDP Order Preserving Encryption, OPe). A e-dDP order preserving en-
cryption scheme, OPe, is composed of a OPE scheme, &, that satisfies the IND-FA-OCPA
guarantee (Definition @), and the OPec primitive and is defined by the following algorithms:

OPc Scheme
e Key Generation (Kc). Uses K from the OPE scheme to generate a secret key S.

e Encryption (Ec). The encryption algorithm inputs a plaintext x € X, an order I', a
partition P € X, and the privacy parameter e. It outputs (S,y) < E(S,0,T) where
0 < OPec(x,P,€/2).

e Decryption (D¢). The decryption algorithm uses D to get back 6 <— D(S,y).

Following the above definition, the encryption of a dataset X € X" X = (x1,--- ,xzy) is

carried out as follows:
1. Set Sg <+ K(1%)

2. For Vi € [n], compute (S;,y;) < E(Si—1,0;,I') where 6; < OPec(z;,P,¢/2)

60

Key Idea. A OPe scheme works as follows:
e First, obtain an (randomized) encoding for the input using the OPec primitive
(one possible construction is given by Algorithm |3| for any given € and partition
P).

e Encrypt the above encoding under a OPE scheme.

Thus, ciphertexts encrypted under OPe preserve the order of the corresponding encodings as
output by the OPec primitive. Referring back to our example, if X = (76,9, 9,40, 15,76, 77)
and its corresponding encodings are 0= {8,1,2,4,2,8,8}, then the encryption of X under
OPe preserves the order of 0.

In other words, since a OPE scheme preserves the exact order of its input dataset by definition,
the utility of OPe (in terms of the preserved ordering information) is determined by the

underlying OPec primitive. This is formalized by the following theorem.

Theorem 7. [Utility Theorem] If, for a given partition P € X and for all z,2' € X such

that © > 2/ we have
Pr[OPec(z,P,€) > OPec(z',P,€)] > a,a € [0,1] (3.10)
then for a OPe scheme instantiated on such a OPec primitive,
Pr[Ee(m,S, [, P,e) > E(a, S,F,P,e)] >« (3.11)
where S <+ Kc(1%) and any T.

The proof follows directly from Definitions [7] and

Lemma 4. OPe satisfies §-dLDP.

The proof of the above lemma follows trivially from the post-processing guarantee of dLDP
(Theorem [5).

3.4.2 New Security Definition for OPe

Here, we present a novel securdity guarantee for OPe, namely indistinguishable ciphertexts

under frequency-analyzing e-dDP ordered chosen plaintext attacks (e-IND-FA-OCPA, Defini-

tion .

The e-IND-FA-OCPAguarantee is associated with a security game, g”f\‘,ngFA_OCPAE, where the
adversary, AppT, first chooses four input dataset of equal length, Xgo, Xo1, X190 and X1,
such that Py(Xop) and Pi(Xjo) share at least one randomized order where Xgo, Xo1 €

61

X', X10,X11 € &P, Py € & and Py € Ay Additionally, {Xoo, X1} and {X10, X11}
are t-adjacent (Definition @ The challenger then selects two bits {b, b2} uniformly at ran-
dom and returns the corresponding ciphertext for the dataset Xp,p,. AppT then outputs their
guess for the bits and wins the game if they are able to guess either of the bits successfully.
The e-IND-FA-OCPA guarantee states that Appt cannot distinguish among the four datasets.

In what follows, we first present its formal definition and then, illustrate it using an example.

Definition 12 (e-IND-FA-OCPA). An encryption scheme & = (K., Ec, D¢) has indistinguish-
able ciphertexts under frequency-analyzing e-dDP ordered chosen plaintext attacks if for any

PPT adversary, Appr, and security parameter, k:

Pr[g,{.kfgc%(m, bi,by) = (c1,¢2)] < (3.12)
e' - Pr[GEr B epa. (1,01, bh) = (c1,)] + negl(r) (3.13)

where by, ba, by, by, c1,c0 € {0,1)} and gé‘\"_"éCPA((/{,bl,bz) is the random variable indicating

the adversary Appt’s output for following security game:

Game géAP-P(T)CPAe(H’ by, b2)
1. (Xo0, Xo1, X10, X11) < AppT where
(a) Xoo, Xo1 € X3 and X10, X11 € X

(b) Po(Xoo) and P1(X10) have at least one common randomized order where Py € X
and Py € A?l

(¢) {Xoo0, Xo1} and {X10, X11} are t-adjacent (Definition [6)
2. S+ K(1%)
3. Compute Op OPec(Xoo, Po, §) and O1 OPec(X10,P1, §).
4. If 50 and Oy do not have any common randomized order, then return 1. Else

(a) Select two uniform bits by and by and a randomized order I'* common to both Oo

and 51.

(b) If by =0, compute Yy, < E.(Op,, S, T*, (’)bl,oo. Else, compute Yy, p, < Ec(Xp,1,
ST, Py, 5).

2equivalent to running E(S, Xp,0, 1%, P, , €) := (O, < OPec(Xs,0, Ps,,€/2), E(Op,,S,T*)) where
Oy, is the corresponding encoding domain for Py,

62

5. (c1,¢2) < Appr(Ye, p,) where ci(c2) is Appr’s guess for by (be)

AppT is said to win the above game if by = ¢1 or by = co.

Example 7. We illustrate the above definition using the following example. Consider
Xoo = (22,94,23,94,36,95), X10 = (9,40,11,76,15,76), Xo1 = (24,94, 23,94, 36,95) and
X11 = (9,40,8,76,15,76) where {Xqo, X10} share a randomized order, (1,4,2,5,3,6), and
{Xo0, Xo1} and {X10, X711} are 3-adjacent. For the ease of understanding, we consider the
default case of Py = Oy = &y and P; = Op =). This means that Py(Xg9) = Xgo and so

on.

OPec. If only OPec were to be used to encode the above datasets, then
only the pairs {Xoo, Xo1} and {Xj0,X11} would be indistinguishable to the ad-
versary (albeit an information theoretic one) because of the e-dDP guarantee
(Definition @ However, there would be no formal guarantee on the pairs
{Xo1, X11}, {Xo1, X10}, { Xo0, X11}, {Xo00, X10}-

OPE. If we were to use just the OPE scheme, then only the pair {Xoo, X109} would be

indistinguishable for Appt as the rest of the pairs do not share any randomized order.

OPG. Using OPE makes all 6 pairs {Xoo,X()l},{X()(),Xll},{Xo(),Xlo},{X()l,Xll},
{Xo1, X10}, {X11, X10} indistinguishable for Appt. This is because OPe essentially

preserves the order of a e-dDP scheme.

Hence, OPe¢ enjoys strictly stronger security than both OPec and OPE.

Theorem 8. The proposed encryption scheme, OPe satisfies e-IND-FA-OCPA security guar-

antee.

Proof. Intuition. The intuition of the proof is as follows. Recall that there are four input
sequences the adversary has to distinguish among. If the adversary is able to guess bit by
correctly (with non-trivial probability), it is akin to breaking the IND-FA-OCPA guarantee of
OPEs. Similarly, if the adversary is able to guess bit by correctly, (with non trivial probability)
it would imply the violation of the e-dDP guarantee.

The proof is structured as follows. First, we prove that OPe satisfies €/2-dDP (or (¢/2,0)-
dDP following the notation in Definition @ The rest of the proof follows directly from this
result and the IND-FA-OCPA guarantee of the OPE scheme.

Lemma 5. Let M be a mechanism that

63

1. inputs a dataset X € X"
2. outputs O = {61, ,0,} where for all i € [n],P € X,5; < OPec(x, P,€¢/2)

Then, M satisfies €/2-dDP.

Proof. Let X, X" € X" be t-adjacent. Specifically, let x; # z},7 € [n]. For brevity, we drop
P and the privacy parameter €/2 from the notation OPec(-).

Pr[M(X)=0] [Ij-, Pr[OPec(z;) = ;]

Pr[M(X") = 0] [Ij-, Pr[OPec(z}) = d;]

I}y Pr[OPec(z;) = 6] LT [OPec(z;) = 6]
[Tj=1 ji Pr[OPec(z;) = 6;] = Pr[OPec(z}) = 6;]

< e%[From Eq. [3] of Definition [10]

This concludes our proof.]
Lemma 6. OPe satisfies €/2-dDP.

This result follows directly from Lemma, [5] from Theorem

Now, note that 61)1 € Oy Thus, OPec(ébl,(’)bl,oo) = 61,1 (Chapter | . As a re-
sult, E<(S, Op,,T*, Oy, , 0) (Step 4b) is equivalent to running E(S, Xp,0,T*, Pp,, €) := (Op, <
OPec(Xp,0, P, €/2), E(Op,, S, T*)). Thus, from Deﬁnition|§|, if [Pr[GE S cone (K, 0,0) = (c1,¢2)] —
Pr [gék_"éCPAE(K, 1,0) = (c1,¢2)] ’ > negl(x), then another PPT adversary, Appt, can use Appt

to win the gIﬁIPDPTFA-OCPA(') game which leads to a contradiction. Hence, we have

‘Pr [GEx S cpar (7:0,0) = (c1,¢2)]

—Pr[Gexdcpar (5 1,0) = (e1, 02)]‘ < negl(k) (3.14)
Without loss of generality, let us assume

Pr [glﬁ—P(BCPA‘* (’%7 L, 0) - (01, CQ)] <

Pr[GEXdcpa: (1, 0,0) = (c1, 2)] (3.15)
Thus, from Eqs. (3.14) and (3.15)), we have

Pr[GES cppc (K, 0,0) = (c1,)] <

Pr[Gi S cpn: (£, 1,0) = (c1,¢2)] + negl(k) (3.16)

From Theorem [5] and Lemma [6]

Pr[GES cppc (K, 0,0) = (c1,)] <

s Pr [QFX’_P(;CPAE(R, 0,1) = (c1,c2)]
Pr [gé:-P(SCPAE(H? 0,1) = (c1,02)] <

s Pr [g,;‘k_"g,CPAe (k,0,0) = (cq, cz)]
Pr [QFX’_P(T)CPAE(/Q, 1,0) = (c1,¢2)] <

e Pr [g,ﬁ_"gCPAe(/ﬁ, 1,1) = (c1,¢2)]
Pr[GEScpa: (5 1,1) = (e1,¢2)] <

e> Pr [gék’_P(T)CPAE(/{, 1,0) = (c1, ¢2)]

Now from Egs. (3.16]) and (3.19), we have,

Pr[GES cppc (K, 0,0) = (c1,)] <

e Pr [gfk’_P(T)CPAE(n, 1,1) = (c1,¢2)] + negl(k)

Using Egs. (3.15) and (3.20]), we have

Pr [glfk-P(T)CPAf(”’ 1,1) = (c1, 02)] =

e%Pr[gf;X’_%CPAe (1,0,0) = (c1,¢2)]

From Egs. (3.18) and (3.16)), we have

Pr [gé‘AP-P(T)CPAf(“a 0,1) = (c1, 02)] <

B%PI‘ [glfk—P(T)CPAE(’i’ 17 0) = (Cl’ 02)] + negll(ﬂ)

[negl’ (k) = €% - negl(x) which is another negligible function]

Eqgs. (3.18) and (3.21) give us

Pr[Ga0 T cpa (1,0, 1) = (c1, 00)] | <

et€Pr[g€k_P6CPA‘» ("@ 17 1) = (017 02)] + negl,(ﬁ)

Using Eqgs. (3.15)) and (3.17)), we have

Pr[GEx 5 cpac (K:1,0) = (c1,¢2)]

<e3Pr [Q;}{’_%CPA‘(K, 0,1) = (c1,c2)]

Finally, Eqgs. (3.20) and (3.25)) give us

Pr (G cone (5 1,1) = (c1,¢2)]| <

e"Pr [gék_PcT)cpAe (%,0,1) = (c1, 02)]

64

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

65

Note that the QI“QFSTFA_OCPAE game can abort sometimes (Step 4, when 60 and 51 do not share
any randomized order). However, this does not lead to any information leakage to AppT since
this step happens before the challenger has chosen any of the bits {b1,be}. Additionally, the
condition 1b ensures that the event that the game runs to completion happens with non-
zero probability. It is so because if Py(Xog) and P1(X19) share a randomized order, then
Pr [60 and 61 share a randomized order] > 0.

This concludes our proof.]

Let Ng(X) = {X'| X’ € X" and {X, X'} are indistinguishable to Appt under guarantee G}.
Additionally, we assume P = X for the ease of understanding. Thus, in a nutshell, the e-dDP
guarantee allows a pair of datasets {X, X'} to be indistinguishableﬁ only if they are t-adjacent
(for relatively small values of t). Referring back to our example, we have X1 € Ngpp(Xoo)
and X117 € Neqpp(X10)-

On the other hand, under the IND-FA-OCPA guarantee, { X, X'} is indistinguishableﬁ to AppT

only if they share a common randomized order. For instance, X9 € Ninp-ra-ocpa(Xoo)-

In addition to the above cases, the e-IND-FA-OCPA guarantee allows a pair of datasets
{X, X'} to be indistinguishabld’| for App if {X, X'}

e do not share a randomized order
e are not adjacent,
but there exists another dataset X” such that
e {X' X"} are adjacent, i.e. X" € N_gpp(X”)
e {X, X"} share a randomized order, i.e., X" € NMinp_ra-ocpa(X).

From our aforementioned example, we have X171 € NMinp.ra-ocpa(Xoo) and X171 € Negpp(Xoo)-
But still, X11 € Minp-ra-ocpa. (Xoo) since X171 € Negpp(Xi0) and X19 € Ninp-ra-ocpa(Xoo).
Thus, formally

Ninp-Fa-ocpa. (X) = U Neapp(X”) (3.27)
X" €Ninp-ra-ocea(X)

3the ratio of their output distributions are bounded by e*¢, holds against an information theoretic
adversary as well

4computational indistinguishability [Ode09)

SFormally given by Eq. which is structurally similar to that of the IND-CDP guarantee
IMPRV09|] which is a computational differential privacy guarantee.

66

Since, trivially X € Minp-ra-ocea(X) and X € Neqpp(X), we have NMinp-ra-ocpa. (X) 2 Minp-Fa-ocpa(X)
and Ninp-ra-ocpa, (X) 2 Neapp(X).

Key Insight. The key insight of the e-IND-FA-OCPA security guarantee is that the
OPE scheme preserves the order of the outputs of a e-dDP mechanism. As a result,
the adversary is now restricted to only an e-dDP order leakage from the ciphertexts.
Hence, even if the security guarantee of the OPE layer is completely broken, the
outputs of OPe would still satisfy e-dDP due to Theorem [5| Referring to Example 1,
in the very least input pairs { X0, Xo1} and {X;9, X11} will remain indistinguishable
under all inference attacks. Thus, OPe is the first encryption scheme to satisfy a
formal security guarantee against all possible inference attacks and still provide some

ordering information about the inputs.

Remark 2. The e-IND-FA-OCPA guarantee of the OPe scheme is strictly stronger than
both dDP (dLDP) and IND-FA-OCPA (the strongest possible gquarantee for any OPE).
Further, it depends only on the dLDP guarantee of the underlying OPec primitive
which is independent of the partition P used (as discussed in Chapter . We
discuss the role of P in Chapter

3.5 OPe¢ and Inference Attacks

Lemma 5 € Lemma 11

——dLDP
2

——dDP
2

+
IND-FA-OCPA

Thm.6
€e—IND-FA-OCPA

— OPec

Green — OPE
Blue — OPe

Figure 3.2: Relationships between dLDP, dDP and IND-FA-OCPA guarantees.

In this chapter, we discuss the implications of OPe¢’s security guarantee in the face of inference
attacks. Specifically, we formalize the protection provided by OPe’s (relaxed) DP guarantee

— this is the worst case guarantee provided by OPe.

Recall that the e-IND-FA-OCPA guarantee of a OPe bolsters the cryptographic guarantee of
a OPE (IND-FA-OCPA) with an additional layer of a (relaxed) DP guarantee. For the rest
of the discussion, we focus on the worst case scenario where the OPE scheme provides no
protection at all and study what formal guarantee we can achieve from just the (relaxed)
DP guarantee. As discussed in Chapter [3.2.1} our proposed distance-based relaxation of DP
comes in two flavors — local (dLDP, Deﬁnition and central (dDP, Deﬁnition@. Intuitively,

67

dLDP is a guarantee for each individual data point while dDP is a guarantee for a dataset. As
a refresher, Figure [3.2] showcases the relationships between them. The most salient point is
that the dLDP is a stronger guarantee than dDP— e-dLDP implies e-dDP. Thus, owing to the
dLDP guarantee of the underlying OPec primitive, OPe trivially satisfies both dLDP (Lemma
and dDP (Lemma@ guarantees.

For our discussion in Chapter [3.4.2] we use the dDP guarantee since the IND-FA-OCPA guar-
antee of OPEs is also defined on datasets. In what follows, we show how to interpret the
protection provided by OPe’s dLDP guarantee since it is stronger and holds for every data
point. We do so with the help of an indistinguishability game, as is traditional for cryp-
tographic security definitions. Let the input be drawn from a discrete domain of size N,
i.e., |X| = N. The record indistinguishability game, Qé“_ R is characterized by a precision
parameter 3 € [%, 1]. In this game, the adversary has to distinguish among a single record
(data point) = and set of values Q(z) that differ from = by at most [SN]. For instance,
for = 3, N = 10 and 8 = 1/5, the adversary has to distinguish among the values 3 and
Q(z) ={1,2,4,5} ([BN] = 2). Let y; denote the ciphertext for x; after encryption under OPe.
The game is formally defined as follows:

Game QZ}“iRI(p)
1. zg+— A
2. Q(z) ={z1, -+ ,xq} where z; € X,i € [q] s.t. |zg —z;| < [BN] and z; # x
3. Select p € {0,1,--- , ¢} uniformly at random

4. p' .A(yp)

A is said to win the above game if p’ = p. Let rand be a random variable indicating the

output of the baseline strategy where the adversary just performs random guessing.

Theorem 9. For a OPe scheme satisfying 5-dLDP, we have

€

e 1
qg+e’ qg+1

‘Pr [p’ = p] —Pr [rand = p] ‘ < (3.28)

where € = €[N and q = |Q(z0)| (Step (2) of game gé“_RI).

Proof. Let y denote the output ciphertext (Step 4) observable to the adversary A. Note that
the game itself satisfies €/2-dLDP. Let d be the probability that the adversary A wins the
game, i.e., d := Pr [p’ = p]. Clearly, this cannot be greater than Pr [OPe(S, €/2,xp) = y] (we
use this shorthand to refer to the encryption as defined in Definition — the probability

68

that encrypting z, under OPe actually outputs y. Let Z = {i|i € {0,---,q},? # p}. Since
|z; —x;] < 2[BN],i,5 € {0,---,q}, from the €/2-dLDP guarantee we have

Viel
Pr[OPe(S, /2, z,) = y| < e Pr[OPe(S,€/2,2;) = y]
d< eE*Pr[OPe(S, €/2,x;) = y]

Summing the equations for all ¢ € Z, we have

g-d<e” Y Pr[OPe(S,e/2,z;) = y]
i€l
=q-d<e (1-d)

*

€

=d< . (3.29)
q+e°
Clearly,
Pr[rand = p| = b (3.30)
g+1
Hence, from Eqgs. and we have
Pr[p' = p| — Pr[rand = p] ‘ < al - — b (3.31)
T gtef qg+1
O

From the above theorem, observe that for low values of €* (i.e., low € and /3) the R.H.S of the
Eq. is low. This means that for reasonably low values of € (high privacy), with very
high probability an adversary cannot distinguish among input values that are close to each
other (small B) any better than just random guessing. Now, recall that owing to the dLDP
guarantee of the underlying OPec primitive, every data point encrypted under OPe is also
protected by the dLDP guarantee (Lemma. This implies that, for any dataset X, the above
indistinguishability result holds for every individual data point (record) simultaneously. In
other words, the dLDP guarantee rigorously limits the accuracy of any inference attack for

every record of a dataset.

As a concrete example, let us look at the binomial attack on OPE schemes satisfying IND-
FA-OCPA proposed by Grubbs et al. [GSBT17b|. The attack uses a biased coin model to
locate the range of ciphertexts corresponding to a particular plaintext. Experimental results
on a dataset of first names show that the attack can recover records corresponding to certain
high frequency plaintexts (such as first name ‘Michael’) with high accuracy. In this context,

the implications of the above result is as follows. Consider a dataset with plaintext records

69

corresponding to first names ‘Michael’ and ‘Michele’. For OPe, the recovery rate for either
would not be better than the random guessing baseline since both the values are close to

each other in alphabetic order.

Note that the above result is information-theoretic and holds for any adversary — active or
passive, both in the persistent (access to volume/access-pattern/search-pattern leakage) and

snapshot attack models (access to a single snapshot of the encrypted data) [FVY™17].

Remark 4. In the very least, OPe rigorously limits the accuracy of any inference

attack for every record of a dataset for all adversaries. (Theorem E[)

3.6 OPec for Encrypted Databases

In this chapter, we describe how to use a OPe scheme in practice in the context of encrypted
databases. Specifically, we discuss how we can leverage the partition parameter, P, of the

underlying OPec primitive for improved utility.

Problem Setting. For encrypted databases, typically a data owner has access to the entire
database in the clear and encrypts it before outsourcing it to an untrusted server. The
queriers of the encrypted databases are authorized entities with access to the secret keys. In

fact, in many practical settings the data owner themselves is the querier [FVYT17].

The most popular use case for databases encrypted under OPEs is retrieving the set of records
belonging to a queried range. However, due to randomization, encryption under OPe leads to
loss in utility. Specifically in the context of range queries, it might miss some of the correct
data records and return some incorrect ones. For the former, constraining OPe to maintain
only a partial order is found to be helpful. As discussed in Chapter the more coarse
grained the partition is (the lesser the number of intervals), the larger is the probability for
OPec to output the correct encoding. Hence, if any given range [a, b] is covered by a relatively
small number of intervals in P, then with high probability the set of records corresponding
to the encodings {0|0 € OAP(a) < 0 < P(b)]} will contain most of the correct records. This
results in better accuracy for the subsequent OPe scheme since it’s accuracy is determined
by the underlying OPec primitive (Theorem .

The problem of returning incorrect records can be mitigated by piggybacking every ciphertext
encrypted under OPe with another ciphertext that is obtained from encrypting the corre-

sponding plaintext under a standard authenticated encryption scheme [enc|, £ := (K, E, D).

70

We refer to this as the augmented OPeﬁ scheme and it works as follows:
Augmented OPe, £F

e Key Generation (K!). This algorithm generates a pair of keys (S, K) where S « K (k)
and K < K(x)

e Encryption (El). This algorithm generates (S',y0,y1) where 6 « OPec(z,P,€/2),
(S',y0) + E(S,0,T), w1« E(K,x)

e Decryption (D]). The decryption algorithm uses S and K to decrypt both the cipher-
texts, (x,0) as 6 < D(S,yo) and = + D(K, y1).

After receiving the returned records from the server, the querier can decrypt {y;1} and discard
the irrelevant ones. The cost of this optimization for the querier is the processing overhead

for the extra records (see discussion later).

The data owner (who has access to the dataset in the clear) can decide on the partition
based on the dataset before encrypting and outsourcing it. For most input distributions, an
equi-depth partitioning strategy works well (as demonstrated by our experimental results in
Chapter . Nevertheless, the partition can be update dynamically as well (see Chapter

3-9).-

Remark 5. The partitioning of the input domain (P) has no bearing on the formal
security guarantee. It is performed completely from an utilitarian perspective in the
context of encrypted databases — it results in an accuracy-overhead trade-off (accuracy

- number of correct records retrieved; overhead - number of extra records processed).

Range Query Protocol. The end-to-end range query protocol is described in Algorithm
[Before detailing it, we will briefly discuss the protocol for answering range queries for a
OPE scheme, &, that satisfies the IND-FA-OCPA guarantee (see [Kerl5| for details). Recall
that every ciphertext is unique for such a OPE scheme. Hence, a querier has to maintain
some state information for every plaintext. Specifically, if Y = {y1, -+ ,yn} denotes the
corresponding ciphertexts for an input set X = {z1,---,x,}, then the querier stores the
maximum and minimum ciphertext in Y that corresponds to the plaintext z;, denoted by
maxg(z;) and ming(z;), respectively. For answering a given range query |a,b], the querier
asks for all the records in Y that belong to [ming(a), maxg(b)]. Recall that in OPe, the OPE
scheme is applied to the output (encodings) of the OPec primitive. So now for answering

[a,b], the querier has to retreive records corresponding to [P(a),P(b)] instead where P is

6The augmented OPe scheme still upholds the e-IND-FA-OCPA guarantee owing to the semantic
security of the encryption scheme &.

71

the partition for the encoding. Hence, the querier first maintains the state information for
the encodings (Steps 1-6, Algorithm . Note that since the size of the encoding space is
smaller than the input domain X, the amount of state information to be stored for a OPe
is less than that for a OPE (see Chapter . Next, the querier asks for all the encrypted
records in the set Y’ = {(yly,y1)|i € [n] and v}y € [mingi(P(a)), maxg:(P(b)]} from the
server (Steps 7-10). On receiving them, the querier only retains those records that fall in the

queried range (Steps 11-18).

There are two ways the utility can be further improved. The first is including records from
some of the intervals preceding P(a) and following P(b). The querier can ask for the records
in [max(01,04—1), min(op4+i,0x))],l € Z>p where o, := P(a) and o, := P(b). However, the

cost is increase in extra records.

Another optimization is to answer a workload of range queries at a time. Under OPe, queries
can be made only at the granularity of the partition. Thus, if a queried range [a,b] is
much smaller than [P(a), P(b)], then the querier has to pay the overhead of processing extra
records. This cost can be reduced in the case of a workload of range queries where multiple
queries fall within [P(a),P(b)] (records that are irrelevant for one query might be relevant
for some other in the workload). Additionally, the number of missing records for the query
[a, b] is also reduced if records from the neighboring intervals of [P(a), P(b)] are also included
in the response (owing to the other queries in the workload).

Discussion. As described above, the server side interface for range query protocols is the
same for both OPe and a OPE scheme with the IND-FA-OCPA guarantee (with a nominal
change to accommodate the extra ciphertexts {y;1}). The cost is the extra storage for {1 }.

However, in this age of cloud services, outsourced storage ceases to be a bottleneck [sto].

The querier, on the other hand, needs to decrypt all the returned records (specifically, {y;1}).
However, decryption is in general an efficient operation. For instance, the decryption of 1
million ciphertexts encrypted under AES-256 GCM requires < 3 minutes in our experimental

setup. Thus, on the overall there is no tangible overhead in adopting OPe.

Remark 6. OPe could be used for secure data analytics in settings where (1) the e-
dDP guarantee is acceptable, i.e, the main security concern is preventing the distinction
between input values close to each other and, (2) the application can tolerate a small
loss in utility. Specifically in such settings, replacing encrypted databases that are
already deploying OPE schemes (satisfying IND-FA-OCPA)with a OPe scheme would
give a strictly stronger security guarantee against all attacks with nominal change in

infrastructure or performance - a win-win situation.

72

Algorithm 4: Range Query Protocol

Notations: Z - Input dataset with n records (r;, z;) where z; € X denotes the
sensitive attribute to be encrypted under OPe and r; denotes the
rest of associated data (other attributes could be encrypted too);

S - Secret key for the OPe scheme; P- Partition used for OPe;
K- Secret key for the authenticated encryption scheme &;
Input: Range Query [a,b],a,b € X
Output: Set of records V = {r;|(r;,7;) € Z,z; € [a,b]}"

Initialization: Querier

1 X = (21, ,2p)

2 Y =¢&1(X,S,K,I,P,5) > Contains encrypted attributes {(yio, vi1)}
3: foroe O

4: maxgi(0) = max{yio|(yio, yi1) € Y and y;o decrypts to o}

5: mingt(0) = min{yio|(vio, vi1) € Y and y,o decrypts to o}

6: end for > Querier maintains state information

Range Query Protocol: Querier
7. C' = {ming:(P(a)), maxe: (P(b)} > Transformed range query based on state
information
8: Querier S, Server
Server
9: Y’ = {(yi0,yn)|i € [n] and y;o € [ming: (P(a)), maxe: (P(b))]}
> Server returns the set of records matching the query
10: Server 2 Querier
Querier
11: V=¢
12: for y;; € Y’
13: ;< DK, yj1)
14: if (2} € [a,b]) > Verifying whether record falls in [a, b]
15: V=VUnr
16: end if
17: end for
18: Return V

3.7 LDP Mechanisms using OPec

The[] OPec primitive can be of independent interest in the LDP setting. Depending on the

choice of the partition P over the input domain X, OPec can be used to answer different

"V has a small utility loss as explained before.

73

types of queries with high utility. In this section, we describe how to use OPec to answer

two such queries.

Problem Setting. We assume the standard LDP setting with n data owners, DO;,i € [n]

each with a private data x;.

3.7.1 Ordinal Queries

OPec can be used to answer queries in the LDP setting that require the individual noisy
outputs to retain some of the ordinal characteristics of their corresponding inputs. One class
of such queries include identifying which ¢-quantile does each data point belong to. This
constitutes a popular class of queries for domains such as annual employee salaries, annual
sales figures of commercial firms and student test scores. For example, suppose the dataset
consist of the annual sales figures of different clothing firms and the goal is to group them
according to their respective deciles. Here, partition P is defined by dividing the input
domain into ¢ = 10 equi-depth intervals using an estimate of the input distribution, D. In
the case such an estimate is not available, a part of the privacy budget can be first used to
compute this directly from the data [LWLZ"20]. For another class of queries, the partition
can be defined directly on the input domain based on its semantics. Consider an example
where the goal is to group a dataset of audiences of TV shows based on their age demographic
— the domain of age can be divided into intervals {[1, 20], [21, 40], [41, 60], [61, 100]} based on
categories like “youth”, “senior citizens”. Once the partition is defined, each data owner uses
the OPec primitive to report their noisy encoding. Note that the dLDP privacy guarantee is
amenable to these cases, as one would want to report the intervals correctly but the adversary
should not be able to distinguish between values belonging to the same interval. The full

mechanism is outline in Algorithm

Algorithm 5: Answering Ordinal Queries

Parameter P - Partition defined over the input domain as specified by the query;

€ - Privacy parameter

1: for i € [n]

2: DO, computes 0; = OPec(z;, P, €) and sends it to the data
aggregator

3: end for

4: Return O = {o1,- -+ ,0n}

74

3.7.2 Frequency Estimation

Here, we discuss the default case of the OPec primitive where the partition is same as the
input domain, i.e., P = O = X. Under this assumption, we can construct a mechanism for
obtaining a frequency oracle in the LDP setting under the dLDP guarantee. The mechanism
is outlined in Algorithm [6] and described below. Given a privacy parameter, €, each data
owner, DO;, i € [n], reports 6; = OPec(z;, X, €) to the untrusted data aggregator (Steps 1-4).
Next, the data aggregator performs non-negative least squares (NNLS) as a post-processing
inferencing step on the noisy data to compute the final frequency estimations (Steps 5-6).
NNLS is a type of constrained least squares optimizations problem where the coefficients are
not allowed to become negative. That is, given a matrix A and a (column) vector of response
variables Y, the goal is to find X such that

argm)én lA - X — Y2, subject to X >0

where || - [|2 denotes Euclidean norm. The rationale behind this inferencing step (Step 5) is

discussed below.

Lemma 7. W.lo.g let X = {1,---,m} and let Y be the vector such that Y (i),i € [m]

indicates the count of value i in the set {01, - ,0n} where 6; = OPec(i, X, ¢€). Given,
A(i, j) = Pr[OPec(i, X, €) = j],i,j € [m] (3.32)

the solution X of A - X =Y gives an unbiased frequency estimator (X (i) is the unbiased

estimator for value 7).

Proof. Let X’ be a vector such that X'(i) represents the true count of the value i € [m].

Thus, we have

B[] = B3 A7 65)- Y0
_ i:A—l(z',j) E[Y(4))]
p
_ Zn;A_l(i,j) . (ix’(k) -Pr[OPec(k, X, €) = j])
o =
_ iAw,j) : (iX’Uc) - A(j, k)

=3"XG) - - AT k) - Ak)
k=

j=1 1
— X/(i)

This concludes the proof. O

75

Thus by the above lemma, X is an unbiased frequency estimator. However, it is important
to note that the solution X is not guaranteed to be non-negative. But, given our problem
setting, the count estimates are constrained to be non-negative. Hence, we opt for an NNLS
inferencing. When the exact solution X = A~! .Y is itself non-negative, the estimator
obtained from the NNLS optimization is identical to the exact solution. Otherwise, the NNLS
optimization gives a biased non-negative estimator that results in minimal least square error.

The resulting frequency oracle can be used to answer other queries like mean estimation and

range querie&ﬂ

Algorithm 6: Frequency Estimation

Input: X - Input dataset (zq,---,xz,); € - Privacy parameter
Output: X - Estimated frequency
Data Owner
Set P=4&
for i € [n]
DO; computes 6; = OPec(z;, X, ¢) and sends it to the aggregator

end for
Data Aggregator

5: Data aggregator performs NNLS optimization as follows

A - X =Y where
A(i,j) = Pr[OPec(i, X, €) = j], 4,7 € [m]

Y (i) = Count of value i in {61, ,0n}

6: Return X

Utility Analysis for Frequency Estimation Using OPecc

Here, we present a formal utility analysis of the frequency oracle. Let p;;,i,7 € X denote
the Pr[OPec(i, X, €)] = j and let X'[i] denote the true count for i. Additionally, let I;; be

an indicator variable for the event OPec(i, X, €) = j.

8In the LDP setting, this refers to statistical range query, i.e., the count of the records that belong
to a queried range.

Theorem 10. The variance of count estimation X[i| is given by

Var(X[i]) = (Pr(1 = prg) - (X' [K] - A7'i, 41)%)
j=1 k=1

Z (X/[k]?A*l[l g1l - AT Go] - P pk,h)

k=11<j1<j2<n

Proof. Variance of the indicator variable is given by,

Var(li) = pji - ¢4

Additionally, we so have

Cov (i, Ij k) = —pjipj k-
COV(HjJ', Hk,l) =0

Using this we have,

Var(X[i]) = Var ZA‘l[i,j]) Y[j)

:Var<z ;- X'[k]- A 1[@91]))
ZZ (Var(Ly;) - (X'[k] - A7, 4])%) +

3

3.8 Experimental Evaluation

In this chapter, we present our evaluation results for the proposed primitives, OPe and OPec
Specifically, we answer the following three questions:

76

40

—
=

Mean Missing Records% pas
g
¥
(=}
Mean Extra Records% pr

10!

=

—4— pu
= rr

=30
100

107! 107!

10

Mean Extra Records% pg

Mean Missing Records% py;

1072 +— 1072 -
1072 107! 1 101

Privacy Parameter € Privacy Parameter e

H

S
&

—

(a) PUDF: Effect of € (b) SPARC: Effect of €

10! 10!

10! 10!

10° 100 10° 10°

\

Mean Extra Records% pg

i

Mean % of Extra Records, pp
Mean Missing Records% py;

Mean % of Missing Records p);

107! 107! 107! 10!
5 10 15 20 50 70 100
Size of Partition, P Size of Partition |P|
(c) Adult: Effect of P (d) Salary: Effect of P

=
©

10~

1072

Mean Missing Records% p
= =
) L L —_ =
o (&, [— N
o ol o
Mean Extra Records% pp
Mean Missing Records% pys
o
Xl
o o —
w (oo} w
Mean Extra Records% pg

0 1 1
Number of Neighboring Intervals Number of Neighboring Intervals

N
o
N

(e) Adult: Effect of Neighboring intervals (f) Salary: Effect of neighboring intervals

s 100 10! s 10 10!
= S e :
[} s o =
& 1 w0 § & 0§
o o
2 o ©
8 £ 8 &
s s
c c
g 107! 02§10 1018
= =
I 5 10 15 20 1 5 10 15 20
Size of Workload Size of Workload
(g) SPARC: Effect of Workload (h) PUDF: Effect of Workload

Figure 3.3: Accuracy Analysis of OPe in the Context of Encrypted Databases

78

e Q1: Does OPe retrieve the queried records with high accuracy?

e Q2: Is the processing overhead of OPe reasonable?

e Q3: Can OPec answer statistical queries in the LDP setting with high accuracy?
Evaluation Highlights

e OPec retrieves almost all the records of the queried range. For instance, OPe only misses
around 4 in every 10K correct records on average for a dataset of size ~ 732K with an

attribute of domain size ~ 18K and € = 1.

e The overhead of processing extra records for OPE is low. For example, for the above

dataset, the number of extra records processed is just 0.3% of the dataset size for e = 1.

e We give an illustration of OP¢€’s protection against inference attacks. For an age dataset
and an adversary with real-world auxiliary knowledge, no inference attack in the snap-
shot attack model can distinguish between two age values (x, z’) such that |z —2'| <8
for e = 0.1.

e OPec can answer several queries in the LDP setting with high utility. For instance,
OPec can answer ordinal queries with 94.5% accuracy for a dataset of size ~ 38K, an
attribute of domain size ~ 240K and ¢ = 1. Additionally, OPec achieves 6x lower

error than the state-of-the-art e-LDP technique for frequency estimation for e = 0.1.

3.8.1 Experimental Setup

Datasets. We use the following datasets:

e PUDF |[PUD]. This is a hospital discharge data from Texas. We use the 2013 PUDF
data and the attribute PAT_ZIP (7,31,188 records of patient’s 5-digit zipcode from the
domain [70601,88415]).

e Statewide Planning and Research Cooperative System (SPARCS) [NYC|. This is a hos-
pital inpatient discharge dataset from the state of New York. This dataset has 25,31,896

records and we use the length_of stay (domain [1,120]) attribute for our experiments.

e Salary [sall5]. This dataset is obtained from the Kaggle repository and contains the
compensation for San Francisco city employees. We use the attribute BasePay (domain
[1000, 230000]) from the years 2011 (35,707 records) and 2014 (38,122 records).

79

e Adult [AN10|. This dataset is obtained from the UCI repository and is derived from
the 1994 Census. The dataset has 32,561 records and we use the attribute Age (domain

[1,100]) for our experiments.

e Population |cen|. This is a US Census dataset of annual estimates of the resident

population by age and sex. We use the data for male Puerto Ricans for 2011 and 2019.

Datasets Adult and SPARCS have small and dense domains while PUDF and Salary have

larger and sparse domains.

Metrics. We use the following metrics for our experiments. For evaluating Q1, we use

#missing records _
#correct records %. Note that py es

sentially captures false negatives which is the only type of error encountered — the querier

the relative percentage of missing records, pyr =

can remove all cases false positives as discussed in Chapter [3.60 We evaluate Q2 via the

#extra records %
#records in dataset "

A key advantage of outsourcing is that the querier doesn’t have to store/process the entire

percentage of extra records processed relative to the dataset size, pgp =

database. pp measures this — low pg implies that the (relative) count of extra records is low
and it is still advantageous to outsource. In other words, low pg implies that the client’s
processing overhead is low (relative to the alternative of processing the whole dataset). We

believe this is a good metric for assessing the overhead in our setting because:

e For clients, the decryption of extra records doesn’t result in a tangible time overhead
(1 million records take < 3 minutes, see Chapter [3.6]).

e OPe has no impact on the server since its interface (functionality) is the same as that
for OPE.

For evaluating ordinal queries (Figure [3.4a)), we use o = % of points with |P(z) — 0, = k
where P(x) and o, denote the correct and noisy encoding for x, respectively. For instance,
oo = 90 means that 90% of the input data points were mapped to the correct bins. For
frequency and mean estimation (Figures and , we measure the absolute error |c—¢|
where ¢ is the true answer and ¢ is the noisy output. For Figure[3.4d] we use the error metric
|c — ¢|/k where k is the size of the query. We report the mean and s.t.d of error values over

100 repetitions for every experiment.

Configuration. All experiments were conducted on a Macbook with i5, 8GB RAM and
OS X Mojave (v10.14.6). We used Python 3.7.6. The reported privacy parameter e refers

to the e-IND-FA-OCPA guarantee, and implies §-dDP and §-dLDP for OPe (Figure . We

instantiate the OPec primitive using Alg. Due to lack of space, we present the results

80

for all only two datasets, 1 dense (Adult, SPARCS) and 1 sparse (PUDF, Salary), in Figure
The default settings are e = 1, equi-depth partitioning of sizes |P| = 122 for PUDF,
|P| = 8 for SPARC, |P| = 10 for Adult, and |P| = 70 for Salary. The range queries are chosen

uniformly at random. We use the data from Salary for 2011 as an auxiliary dataset for Figure

[3.4al

3.8.2 Experimental Results

104
1001 s
LE
801 8
o 604 3 103_ - OPec. I
+ mm Salary o Iy ~¥— Baseline 1
bc 401 mm Salaryo; <
0l m Aditoy | §
mm Adult 0y s
107
0.1 0.5 1 01 03 05 07 09 1.1
Privacy Parameter ¢ Privacy Parameter ¢
(a) Ordinal Queries (b) Adult: Frequency Estimation
10! . . 700
= —#— OPec -
g ~¥— Baseline 2 g .L -L 41%
Y] 1 5001 1= |
_g E —#— Range
_1-2 _§ 300_ —¥— Point
< 104 <
c c
@ 3
(3]
2 = 1001
1072 4— ‘ ! ! , , , ,
0.1 03 05 07 09 1.1 5 10 15 20
Privacy Parameter ¢ Size of Query
(c) Adult: Mean Estimation (d) Adult: Range and Point Queries

Figure 3.4: Accuracy Analysis of OPec in the LDP setting

Utility and Overhead of OPe¢

Here, we evaluate Q1 and Q2 by computing the efficacy of OPe in retrieving the queried
records of a range query. Recall, that a OPE scheme preserves the exact order of the plain-
texts. Thus, the loss in accuracy (ordering information) arises solely from OPe’s use of the

OPec primitive. Hence first, we study the effect of the parameters of OPec.

We start with the privacy parameter, € (Figs. and |3.3b)). We observe that OPe achieves
high utility even at high levels of privacy. For example, OPe misses only about 2% of the

correct records (i.e., ppr = 2%) for PUDF (Figure [3.3a]) on average even for a low value of

81

e = 0.01 (i.e., the ratio of the output distributions of two datasets that are 100-adjacent
is bounded by e). The associated processing overhead is also reasonable — the size of the
extra records retrieved, pg, is around 1% of the total dataset size on average. Next, we
observe that as the value of € increases, both the number of missing and extra records drop.
For instance, for € = 1 we have py; = 0.04%, i.e., only 4 in every 10K correct records are
missed on average. Additionally, the number of extra records processed is just 0.3% of the
total dataset size on average. We observe similar trends for SPARC (Figure as well.
However, the utility for SPARC is lower than that for PUDF. For instance, py; = 10% and
pE = 35% for e = 0.01 for SPARC. This is so because the ratio of the domain size (120) and
partition size (8) for SPARC is smaller than that for PUDF (domain size ~ 18K, |P| = 122).
As a result, the individual intervals for SPARC are relatively small which results in lower

utility.

Next, we study the effect of the size of the partition (number of intervals) on OPe’s utility.
As expected, we observe that for Adult, decreasing the partition size from 20 to 5 decreases
py from 5% to 0.2% (Figure . However, this increases the number of extra records
processed — pg increases from 0.8% to 7%. Similar trends are observed for Salary (Figure
3.3d)).

Next, we study the effect of including neighboring intervals (Chapter in Figures
and For instance, for Salary, including records from 2 extra neighboring intervals drops
py from 1% to 0%. However, pg increases from 0.4% to 1.7%. The increase in pg is more
significant for Adult. The reason is that the domain size for Adult is small and the dataset is

dense. On the other hand, Salary has a larger and sparse domain.

Another way for improving utility is to answer a workload of range queries at a time (Chapter
3.6). We present the empirical results for this in Figures and For SPARC, we
observe that pp; and pg drop from 0.9% to 0.1% and 4% to 0.2%, respectively as the size of
the workload is increased from 1 to 20. Further, we note that this effect is more pronounced
for SPARC than for PUDF. This is because, the domain of PUDF is larger and hence, the

probability that the queried ranges in the workload are close to each other is reduced.

Utility of OPec in the LDP Setting

In what follows, we evaluate Q3 by studying the utility of the OPec primitive in the LDP
setting.

First, we consider ordinal queries. For Adult, we define an equi-length partition P =
{[1,10],---,[91,100]} over the domain and our query of interest is: Which age group (as
defined by P) does each data point belong to? For Salary, we define an equi-depth partition

82

of size 10 over the domain and our query of interest is: Which decile does each data point
belong to? Our results are reported in Figure The first observation is that OPec re-
ports the correct encodings with good accuracy. For instance, for € = 1, o9 = 94.5% and
o1 = 5.5% for the Salary dataset. Another interesting observation is that for low values of e,
the accuracy for Salary is significantly higher than that for Adult. Specifically, for e = 0.1,
o9 = 90% and o9 = 35% for Salary and Adult, respectively. The reason for this is two fold.
Firstly, we use an auxiliary dataset for Salary to compute the weighted medians for the cen-
tral tendencies. On the other hand, we do not use any auxiliary dataset for Adult and use
the median of each interval as our measure for central tendency. Secondly, the domain size
of Salary (230K) is relatively large compared to the number of intervals (10) which results
in higher utility (as explained in Chapter [3.3.2)).

Figure shows our results for using OPec for frequency estimation. Baselinel denotes
the state-of-the art e-LDP frequency oracle [WBLJ17b]. We observe that OPec achieves
significantly lower error than Baselinel. For instance, the error of OPec is 6x lower than

that of Baselinel for e = 0.1. This gain in accuracy is due to OPec’s relaxed e-dLDP guarantee.

From Figure [3.4d we observe that the frequency oracle designed via OPec can be used for
mean estimation with high utility. Here Baseline2 refers to the state-of-the-art protocol
[DKY17] for mean estimation for e-LDP. We observe that for e = 0.1, OPec achieves ~ 40x

lower error than Baseline2.

Another interesting observation is that OPec’s frequency oracle gives better accuracy for a
range query of size k than k individual point queries (Figure . For instance, a range
query of size 20 gives 5x lower error than 20 point queries. The reason behind this is that the
output distribution of OPec is the exponential distribution centered at the input z. Hence,
with high probability x either gets mapped to itself or some other point in its proximity.
Thus, the probability for accounting for most copies of x is higher for the case of answering

a range query = € [a, b] than for answering a point estimation for x.

An Illustration of OPe¢’s Protection

Here, we give an illustration of OPe’s protection against inference attacks on a real-world
dataset. We use the “snapshot” attack model (the adversary obtains a onetime copy or
snapshot of the encrypted data [FVY™17]) for the ease of exposition. Our analysis is based
on a formal model that captures a generic inference attack in the snapshot model — we create
a bitwise leakage profile for the plaintexts from the revealed order and adversary’s auxiliary

knowledge as described below.

83

Model Description. We assume the input domain to be discrete, and finite and w.l.o.g
denote it as X = [0,2™71]. Additionally, let D represent the true input distribution and
X = {z1,--- ,z,} be a dataset of size n with each data point sampled i.i.d from D. We
model our adversary, AppT, to have access to (1) auxiliary knowledge about a distribution,
D', over the input domain, X’ and (2) the ciphertexts, C, corresponding to X which represent
the snapshot of the encrypted data store. The adversary’s goal is to recover as many bits of
the plaintexts as possible. Let X (i), € [n] represent the plaintext in X with rank [ran] ¢ and
let X (7,7),7 € [m] represent the j-th bit for X (7). Additionally, let b(7, j) represent the adver-
sary’s guess for X (7,7). Let £ be a n x m matrix where L£(i, j) = Pr [X(z',j) = b(i,j)!D,D’}
represent the probability that AppT correctly identifies the j-th bit of the plaintext with rank
i. Hence, £ allows analysis of bitwise information leakage from C to Appt. The rationale
behind using this model is that it captures a generic inference attack in the snapshot model

allowing analysis at the granularity of bits.

Adversary’s Approach. Appt’s goal is to produce their best guess for X(7,j). Given
App1’s auxiliary knowledge about the distribution, D’, the strategy with the least proba-

bilistic error is as follows:

b(i,j) = arg bgﬁ}l{} {Prp/[X(i,5) =b]},i € [n],j € [m]

0if Ep [X(i,)] <1/2
_ | OB [X6 <1/ (3.33)
1if Ep/ [X(3,5)] > 1/2
Next, we formalize £ when X is encrypted under OPe.
Theorem 11. If X is encrypted under OPe, then for all i € [n],j € [m] we have
£iij)= > Profe=s](Y Pro-[06) = v]-
Sesi(i,j) ve@
Pr[OPec(s, P,€) = v| /Prp-[o = v]) + negl(k) (3.34)

where O(r) denotes the encoding with rank r,r € [n], P € X,0 ~ D*, and D* : X > O

represents the distribution of the encoding OPec(x, P,€), x© ~ D which is given as

Prp. [Z Prp[z] - Pr[OPec(z, P,e) =v],v € O
TeEX

Proof. Fact 1. If D represents an input distribution and X = {x1,--- ,x,} denotes a dataset

of size n with each data point sampled i.i.d from D, then we have:

Prp [Z PFD]

s€S]

84

where ¢ € [n],j € [m],b € {0,1}, and SZ = {s|s € X and its j-th bit s/ = b}.

Let C(i) represent the ciphertext with rank ¢ in C. Additionally, let X’(¢) represent the
corresponding plaintext for C(i). From the IND-FA-OCPA guarantee, we observe that the
rank of a ciphertext y € Y is equal to the rank of its corresponding plaintext in X, i.e,

X'(i) = X (7). Thus, we have this, we have

L(i,j) = Prp[X'(i,j) = b(i, j)] + negl(x)
[The term negl(x) accounts for the corresponding term in Eq.
for the IND-OCPA guarantee of the OPE scheme.]
= Prp[X(i,j) = bli,)]
=) Prp[X(i) = s] [From Fact 1] (3.35)

SE€S} 1)

Egs. B:33 and can be numerically computed using the following lemma.

Lemma 8. If D represents an input distribution and X = {x1,--- ,z,} denotes a dataset of
size n with each data point sampled i.i.d from D, then we have:

n

n—j J
’;) -Pr [ac < s] " Prp [x s]
; 1

=n—i+

<

ifPrD[x> 5] =0

3°(2) - Profe = 5]/ - Profe > 4"

ifPrD[:c < S] =0
min{i,n—j+1}
>
k=max{1i—j+1} A
Prp [:U < s]k_l -Prp [1: = s]]-

Prp[X (i) = 5] =
>

= <(k—1,j,nn—k—z'+1)'

Prp [a: > s] nik*jﬂ) otherwise

where x ~D,i € [n] and s € X.

Proof. Let X,,+ denote the sorted version of X. Additionally, let réc and ré denote the
positions of the first and last occurrences of the value s in X+, respectively. Let cnig
denote the count of data points with value s in X. Thus, clearly cnts = T’é - 'r’f: +1

Case I: Prp [:1: > s} =0

In this case, we have

X(i)=s = X(r)=s,Vrsti<r<n

85

Thus, ré:nandn—ijtlgcntsgnand

n

Prp[X(i)=s| = > Prp[X(i) = slents = j]
j=n—it+1

£ () e

Case II: Prp [:c < s] =0

In this case, we have
X(i)=s = X(r)=s,Vrst1<r<i

Thus, réc =1 and therefore i < ents < n and

Prp[X (i) = s] = ZPrD [X (i) = s|ents = j]

Case III: Otherwise
For all other cases, if cnts = j,j € [n], then we must have max{1,i —j + 1} < rl <

min{i,n — j + 1}. Thus, we have

Prp[X (i) = s] =) Prp[X(i) = slents = j]
j=1
n min{i,n—j+1}
:E< 2 ((k—l 'nyik—z‘+1>'
=1 \k=max{1,i—j+1} >

Prp [z < s]k_l - Prp |z = s]j -Prp [z > s]n_k_j+1)>

Next, we formalize £ when X is encrypted under a OPE scheme.

Theorem 12. If X is encrypted under an OPE scheme that satisfies the IND-FA-OCPA guar-

antee, then for all i € [n],j € [m] we have

L(i,j)= > Prp[X(i)=s| + negl(x) (3.36)

€8} i.5)

where x ~ D, and Sg = {s|s € X and its j-th bit s' = b}.

86

Proof. The above theorem formalizes what Appt can learn from just the order of the plain-
texts (that is leaked by C by definition). Recall that in OPe, the OPE scheme is applied
to the encodings obtained from the OPec primitive. Thus, in this case, the ciphertexts C
preserve the rank of the encodings of OPec(x,P,¢€),z € X. Let 9] represent this set of en-
codings. Additionally, let 6(1) be the encoding in O with rank i. Let X" (i) represent the

corresponding plaintext for the encoding 5(@) Thus, for s € X, x ~ D and o ~ D* we have
Prp [X" (i) = s| =
> Prp. [O(i) = v] - Prp[X" (i) = s|O(i) = v]

ve0
= Z Prp- [5(@) =] - Prp[z = s|OPec(z, P, €) = v]
ve0
=" Prp-[0(i) = v]-
ve®

Prp [OPec(z, P, €) = v|lx = s| - Prp[z = s
Prp [OPec(z, P, €) = v]

= Prp-[0(i) = v]-

veO
Prp[OPec(z, P, €) = v|z = 5] - Prp[z = 5]
PI‘D* [0 = ’U]
= Prp [z = s] Z Prp- [0(i) = v] Pr[OPec(s, P, €) = v]

ao Prp- [0 = v]

Thus finally,

L(i,§) =Pr[X"(i,5) = b4, j)] + negl(r)
[The term negl(x) accounts for the corresponding term in Eq.
for the e-IND-FA-OCPA guarantee of the OPe scheme.]
= Y Pr[X"(i) = s] + negl(r)

SE€S36i.5)

= Z Prp [z = s] <Z Prp- [6(2> =]
sesg(,.,j) veo

Pr[OPec(s, P, €) = v] /Prp- [0 = v]) + negl(k)

Remark. The bitwise leakage matrix, £, captures the efficacy of a generic inference
attack in the snapshot model at the granularity of the plaintext bits. We present

this analysis to provide an intuitive insight into OPe’s improved protection against

inference attacks (given formally by Theorem [J).

87

-1.0 -1.0
-0.8 -0.8
~x 0.6 < 0.6
& 0.4 & 0.4
0.2 0.2
0.0 0.0
Bit Bit
(a) L for OPE (b) L for OPe for e =1

-1.0

-0.8
0.6
0.4
0.2
0.0

Figure 3.5: Numerical Analysis of the Bitwise Leakage Matrix, £

1 2 3 4 5 6 7
Bit

(¢) L for OPe for e = 0.1

Evaluation Results. Using these theorems, we analytically compute £ for a real-world
dataset. We use the age data from the Population dataset for the year 2019 as the true
input distribution, D, and the data from the year 2011 is considered to be the adversary’s
auxiliary distribution, D’. We consider the dataset size to be 200 and the number of bits
considered is 7 (domain of age is [1,100]). Additionally, the partition P for the OPec primitive
is set to be P =0 =X =[1,100]. The reported privacy parameter € refers to the e-IND-
FA-OCPA guarantee, and implies §-dDP and §-dLDP for OPe (Figure . As shown in
Figure we observe that the probability of successfully recovering the plaintext bits
is significantly lower for OPe as compared to that of a OPE. Moreover, the probability of
recovering the lower-order bits (bits in the right half) is lower than that of higher-order bits
— the probability of recovering bits 5-7 is & 0.5 which is the random guessing baseline. Recall
that Thm. [9] implies that the adversary would not be able to distinguish between pairs of
inputs that are close to each other. Hence, the above observation is expected since values
that are close to each other are most likely to differ only in the lower-order bits. Additionally,
as expected, the probability of the adversary’s success decreases with decreasing value of e.
For instance, the average probability of success for the adversary for bit 4 reduces from 0.77
in the case of OPEs (Figure to 0.62 and 0.51 for ¢ = 1 (Figure and € = 0.1

9For Figure we omit the negl(x) term from Eqgs. and

88

(Figure [3.5d), respectively, for OPe. Concretely, no inference attack in the snapshot model
that uses the given auziliary knowledge can distinguish between two age values (x,x') such
that |z — 2’| <8 for e =0.1.

3.9 Discussion

OPe is the first step towards integrating OPEs and DP. Here, we discuss several avenues for

future research.

Extension to Other Related Cryptographic Security Guarantees. The current
scheme can be trivially extended to the IND-OCPA security guarantee [BCLOO09, PLZ13b|
for OPEs by replacing Definition [11] with a OPE scheme that satisfies IND-OCPA guarantee
instead. Extension to order-revealing encryptions (ORE) [BLR™15,[LW16,[CLWW16] is also
straightforward — replacing the OPE by an ORE in the construction would work. The secu-
rity guarantee again follows from the post-processing resilience of DP. Exploring connections
with modular OPEs [MCO™15,BCO11] is also an interesting future direction. The property
of partial order preserving can provide protection against certain inference attacks. For ex-
ample, some attacks require access patterns for uniformly random range queries [GLMP19b|
or knowledge about the volume of every range query |GLMP18§|. This is clearly not possible
with OPe as only queries at the granularity of the chosen partition are permitted. Hence, an-
other future direction could be formalizing this security gain parameterized on the choice of
the partition. A related path to explore here could be studying connections with the existing
notion of partially order preserving encoding POPE proposed by Roche et. al [RACY16]. A
recent line of work has focused on providing formal guarantees against some specific types of
attacks in the context of encrypted databases [GKL™20,LP18 /KT19/AHKM18b|. Our model
is distinct from all the above mentioned approaches. Additionally, since the dDP guarantee
holds regardless of the type of inference attacks, it would be interesting to see if it can be

combined with the above approaches for a stronger formal guarantee or better efficiency.

Beyond OPEs, secure ordering could be required in a distributed setting where n mutually
untrusting parties, each holding a data point, want to compute a sorted order over their data
(generalization of the classic Yao’s millionaires’ problem [Yao86,JKU11]). OPEs are ill-suited
for this setting because (1) currently OPEs are defined only in private key cryptography which
means that a single malicious agent posing as a data owner can compromise the protocol (2)
OPEs (satisfying e-IND-FA-OCPAand IND-OCPA) are stateful and mutable [KT19,PLZ13b]
which is not feasible in a distributed setting. This requires the use of multi party compu-
tation (MPC) techniques. A straightforward way to extend is to compute over the outputs

of the OPec primitive. Proposing techniques for improved utility is an important future work.

89

Compromised Querier. In the context of a database encrypted under a OPE scheme,
a querier has access only to the records that precisely belong to the queried range. However,
in our setting the querier might know the values of some records that fall outside the queried
range (Chapter . This might lead to additional leakage, when compared to the case of
a OPE encrypted database, in the event the querier is compromised. One way to prevent
this is to use an attribute-based encryption scheme |[BSW07] for & where the decryption is

possible only if the record belongs to the queried range.

Support for Non-ordinal Data. Currently, e-dLDP (equivalently dDP) provides a se-
mantically useful privacy guarantee only for data domains that have a naturally defined
order. A possible future direction can be exploring how to extend this guarantee for non-
ordinal domains (like categorical data). One such way could be associating the categories of
the non-ordinal domain with some ordinal features like popularity [GTT*19] and defining

the guarantee w.r.t to these ordinal features instead.

Extension of LDP Mechanisms. The performance of the algorithms presented in Chap-
ter could be improved by borrowing techniques from the existing literature in LDP. For
example, the partition for OPec could be learnt from the workload factorization mechanism
from [MMMM20]. In another example, a B-ary tree could be constructed over the input

domain using OPec for answering range queries [Kull9).

Less State Information for Clients. For OPe, in fact the clients need to store less
state information than for OPEs satisfying IND-FA-OCPA as discussed below. Clients for
any OPE scheme, &, (satisfying the IND-FA-OCPA guarantee) need to store two pieces of
state information for each unique value of X that appears in the dataset X to be en-
crypted (see [MRS18]). For example, for input domain & = [100] and a dataset X =
{42,45, 45,50, 88,67,67,77,90,98,98,98,98} drawn from this domain, the client needs to
store two information {maxg(x), ming(z)} for x € {42,45,50,88,67,77,90,98}. Recall that
OPe applies OPE to the output of the OPec primitive. This implies that for OPe, &T,
the client needs to store the state information only for each encoding in O of the un-
derlying OPec primitive. For the above mentioned example, consider a partition P =
{[1,20], [21, 40], [41, 60], [61, 80], [81, 100] } with corresponding encodings O = {10, 30, 50, 70, 90}.
Here, the client needs to store {maxg:(0), ming: (o)} only for o € O = {10, 30, 50, 70,90}

This means that clients now need to store less state information for OPe than for OPE.

Encrypting Multiple Columns. For encrypting records with multiple columns, we can

encrypt each column individually under the OPe scheme (satisfying e-dLDP). Then, from

90

the composition theorem of dLDP, we would still enjoy ¢ - e-dLDP guarantee over the entire

dataset where c is the total number of columns.

Extension of OPec. The OPec primitive can be extended to generic metric space along
the lines of previous literature [ACPP18,|CABP13|. This would support arbitrary partition
instead of just non-overlapping intervals. For this, first sort the input domain X according
to the metric d(-). Then divide the sorted domain, Xg, into non-overlapping intervals which
determines the partition, P, for the OPec primitive. Algorithm [3] can now be defined on P
with metric d(+).

Recent work in database theory community has explored efficient k-top query answering
mechanisms [DK18,|DHK20, DHK21a, DHK21b,/DK21]. OPec can be used in conjunction

with these mechanisms for guaranteeing data privacy.

Choice of Partition. as long as the encoding domain O of the underlying OPec prim-
itive has enough wiggle room. For instance, for input domain X = [100], let the initial
partition be P = {[1, 20], [21, 40],

[41,60], [61,80],[81,100]} over a input domain [100]. Let the corresponding encodings be
O = {1,21,41,61,81}. Now, if in the future the interval [1,40] needs to be further parti-
tioned into {[1,10], [11, 20], [21, 30], [31,40]}, it can be performed as follows:

1. retrieve and delete all records from the database in the range [1,40] (this step might

incur some loss in accuracy)
2. assign the encodings {1,11,21,31} for the aforementioned sub-partition
3. insert back the records encrypted under the new encoding

However, the cost here is that every update consumes an additional e-dLDP privacy budget

for the updated records.

3.10 Related Work

The dLDP guarantee is equivalent to the notion of metric-based LDP [ACPP18| where the
metric used is ¢1-norm. Further, metric-LDP is a generic form of Blowfish [HMD14] and
dy-privacy |[CABP13] adapted to LDP. Other works [BCSZ18, XDHZ19, ABCP13,|CEP17,
GTT"19,,WNWT17| have also modelled the data domain as a metric space and scaled the
privacy parameter between pairs of elements by their distance. A recent work [ABK™ 19|
propose context-aware framework of LDP that allows a privacy designer to incorporate the

application’s context into the privacy definition.

91

A growing number of work has been exploring the association between differential privacy
and cryptography [WHMM20|. Mironov et al. [MPRV09] introduced the notion of compu-
tational differential privacy where the privacy guarantee holds against a PPT adversary. A
line of work [BEM™'17,[CSUT 19| has used cryptographic primitives for achieving anonymity
for privacy amplification in the LDP setting. Mazroom et al. [MG18b| have proposed tech-
niques for secure computation with DP access pattern leakage. Bater et al. [BHT 18| com-
bine differential privacy with secure computation for query performance optimization in
private data federations. Groce et al. [GRR19b| show that allowing differentially private
leakage can significantly improve the performance of private set intersection protocols. Vu-
vuzela [vdHLZZ15| is an anonymous communication system that uses differential privacy to
enable scalability and privacy of the messages. Differential privacy has also been used in
the context of ORAMs [CCMS19b, WCM18|. A parallel line of work involves efficient use of
cryptographic primitives for differentially private functionalities. Agarwal et al. [AHKM18a]
design encrypted databases that support differentially-private statistical queries, specifically
private histogram queries. Rastogi et al. [RN10] and Shi et al. [SHCGR™ 11| proposed al-
gorithms that allow an untrusted aggregator to periodically estimate the sum of n users’
values in a privacy preserving fashion. However, both schemes are irresilient to user failures.
Chan et al. [CSS12b| tackled this issue by constructing binary interval trees over the users.
Bohler et al. [WLJ17] solves the problem of differentially private heavy hitter estimation
in the distributed setting using secure computation. Recently, Humphries at al. [HMVK21]
have proposed a solution for computing differentially private statistics over key-value data
using secure computation. in the combined Additionally, recent works have combined DP
and cryptography in the setting of distributed learning [KLS21a,/ASYT18,|CCDD™21].

3.11 Conclusion

We have proposed a novel e-dDP order preserving encryption scheme, OPe. OPe enjoys a
formal guarantee of e-dDP, in the least, even in the face of inference attacks. To the best of
our knowledge, this is the first work to combine DP with a property-preserving encryption
scheme. Additionally, OPe¢ is based on a novel e-dLDP order preserving encoding scheme,
OPec, that can be of independent interest in the LDP setting. Our experimental results show

that OPec and OPe achieve high utility on real-world datasets.

92

Chapter 4

EIFFelL: Ensuring Integrity for Federated Le-
arning

Federated learning (FL; [MMR™17]) is a learning paradigm for decentralized data in which
multiple clients collaborate with a server to train a machine-learning (ML) model. Each
client computes an update on its local training data and shares it with the server; the server
aggregates the local updates into a global model update. This allows clients to contribute to
model training without sharing their private data. However, the local updates can still reveal
information about a client’s private data [MSDCS19, BDF*18,/ZLH19,[YMV ™21, NSH19).
FL addresses this by using secure aggregation: clients mask the updates they share, and

the server can only recover the final aggregate in the clear. A major challenge in FL is

—]

= M
S &y oA

- ax U -> I

—]

—

-

(—]

—

Security Goal Cryptographic Primitive

Input Privacy Shamir’s Threshold Secret Sharing Scheme [Sha79)]

Secret-Shared Non-Interactive Proof [CGB17]

Input Integrit, y
P sty Verifiable Secret Shares [Fel87]

Figure 4.1: OPec performs secure aggregation of verified inputs in FL. The table lists its
security goals and the cryptographic primitives we adopt to achieve them.
that it is vulnerable to Byzantine errors. In particular, malicious clients can inject poisoned

updates into the learner with the goal of reducing the global model accuracy |BNL12,MZ15,

93

FCJG20,BCMC19, KMA ™19 or implanting back doors in the model that can be exploited
later [CLLT17,[BVHT18,XHCL20|. Even a single malformed update can significantly alter
the trained model [BMGS17b]. Thus, ensuring the well-formedness of the updates, i.e.,
upholding their integrity, is essential for ensuring robustness in FL. This problem is especially
challenging in the context of secure aggregation as the individual updates are masked from

the server, which prevents audits on them.

These challenges in FL lead to the research question: How can a federated learner efficiently

verify the integrity of clients’ updates without violating their privacy?

We formalize this problem by proposing secure aggregation of verified inputs (SAVI) protocols
that: (1) securely verify the integrity of each local update, (2) aggregate only well-formed
updates, and (3) release only the final aggregate in the clear. A SAVI protocol allows for
checking the well-formedness of updates without observing them, thereby ensuring both the

privacy and integrity of updates.

In order to demonstrate the feasibility of SAVI, we propose OPec: a system that instantiates
a SAVI protocol that can perform any integrity check that can be expressed as an arithmetic
circuit with public parameters. This provides OPec the flexibility to implement a plethora of
modern ML approaches that ensure robustness to Byzantine errors by checking the integrity
of per-client updates before aggregating them [SKSM19b,SKL17, XKG20,XKG19,[LCW 20,
DMG™18,BVHT18|[SH21]. OPec is a general framework that empowers a federated learner
to deploy (multiple) arbitrary integrity checks of their choosing on the “masked” updates.

OPec uses secret-shared non-interactive proofs (SNIP; [CGB17]) which are a type of zero-
knowledge proofs that are optimized for the client-server setting. SNIP, however, requires
multiple honest verifiers to check the proof. OPec extends SNIP to a malicious threat
model by carefully co-designing its architectural and cryptographic components. Moreover,
we develop a suite of optimizations that improve OPec’s performance by at least 2.3x. Our
empirical evaluation of OPec demonstrates its practicality for real-world usage. For instance,
with 100 clients and a poisoning rate of 10%, OPec can train an MNIST classification model
to the same accuracy as that of a non-poisoned federated learner in just 2.4 seconds per

iteration.

4.1 Problem Overview

In this chapter, we introduce the problem setting, followed by its threat analysis and an

overview of our solution.

(a) EIFFeL consists
of multiple clients C
and a server S with
a public validation
Valid(+)
the

predicate
that defines
integrity check. A
client C; needs to
provide a proof m; for
Valid(u;) = 1 (Round

1).

(b) For checking the
proof m;, all other
clients C,; act as
the wverifiers under
the supervision of S.
C; splits its update
u; and proof m; us-
ing Shamir’s scheme
with threshold m + 1
and shares it with Cy;

(Round 2).

| "
= X *
v ——

=

d; .4

Lt

(c) Conceptually,
any set of m + 1
clients in C; can
the SNIP
verification protocol.
The

this redundancy to

emulate
uses

server

robustly verify the
proof (Round 3).

94

(d) The clients
only aggregate the
shares of well-formed
the

updates and

resulting aggregate
is revealed to the

server (Round 4).

Figure 4.2: High-level overview of EIFFeL. See Chapter for key ideas, and Chapter

for a detailed description of the system.

4.1.1 Problem Setting

In FL, multiple parties with distributed data jointly train a global model, M, without ex-

plicitly disclosing their data to each other. FL has two types of actors:

e Clients. There are n clients where each client, C;,i € [n], owns a private dataset, D;.

The raw data is never shared, instead, every client computes a local update for M,

such as the average gradient, over the private dataset D;.

e Server.

different clients to train M.

A single training iteration in FL consists of the following steps:

There is a single untrusted server, S, who coordinates the updates from

e Broadcast. The server broadcasts the current parameters of the model M to all the

clients.

e Local computation. Each client C; locally computes an update, wu;, on its dataset

D;.

95

e Aggregation. The server S collects the client updates and aggregates them, U =

¢ Global model update. The server & updates the global model M based on the
aggregated update U.

In settings where there is a large number of clients, it is typical to subsample a small subset
of clients to participate in a given iteration. We denote by n the number of clients that
participate in each iteration and C denotes this subset of n clients, which the server announces

at the beginning of the iteration.

4.1.2 Security Goals

e Input Privacy (Client’s Goal). The first goal is to ensure privacy for all honest
clients. That is, no party should be able learn anything about the raw input (update)

u; of an honest client C;, other than what can be learned from the final aggregate U.

e Input Integrity (Server’s Goal). The server S is motivated to ensure that the
individual updates from each client are well-formed. Specifically, the server has a public
validation predicate, Valid(-), that defines a syntax for the inputs (updates). An input
(update) wu is considered valid and, hence, passes the integrity check iff Valid(u) = 1.
For instance, any per-client update check, such as Zeno++ |[XKG20|, can be a good
candidate for Valid(-) (we evaluate four such validation predicates in Chapter .

We assume that the honest clients, denoted by Cy: (1) follow the protocol correctly, and (2)
have well-formed inputs. We require the second condition because, in case the input of an
honest client does not pass the integrity check (which can be verified locally since Valid(-) is

public), the client has no incentive to participate in the training iteration.

4.1.3 Threat Model

We consider a malicious adversary threat model:

e Malicious Server. We consider a malicious server that can deviate from the protocol

arbitrarily with the aim of recovering the raw updates u; for i € [n].

e Malicious Clients. We also consider a set of m malicious clients, Cy;. Malicious
clients can arbitrarily deviate from the protocol with the goals of: (1) sending mal-
formed inputs to the server and compromising the final aggregate; (2) failing the in-
tegrity check of an honest client that submits well-formed updates; (3) violating the

privacy of an honest client, potentially in collusion with the server.

96

4.1.4 Solution Overview

Prior work on FL has mostly focused on ensuring input privacy via secure aggregation, i.e.,
securely computing the aggregate U = >~ .. u;. Motivated by the above problem setting and
threat analysis, we introduce a new type of FL protocol, called secure aggregation with verified
inputs (SAVI), that ensures both input privacy and integrity. The goal of a SAVI protocol is

to securely aggregate only well-informed inputs.

In order to demonstrate the feasibility of SAVI, we propose EIFFelL: a system that instantiates
a SAVI protocol for any Valid(-) that can be expressed as an arithmetic circuit with public
parameters (Figure . EIFFelL ensures input privacy by using Shamir’s threshold secret
sharing scheme [Sha79| (Chapter. Input integrity is guaranteed via SNIP and verifiable
secret shares (VSS) which validates the correctness of the secret shares (Chapter [4.3.1). The

key ideas are:

e SNIP requires multiple honest verifiers. EIFFel enables this in a single-server setting

by having the clients act as the verifiers for each other under the supervision of the

server (in Figure [4.2b| verifiers are marked by “)

e ElFFel extends SNIP to the malicious threat model to account for the malicious clients.
Our key observation is that using a threshold secret sharing scheme creates multiple
subsets of clients that can emulate the SNIP verification protocol. The server uses this

redundancy to robustly verify the proofs and aggregate updates with verified proofs

only (Figure and [4.2d)).

4.2 Secure Aggregation with Verified Inputs

Below, we provide the formal definition of a secure aggregation with verified inputs (SAVI)

protocol.

Definition 13. Given a public validation predicate Valid(-) and security parameter , a pro-

tocol T(uy, -+ ,uy) is a secure aggregation with verified inputs (SAVI) protocol if:

o Integrity. The output of the protocol, out, returns the aggregate of a subset of clients,
Cvalid, such that all clients in Cyajig have well-formed inputs.
Pr [out = Z/I\/a/,-d] > 1 —negl(k) where Uyajig = Z u;
Ci€Cvaiia
fOT‘ all C; € Cyvajig we have Valid(ui) = 1,CH C Cvalig €C (4.1)

97

e Privacy. For a set of malicious clients Cpr and a malicious server S, there exists a

probabilistic polynomial-time (P.P.T.) simulator Sim(-) such that:

Realyt ({uc, }, Qc,,us) =c Sim(Qe,,us, Un, Crr) where Uy = Z Us. (4.2)
Ci€Cy
{uc, } denotes the input of all the honest clients, Realyr denotes a random variable
representing the joint view of all the parties in Il’s execution, Qc,,us indicates a
polynomial-time algorithm implementing the “next-message” function of the parties
in Cpy US (see Chapter , and =¢ denotes computational indistinguishability.

From Definition the output of a SAVI protocol is of the form:

U, = Ug + Z U; (4.3)
~—
well-formed updates of Ci€Cvaia\Crr

all honest clients Cp
well-formed updates of
some malicious clients

The clients in Cyajiq \ Cq are clients who have submitted well-formed inputs but can behave

maliciously otherwise (e.g., by violating input privacy/integrity of honest clients).

The privacy constraint of the SAVI protocol means that a simulator Sim can generate the
views of all parties with just access to the list of the honest clients Cy and their aggregate
U . Note that Sim takes Uy as an input instead of the protocol output Uyajig. This is because
the clients in Cyajiq \ Cr, by virtue of being malicious, can behave arbitrarily and announce
their updates to reveal Uy = Uvalid — Zci Cunia\Crr Wi+ Thus, SAVI ensures that nothing can

be learned about the input u; of an honest client C; € Cy except:
e that u; is well-formed, i.e., Valid(u;) = 1,

e anything that can be learned from the aggregate Uy;.

Remark 1. The integrity constraint of SAVI requires the protocol to detect and re-
move all malformed inputs before computing the final aggregate. Note that there is
a fundamental difference between the design choice of just detection of a malformed
input versus detection and removal. In the former, the server can only abort the cur-
rent round even when a single malformed input is detected. This allows an adversary
to stage a denial-of-service attack that renders the server unable to train the model.
When the protocol can both detect and remove malformed inputs, such denial-of-
service attacks are impossible as the server can train the model using just the valid

updates.

98

4.3 EIFFelL System Description

This section introduces EIFFel: the system we propose to perform secure aggregation of

verified inputs.

4.3.1 Cryptographic Building Blocks

Arithmetic Circuit. An arithmetic circuit, C : F¥ — F, represents a computation over a
finite field F. It can be represented by a directed acyclic graph (DAG) consisting of three
types of nodes: (1) inputs, (2) gates and (3) outputs. Input nodes have in-degree zero and
out-degree one: the k input nodes return input variables {x1,--- ,xp} with x; € F. Gate
nodes have in-degree two and out-degree one; they perform either the 4+ operation (addition
gate) or the x operation (multiplication gate). Every circuit has a single output node with
out-degree zero. A circuit is evaluated by traversing the DAG, starting from the inputs, and

assigning a value in F to every wire until the output node is evaluated.

Shamir’s t-out-of-n Secret Sharing Scheme [Sha79| allows distributing a secret s
among n parties such that: (1) the complete secret can be reconstructed from any com-
bination of ¢ shares; and (2) any set of t — 1 or fewer shares reveals no information about s.
Herein, ¢ is the threshold of the secret sharing scheme. The scheme is parameterized over a

finite field F and consists of a tuple of two algorithms:

o Construct shares (SS.share). Given a secret s € F, a set of n unique field elements
P € F™ and a threshold ¢ with ¢t < n, this algorithm constructs n shares, {(i, s;) }icp &
SS.share(s, P,t). The algorithm chooses a random polynomial ¢ € F[X] such that
¢(0) = s and generates the shares as (i,¢(i)),i € P.

e Reconstruct secret (SS.recon). Given the shares corresponding to a subset Q C P, |Q| >

t, the reconstruction algorithm recovers the secret, s <— SS.recon({ (%, s;)icq})-

Shamir’s secret sharing scheme is linear, which means a party can locally perform: (1)
addition of two shares, (2) addition of a constant, and (3) multiplication by a constant.

Shamir’s secret sharing scheme is closely related to Reed-Solomon error correcting codes
[LCO04], which is a group of polynomial-based error correcting codes. The share generation
is similar to (non-systemic) message encoding in these codes which can successfully recover
a message even in the presence of errors and erasures (message dropouts). Consequently, we
can leverage Reed-Solomon decoding algorithms for robust reconstruction of Shamir’s secret

shares:

e Robust Reconstruction (SS.robustRecon). Shamir’s secret sharing scheme results in

a [n,t,n —t+ 1] Reed-Solomon code that can tolerate up to ¢ errors and e erasures

Prover

= D<
<
Honest Verifiers

e

e

(a) Prover sends secret
shares of its input and
the SNIP proof to multi-

>x<"xnf

x‘m‘

(b) The verifiers gos-
sip among themselves and

check the proof.

99

= @ =

D

(c) The check passes suc-
cessfully if all parties are

honest.

ple verifiers.

Figure 4.3: High-level overview of a secret-shared non-interactive proof (SNIP; |[CGB17]).

(message dropouts) such that 2¢+e <n —t+1. Given any subset of n—e shares
Q C P,|Q| > n — e with up to g errors, any standard Reed Solomon decoding algo-
rithm [Bla83| can robustly reconstruct s <— SS.robustRecon({(z, s;) }icq). EIFFeL uses
Gao’s decoding algorithm [Gao03].

Verifiable secret sharing scheme is a related concept where the scheme has an additional
property of verifiability. Given a share of the secret, a party must be able to check whether
it is indeed a valid share. If a share is valid, then there exists a unique secret which will be

the output of the reconstruction algorithm when run on any ¢ distinct valid shares. Formally:

o Verify shares (SS.verify). The verification algorithm inputs a share and a check string
W, such that

ds € F,VV C F x F where |V| =t, s.t.
(V(3,v) € V,SS.verify((i,v),Vs) =1) = SS.recon(V) = s

The share construction algorithm is augmented to output the check string, ({(i, s;)icp}, ¥s)

< SS.share(s, P, t).

For EIFFeL, we use the non-interactive verification scheme by Feldman [Fel87]. Let c(z) =
co+ c1x + - - ci_12t ! denote the polynomial used in generating the shares where ¢y = s is

the secret. The check string are the commitments to the coefficients given by
v =g“,1€{0,--- ;t—1} (4.4)

where g denotes a generator of F. All arithmetic is taken modulo ¢ such that (p|g — 1)
where p is the prime of F. For verifiying a share (j,s;), a party needs to check whether
g% = Hf;é @/}Zj ". The privacy of the secret s = ¢g is implied by the the intractability of
computing discrete logarithms [Fel87].

100

Key Agreement Protocol. A key agreement protocol consists of a tuple of the following

three algorithms:

e Parameter Generation (KA.param). The parameter generation algorithm samples a set

of public parameters pp that have security parameter s, (pp) & KA.param(1¥).

e Key Generation (KA.Gen). The key generation algorithm samples a public/secret key
pair from the public parameters, (pk, sk) & KA.gen(pp).

o Key Agreement (KA.agree). The key agreement protocol receives a public key pk; and
a secret key sk; as input and generates the shared key, sk;; < KA.agree(pk;, sk;).

Authenticated Encryption combines confidentiality and integrity guarantees for messages

exchanged between two parties. It consists of a tuple of three algorithms as follows:

e Key Generation (AE.gen). The key generation algorithm that outputs a private key k

where k is the security parameter, k & AE.gen(1%).

e Encryption (AE.enc). The encryption algorithm takes as input a key k and a message

z, and outputs a ciphertext, T i AE.enc(k,).

e Decryption (AE.dec). The decryption algorithm takes as input a ciphertext and a
key and outputs either the original plaintext, or a special error symbol | on failure,
x < AE.dec(k,T).

Security relies on indistinguishability under a chosen ciphertext attack (IND-CCA) [KL14b].

Secret-shared Non-interactive Proofs. The secret-shared non-interactive proof (SNIP)
[CGB17] is an information-theoretic zero-knowledge proof for distributed data (Figure [4.3)).
SNIP is designed for a multi-verifier setting where the private data is distributed or secret-
shared among the verifiers. Specifically, SNIP relies on an additive secret sharing scheme
over a field F as described below. A secret s € F is split into k random shares ([s]1,- - , [s]x)
such that Zle[s]i = 5. A subset of up to k — 1 shares reveals no information about the

secret s. The additive secret-sharing scheme is linear as well.

SNIP Setting. SNIP considers a setting with & > 2 verifiers {V;},i € [k] and a prover
P with a private vector z € F¢. Additionally, all parties hold a public arithmetic circuit
representing a validation predicate Valid : F¢ — F . Let M be the number of multiplication
gates in Valid(-). F is chosen such that 2M < |F|. The prover P splits « into k shares
{[z1],-- -, [zx]}. Next, they generate k proof strings m;, i € [k] based on Valid(-) and shares

([x;], m;) with every verifier V;.

101

The prover’s goal is to convince the verifiers that, indeed, Valid(z) = 1. The prover does so
via proof strings m;,¢ € [k], that do not reveal anything else about x. After receiving the
proof, the verifiers gossip with each other to conclude either that Valid(z) = 1 (the verifiers

“Accept x”) or not (“Reject 7). Formally, SNIP satisfies the following properties:

e Completeness. If all parties are honest and Valid(xz) = 1, then the verifiers will accept

x.

Vo € F s.t. Valid(z) =1 : Pry[Accept z] = 1.

e Soundness. If all verifiers are honest, and if Valid(z) = 0, then for all malicious provers,

the verifiers will reject with overwhelming probability.

Vz € F s.t. Valid(z) =0: Pry|Reject 2| > 1 — 2IM[-2/|p|.

o Zero knowledge. If the prover and at least one verifier are honest, then the verifiers
learn nothing about x, except that Valid(x) = 1. Formally, when Valid(z) = 1, there
exists a simulator Sim(-) that can simulate the view of the protocol execution for every
proper subset of verifiers:

k
Vz s.t. Valid(z) =1 and VYV C U V; we have
i=1

Sim; (Valid(-)7 {([z]s, Wi)}viep) = Viewmfj(Valid(-), x)

SNIP works in two stages as follows:

(1) Generation of Proof. For generating the proof, the prover P first evaluates the circuit
Valid(+) on its input x to obtain the value of every wire in the arithmetic circuit corresponding
to the computation of Valid(x). Using these wire values, P constructs three polynomials f,
g, and h such that h = f-g and f(i),g(i) and h(i),i € [[M|] encode the values of the two
input wires and one output wire of the i-th multiplication gate, respectively. P also samples
a single set of Beaver’s multiplication triples [Bea92|: (a,b,c) € F3 such that a-b=c € F.
Finally, it generates the shares of the proof, [r]; = ([h];, ([ali, [b]s, [c];)), which consists of:

e shares of the coefficients of the polynomial h, denoted by [h];, and
e shares of the Beaver’s triples, ([a);, [b]s, [c];) € F3.

The prover then sends the respective shares of the input and the proof ([z];,[7];) to each of

the verifiers V;.

(2) Verification of Proof. To verify that Valid(xz) =1 and hence, accept the input z, the

verifiers need to check two things:

102

e check that the value of final output wire of the computation, Valid(x), denoted by w°“

is indeed 1, and

e check the consistency of P’s computation of Valid(z).

To this end, each verifier V; locally constructs the shares of every wire in Valid(x). This can
be done via affine operations on the shares of the private input [z]; and [h]; (see [CGB17| for
details). Next, V; broadcasts a summary o; = ([w®];, [\];), where [w°“]; is V;’s share of the
output wire and [\]; is a share of a random digest that the verifier computes from the shares
of the other wire values and the proof 7;. Using these broadcasted summaries, the verifiers

check the proof as follows:

e For checking the output wire, the verifiers can reconstruct its exact value from all the

broadcasted shares w’* = Zle[wom]i and check whether w®“ = 1.

e The circuit consistency check is more involved and is performed using the random
digest A. First, V; locally computes the shares of the polynomials f and g (denoted
as [f]; and [g];) (see [CGB17]). To verify the circuit consistency, the verifiers need
to check that the shares [h]; sent by the prover P are of the correct polynomial, i.e.,
confirm that f-g¢g = h. For this, SNIP uses the Schwartz-Zippel polynomial identity
test [Sch80}|Zip79|. Specifically, verifiers test whether A = f(r) - g(r) — h(r) =0 on a
randomly selected r € F. The computation of the random digest A uses the shares of the
Beaver’s triples ([a];, [b]i, [¢];). This multiplication requires one round of communication

between the verifiers.

4.3.2 System Building Blocks

Public Validation Predicate. EIFFel requires a public validation predicate Valid(-), ex-
pressed by an arithmetic circuit, that captures the notion of update well-formedness. In prin-
ciple, any per-client update robustness test |[SKSM19b}SKL17,XKG20,LCW20,[DMG ™18,
BVHT'18,|SH21| from the ML literature can be a suitable candidate. The parameters of
the test (for instance, the threshold p for some bound #(u) < p) can be computed from
a clean, public dataset Dp that is available to the server §. This assumption of a clean,
public dataset is common in both ML [XKG20, CFLG21, KMA™19] as well as privacy lit-
erature [LVST21, BCM ™20, BKNT20]. The dataset can be small and obtained by manual
labeling [MR17].

Public Bulletin Board. EIFFelL assumes the availability of a public bulletin board B that
is accessible to all the parties. This is similar to prior work |[RNFH19, BIK™17, KMA™19).

In practice, the bulletin B can be implemented as an append-only log hosted at a public web

103

address where every message and its sender is visible. Every party in EIFFel has read/write
access to it. We use the bulletin B as a tool for broadcasting [BT85,CW09].

4.3.3 EIFFeL Workflow

The goal of EIFFelL is to instantiate a secure aggregation with verified inputs (SAVI) pro-
tocol in FL. For a given public validation predicate Valid(-), EIFFeL checks the integrity of
every client update using SNIP and outputs the aggregate of only well-formed updates, i.e.,
Valid(u) = 1. To implement the SNIP for our setting, EIFFelL introduces two key ideas:

Key Ideas.

e In EIFFeL, the clients act as verifiers for each other. Specifically, for every client
Ci,i € C, all of the other n—1 clients, C\;, and the server S jointly acts as the ver-
ifiers. This is different from systems like Prio [CGB17] (the original deployment
setting for SNIP) that use multiple honest servers to perform verification.

e In EIFFel, verification can be performed even in the presence of malicious ver-
ifiers. This is essential in our setting since we have m malicious clients (i.e.,
verifiers). For this, EIFFel uses Shamir’s t-out-of-n secret scheme. This allows
any cohort of ¢ verifiers to reconstruct a secret and, hence, instantiate a SNIP.
If t <n, we have multiple such instantiations and can use the redundancy to
perform the integrity check even in the presence of malicious verifiers.

EIFFeL is carefully designed such that (1) it can efficiently distribute the computational
burden of verifying the integrity checks between the clients and the server, and (2) all

protocol interactions can integrate seamlessly with the FL architecture.

The full protocol is presented in Figure 4.4l The protocol involves a setup phase followed by

four rounds.

Setup Phase. In the setup phase, all parties are initialized with the system-wide parame-
ters, namely the security parameter , the number of clients n out of which only m < L"T_lj
can be malicious, public parameters for the key agreement protocol pp & KA.param(k), and
a field F where |F| > 2%. EIFFeL works in a synchronous protocol between the server S and
the n clients in four rounds. To prevent the server from simulating an arbitrary number of
clients, the clients register themselves with a specific user ID on the public bulletin board B
and are authenticated with the help of standard public key infrastructure (PKI). The bulletin
board B allows parties to register IDs only for themselves, preventing impersonation. More
concretely, the PKI enables the clients to register identities (public keys), and sign messages

using their identity (associated secret keys), such that others can verify this signature, but

104

cannot impersonate them [KL14b]. We omit this detail for the ease of exposition. For no-
tational simplicity, we assume that each client C; is assigned a unique logical ID in the form
of an integer 7 in [n]. Each client holds as input a d-dimensional vector u; € F? representing
its local update. All clients have a private, authenticated communication channel with the
server S. Additionally, every party (clients and server) has read and write access to the
public bulletin B via authenticated channels. For every client C;, the server S maintains a
list, Flag[i], of all clients that have flagged C; as malicious. All Flag[i] lists are initialized to
be empty lists.

Round 1 (Announcing Public Information). In the first round, all the parties announce
their public information relevant to the protocol on the public bulletin 5. Specifically, each
client C; generates its key pair (pk;, sk;) ﬁ KA.gen(pp) and advertises the public key pk; on
the public bulletin B. The server S publishes the validation predicate Valid(-) on B.

Round 2 (Generate and Distribute Proofs). Every client generates shares of its pri-
vate update u; and the proof 7;, and distributes these shares to the other clients C;. First,
client C; generates a common pairwise encryption key sk;; for every other client C; € C\;
using the key agreement protocol, sk;; <— KA.agree(sk;,pk;j). Next, the client generates
the secret shares of its private update {(1,wi1), -, (n, win), ¥i'} & SS.share(u, [n],m + 1).
The sharing of u; is performed dimension-wise; we abuse notations and denote the j-th
such share by (j,u;;),j € [n]. Note that the client C; generates a share (i,u;;) for it-
self as well which will be used later in the protocol. Next, the client C; generates the
proof for the computation Valid(u;)=1. Specifically, it computes the polynomials f;, g;, and
h; = fi-g; and samples a set of Beaver’s multiplication triples (a;, b;, ¢;) € F3 ,a; - by =c¢; € TF.
Since the other clients will verify the proof, client C; then splits the proof to generate
shares mi; = ((4, hij), (. aiz), (4, bij), (j, cij)) for every other client C; € C;. Herein, the shares
themselves are generated via {(1, hi1), -+, (i — 1, hii—1)), (i + 1, higin)) -+ (0, Bin), U2} &
SS.share(h;, [n] \ i,m + 1), and so on. Finally, the client encrypts the proof strings (shares of
the update u; and the proof 7;) using the corresponding pairwise secret key, m &
AE.enc(skij, (7, wij)|| (4, mj)), and publishes the encrypted proof strings on the public bulletin
B. The client also publishes check strings ¥ and U™ = (U} e Wb W¢) for verifying the

validity of the shares of u; and m;, respectively.

Round 3 (Verify Proof). In this round, every client C; partakes in the verification of the
proofs ; of all other clients C; € C\;, under the supervision of the server S. The goal of the
server is to identify the malicious clients, Cps. To this end, the server maintains a (partial)
list, C* (initialized as an empty list), of clients it has so far identified as malicious. The

proof-verification round consists of three phases as follows:

105

(i) Verifying the validity of the secret shares. First, every client C; downloads and decrypts
their shares (i, uj;)||(¢,7j;) < AE.dec(skij, (i,uji)|| (i, 7j:)), VCj € Cy; from the bulletin B. Ad-
ditionally, C; downloads the check strings (U, ¥T) and verifies the validity of the shares. If

the shares from any client C;:
e fail to be decrypted, i.e., AE.dec(-) outputs L, OR

e fail to pass the verification, i.e., SS.verify(-) returns 0,

C; flags C; on the bulletin B. Every time a client C; flags another client C;, the server updates
the corresponding list Flag[j] <— Flag[j] UC;. If |Flag[j]| > m + 1, the server S marks C; as
malicious: C* <— C* UC;. The server can do so because the pigeon hole principle implies that
C; must have sent an invalid share to at least one honest client; hence, the correctness of the
value recovered from that client’s shares cannot be guaranteed. In case 1 < |Flag[j]| < m,
the server supervises the following actions. Suppose client C; has flagged client C;. Client C;
then reveals the shares for C;, ((¢,uji), (i,7j;)) in the clear (on bulletin B) for the server S
(or anyone else) to verify using SS.Verify(-). If that verification passes, C; is instructed by the
server to use the released shares for its computations. Otherwise, C; is marked as malicious
by the server S. Note that this does not lead to privacy violation for an honest client since
at most m shares corresponding to the m malicious clients would be revealed (see Chapter
. If a client C; flags > m + 1 other clients, S marks C; as malicious. Thus, at this point

every client on the list C* has either:
e provided invalid shares to at least one honest client, OR
e flagged an honest client.

In other words, every client who is not in C*, C; € C \ C*, is guaranteed to have submitted
at least n—m—1 valid shares for the honest clients in Cy \ C; (see Chapter for details).
Additionally, the server cannot be tricked into marking an honest client as malicious, i.e.,
EIFFeL ensures C* N Cy = & (see Chapter . The server S publishes C* on the bulletin B.

(ii) Computation of proof summaries by clients. For this phase, the server S advertises a
random value r € F on the bulletin B. Next, a client C; proceeds to distill the proof strings
of all clients not in C* to generate summaries for the server S. Specifically, client C; prepares
a proof summary oj; = ((i, wit), (i, Aji)) for VC; € C\ (C* UC;) as per the description in the
previous section, and publishes it on B.

(7i1) Verification of proof summaries by the server. Next, the server moves to the last step
of verifying the proof summaries o; = (w?%,)\;) for all clients not in C*. Recall from the
discussion in Chapter that this involves recovering the values w¢* and); from the

106

shares of o; and checking whether w¢" =1 and \; =0. However, we cannot simply use
the naive share reconstruction algorithm from Chapter since some of the shares might
be incorrect (submitted by the malicious clients). To address this issue, EIFFelL performs a
robust reconstruction of the shares as follows. A naive strategy would be sampling multiple
subsets of m + 1 shares (each subset can emulate a SNIP setting), reconstructing the secret
for each subset, and taking the majority vote. However, we can do much better by ex-
ploiting the connections between Shamir’s secret shares and Reed-Solomon error correcting
codes (Chapter . Specifically, the Shamir’s secret sharing scheme used by EIFFelL is a
[n—1,m + 1,n—m| Reed-Solomon code that can correct up to ¢ errors and e erasures (mes-
sage dropouts) where 2q + e < n—m—1. The server S can, therefore, use SS.robustRecon(-)

to reconstruct the secret when m < L”T_lj

After the robust reconstruction of the proof summaries, the server S verifies them and

updates the list C* with all malicious clients with malformed updates. Specifically:

VC; € C\ C*,
(SS.robustRecon({(j, w%”t)}chC\{C*uci}) # 1 Vv SS.robustRecon({(j, Aij) }¢,ec\{cue,}) 7 0)

= C*« C*"UC;.

Additionally, if a client C; withholds some of the shares of the proof summaries for other
clients, C; is marked as malicious as well by the server. Thus, in addition to the malicious

clients listed above, the list C* now has all clients that have either:

e failed the proof verification, i.e., provided malformed updates, OR

e withheld shares of proof summaries of other clients (malicious message dropout).

To conclude the round, the server publishes the updated list C* on the public bulletin B.

Round 4 (Compute Aggregate). This is the final round of EIFFelL where the aggregate
of the well-formed updates is computed. If a client C; is on C* wrongfully, it can dispute its
malicious status by showing the other clients the transcript of the robust reconstruction from
all the shares of o; (publicly available on bulletin B). If any client C; € C successfully raises
a dispute, all clients abort the protocol because they conclude that the server S has acted
maliciously by trying to withhold a verified well-formed update from the aggregation. If no
client raises a successful dispute, every client C; € C \ C* generates its share of the aggregate,
(i,U;) with U; = chec\c* uj;, and sends that share to the server S. Note that, herein, C;

uses its own share of the update, (i, u;;), as well.

The server recovers the aggregate U = ZC,EC\C* U; using robust reconstruction: U <
SS.robustRecon({(i,U;) }¢,cc\c+)-

107

Remark 2. The protocol described above corresponds to a single iteration of model
training in FL. The server S can choose a different Valid(-) for every iteration. Ad-
ditionally, S can hold multiple Valid;(-),- -, Validg(:) and want to check whether the
client’s update passes them all. For this, we have Valid;(-) return zero (instead of one)
on success. If w®" is the value on the output wire of the circuit Valid;(-), the server

chooses random values (I1,- - , ;) € F* and recovers the sum Zle l; - w°** in Round

out,i

3. If any w = 0, then the sum will be non-zero with high probability and S will

reject.

4.3.4 Complexity Analysis

We present the complexity analysis of EIFFel in terms of the number of clients n, number
of malicious clients m and data dimension d (Table {4.1)).

Computation Cost. Each client C;’s computation cost can be broken into six compo-
nents: (1) performing n—1 key agreements — O(n); (2) generating proof m; for Valid(u;) =1
— O(|Valid| + |M| log |M|)|I|; (3) creating secret shares of the update u; and the proof m; —
O(mn(d + |l\/|\))E|; (4) verifying the validity of the received shares — O(mn(d + |M|); (5) gen-
erating proof digest for all other clients — O(n|Valid|); and (6) generating shares of the final
aggregate — O(nd). Assuming |Valid| is of the order of O(d), the overall computation com-
plexity of each client C; is O(mnd).

The server S’s computation costs can be divided into three parts: (1) verifying the va-
lidity of the flagged shares — O(mdmin(n, m?)); (2) verifying the proof digest for all clients
—O(n?log? nloglogn); and (3) computing the final aggregate — O(dn log® nloglogn). There-

fore, the total computation complexity of the server is O((n + d)nlog? nloglog n+ mdmin(n, m?)).

Communication Cost. The communication cost of each client C; has seven components:
(1) exchanging keys with all other clients — O(n); (2) receiving Valid(-) — O(|Valid|); (3) send-
ing encrypted secret shares and check strings for all other clients — O(n(d + |M|) + md); (4)
receiving encrypted secret shares and check strings from all other clients — O(n(d + |[M|) + mnd);
(5) sending proof digests for every other client — O(n); (6) receiving the list of corrupt clients
C — O(m); and (7) sending the final aggregate — O(d). Thus, the communication complexity
for every client is O(mnd).

The servers communication costs include: (1) sending the validation predicate — O(|Valid|);
(2) receiving check strings and secret shares from flagged clients — O(md min(n,m?)); (3)

receiving proof digests — O(n?); (4) sending the list of malicious clients — O(m); and (5)

We use standard discrete FFT for all polynomial operations [GG13].
2This uses the fact that the Lagrange coefficients can be pre-computed [Mat].

108

e Setup Phase.
— All parties are given the security parameter , the number of clients n out of which at most m < [%J are malicious,
honestly generated pp & KA.gen(k) and a field IF to be used for secret sharing. Server initializes lists Flag[i] = @,i € [n] and C* = @.
e Round 1 (Announcing Public Information).
Client: Each client C;
— Generates its key pair and announces the public key. (pk;, sk;) Ll KA.gen(pp), C; LN
Server:

Valid(-)
——

— Publishes the validation predicate Valid(-). & B

e Round 2 (Generate and Distribute Proof).
Client: Each client C;
— Computes n — 1 pairwise keys. VC; € C\;, skij < KA.agree(pk;, sk;)
— Generates proof m; = (hi, (a,gb,-.,ci)),hi € F[X], (a;,bi,¢;) € F3, a; - b; = ¢; for the statement Valid(u;) = 1.
— Generates shares of the input u; € F% {(1,us1), - , (1, uim), Ui} & SS.share(u;, [n],m + 1)
— Generates shares of the proof ;.
(L ki) s (i), U & SS share(hy, [n] \ dom + 1), {(Lann). - » (1, ain), U2} & SS.share(as, [n] \ i,m + 1),

{(Lbi), (i), W0} & SSshare(by,] \ iy m + 1), {(1,caa).- - . (m,), 5} & SS.share(cs, [n] \ i, +1)

— Encrypts proof strings for all other clients. YC; € C\y, (4, uij)|(4, 7ij) & AE.enc(skij, (. wij)||(7, 7i7)) mig = hijl|aij||bijlleij-

— Publishes check strings and the encrypted proof strings on the bulletin. VC; € C\;,C; M) B;C; % B

e Round 3 (Verify Proof).
(i) Verifying validity of secret shares:
Client: Each client C;

— Downloads and decrypts proof strings for all other clients from the public bulletin. Flags a client in case their decryption fails.

(g)[IGiseyi), ¥
Pt AU Rt I

¥C; € HL B, (i) |6,) & AE.dec(skiz, T g TG m50))

L« AE.dec(skij, (i,u;)[|(i,75:)) = Ci e, g

— Verifies the shares w;i(m;;) using checkstrings W}(¥7) and flags all clients with invalid shares.

¥, € Cyi, 0 < (SSwverify((i, u), WY) A SS.verify((i, mj0), UT)) = Ci 69, B

Server:
— If client C; flags client C;, the server updates Flag[j] = Flag[j] U C;
— Updates the list of malicious client C* as follows:
» Adds all clients who have flagged > m + 1 other clients. VC; s. t. Z = {j|C; € Flag[j]},|Z| > m+1 = C* «+ C* U(;
» Adds all clients with more than m + 1 flag reports. |Flagli]| > m+1 = C* + C*U(;

» For clients with less flag reports, the server obtains the corresponding shares in the clear, verifies them and updates C* accordingly.
VCj s.t 1 < |Flag[j]| <m,VC; s.t. C; has flagged C;

s (i) (iomsi)
— if (SS.verify((i, uji), WY) A SS.verify((i, i), \I/;’)) =0 = C* < C*UCj, otherwise, C; uses the verified shares to compute its proof summary o;;
— Publishes C* on the bulletin. § <> B

(ii) Generation of proof summaries by the clients.

Server:
— Server announces a random number r € F. S & B

Client: Each client C; € C\ C*
— Generates a summary oj; of the proof string 7;; based on r, VC; € C\ (C*U(;),C; LB, oji = ((1, w;’z“L)< (2,)\J,))A,Cg 2B

(iil) Verification of proof summaries by the server.

Server:
— Downloads and verifies the proof for all clients not on C* via robust reconstruction of the digests and updates C* accordingly.

Ve ec\cr,8 &L B, (SS.robustRecon({(j, i) }e,ec\(c-uey)) # 1V SS.robustRecon({(j, Aij) }e,cerc-ue,) # 0) = C* +C*UC;
— Publishes the updated list C* on the bulletin. & %8
e Round 4 (Compute Aggregate).
Client: Each client C;

— If C; is on C*, C; raises a dispute by sending the transcript of the reconstruction of o; that shows A\; =0 A ur;’"’ =1 and aborts, OR
Transcript of $S.robustRecon({(j,0i;)}e;cerie-uey)

v € 0y Ci L B, ¢ B

— Aborts protocol if it sees any other client on C* successfully raise a dispute, OR

— If no client has raised a dispute and C; is not on C*, sends the aggregate of the shares of clients in C \ C* to the server. Uy = Y uj; ,C; U s
cec\et
Server:

— Reconstructs the final aggregate. U « SS.robustRecon({(i,U:)}¢,ec\c+)

Figure 4.4: EIFFel: Description of the secure aggregation with verified inputs protocol.

109

Computation Communication

Client O(mnd) O(mnd)
Server O((n+ d)nlog? nloglogn + mdmin(n, m?)) O(n?+ mdmin(n,m?))

Table 4.1: Computational and communication complexity of EIFFelL for the server and an

individual client.

receiving the shares of the final aggregate — O(nd). Hence, the overall communication com-

plexity of the server is O(n? + mdmin(n, m?)).

4.4 Security Analysis
In this chapter, we formally analyze the security of EIFFeL.

Theorem 13. For any public validation predicate Valid(-) that can be expressed by an arith-
metic circutt, EIFFel is a SAVI protocol (Deﬁm’tion for |Cy| < [252] and Cyaiig = C \ C*.

Proof. The proof relies on the following two facts.

Fact 1. Any set of m or less shares in EIFFel reveals nothing about the secret.

Fact 2. A (n,m+ 1,n—m) Reed-Solomon error correcting code can correctly construct the
message with up to q errors and e erasures (message dropout), where 2g+e <n—m+1. In
EIFFel, we have g+e=m where q is the number of malicious clients that provide erroneous
shares and e is the number of clients that withhold a message or are barred from participation

(i.e., are in C*).
Integrity. We prove that EIFFeL satisfies the integrity constraint of the SAVI protocol using

the following three lemmas.

Lemma 9. EIFFel accepts the update of every honest client.
vC; Pr [A tu;] = 1. 4.5
C; € CH,EIF,_geL[ccept w;] (4.5)

Proof. By definition, client C; € Cy has well-formed inputs, that is, Valid(u;) =1. Addition-
ally, C;, by virtue of being honest, submits valid shares. Hence, at least n — m — 1 other
honest clients Cpr \ C; will produce correct shares of the proof summary o; = (w$",);). Using
Fact 2, the server § is able to correctly reconstruct the value of o;. Eq. is now implied
by the completeness property of SNIP. O

Lemma 10. All updates accepted by EIFFel are well-formed with probability 1 — negl(k).

i , P Valid(u;) = 1|A il =1- 1(k). 4.
VC;i e C EIF,]_geL[alid(u;) | Accept u;] negl(k) (4.6)

110

Proof. In Round 3, the proof corresponding to a client C; is verified iff it has submitted valid
shares for the n—m—1 honest clients Cy \ C;. This is clearly true if C; is honest. If C; is

malicious, i.e., it submitted at least one invalid share:

e Case 1: |Flag[i]| > m+ 1. It is clear that C; has submitted an invalid share to at least

one honest client and, hence, is removed from the rest of the protocol.

e Case 2: |Flag[i]| < m. All honest clients in Cy will be flagging C;. Hence, C; either has

to submit the corresponding valid shares or be removed from the protocol.

Given n—m —1 valid shares, using Fact 2, we know that EIFFelL reconstructs the proof

summary for C; correctly. Eq. then follows from the soundness property of SNIP. O

Corollary 2. EIFFel rejects all malformed updates with probability 1 — negl(k).

Based on the above lemmas, at the end of Round 3, C\ C* (set of clients whose updates have
been accepted) must contain all honest clients Cry. Additionally, it may contain some clients
C; who have submitted well-formed updates with at least n — m — 1 valid shares for Cgy,
but may act maliciously for other steps of the protocol (for instance, give incorrect shares
of proof summary for other clients or give incorrect shares of the final aggregate). This is
acceptable provided that EIFFel is able to reconstruct the final aggregate containing only

well-formed updates which is guaranteed by the following lemma.

Lemma 11. The aggregate U must contain the updates of all honest clients or the protocol

1s aborted.

U=Uyg + Zuz where Ug = Z U;
c.eC C;eCy

ccce\{crucy} (4.7)

Proof. If the server S acts maliciously and publishes a list C* such that C* N Cy # @, an
honest client C; € C* N Cy publicly raises a dispute. This is possible since all the shares
of o; are publicly logged on B. If the dispute is successful, all honest clients will abort the
protocol. Note that a malicious client with malformed updates cannot force the protocol
to abort in this way since it will not be able to produce a successful transcript with high
probability (Lemma . If no clients raise a successful dispute, Eq. follows directly

from Fact 2. Here C represents a set of malicious clients with well-formed updates which
corresponds to Cyalid \ Cr in Eq. O

111

Privacy. First, we outline a proof sketch for intuition. Proof Sketch.Recall, the privacy
constraint of SAVI requires that nothing should be revealed about a private update u; for an

honest client C;, except:
e u; passes the integrity check, i.e., Valid(u;) = 1
e anything that can be learned from the aggregate of honest clients, Up.

We prove that EIFFel satisfies this privacy constraint with the help of the following two

helper lemmas.

Lemma 12. In Rounds 1-3, for an honest client C; € Cyy, EIFFel reveals nothing about u;
except Valid(u;) = 1.

Proof. In Round 2, observe that the shares (j,us;), (j,mi;) for each client C; € C\; are en-
crypted with the pairwise secret key and distributed. Hence, a collusion of m malicious
clients (and the server S)E| can access at most m shares of any honest client C; € Cy. This

is true even in Round 3 where:
e A malicious client might falsely flag C;.

e No honest client in Cy \ C; will flag C; since they would be receiving valid shares (and

their encryptions) from C;.

e S cannot lie about who flagged who, since everything is logged publicly on the bulletin
B.

Thus, only m shares of C; can be revealed which correspond to the m malicious clients.

Since at least m + 1 shares are required to recover the secret, any instantiation of the SNIP
verification protocol (i.e., reconstruction of the values of o; = (w§",)\;)) requires at least
one honest client to act as the verifier. Hence, at the end of Round 3, from Fact 1 and the

zero-knowledge property of SNIP, the only information revealed is that Valid(u;) = 1. O

Lemma 13. In Round 4, for an honest client C; € Cr, EIFFel reveals nothing about u;

except whatever can be learned from the aggregate.

Proof. In Round 4, from Lemma|[II]and Fact 2, the information revealed is either the aggre-

gate or L. O

3The server does not have access to any share of its own in EIFFeL.

112

Formal Proof. We prove the theorem by a standard hybrid argument. Let ()¢,,us indicate
the polynomial-time algorithm that denotes the “next-message” function of parties in Cp; US.
That is, given a party identifier ¢ € Cpy U S, a round index 4, a transcript T of all messages
sent and received so far by all parties in Cps U S, joint randomness r¢,,us for the corrupt
parties’ execution, and access to random oracle O, Q¢,,us(c, i, T, r¢,,us) outputs the message
for party ¢ in round i (possibly making several queries to O along the way). We note that

Qc,,us is thus effectively choosing the inputs for all corrupt users.

We will define a simulator Sim through a series of (polynomially many) subsequent modifi-
cations to the real execution Realg|freL, so that the views of Ql¢,,us in any two subsequent

executions are computationally indistinguishable.

1. Hyby. This random variable is distributed exactly as the view of Q¢,,us in Realg|rrer,

the joint view of the parties Cp;y U S in a real execution of the protocol.

2. Hyb;. In this hybrid, for any pair of honest clients C;,C; € Cy, the simulator changes
the key from KA.agree(pk;, sk;) to a uniformly random key. We use Diffie-Hellman key
exchange protocol in EIFFeL. The DDH assumption [DH76] guarantees that this hybrid

is indistinguishable from the previous one. also be able to break the DDH.

3. Hyby. This hybrid is identical to Hyb; , except additionally, Sim will abort if Q¢,,us
succeeds to deliver, in round 2, a message to an honest client C; on behalf of another
honest client C;, such that (1) the message is different from that of Sim, and (2) the
message does not cause the decryption to fail. Such a message would directly violate

the IND-CCA security of the encryption scheme.

4. Hybs. In this round, for every honest party in Cy, Sim samples s; € F such that
Valid(s;) = 1 and replaces all the shares and the check strings accordingly. This
allows the server to compute the o; = (wf"!, \;) such that wf™ = 1 A \; = 0 for all
honest clients in the same way as in the previous hybrid. An adversary noticing any
difference would break (1) the computational discrete logarithm assumption used by
the VSS [Fel87], OR (2) the IND-CCA guarantee of the encryption scheme, OR (3) the
information theoretic perfect secrecy of Shamir’s secret sharing scheme with threshold

m+ 1, OR (4) zero-knowledge property of SNIP.

5. Hyb,. In this hybrid, Sim uses Uy to compute the following polynomial. Let (j,S;)
represent the share of) ;. s; for a malicious client C; € C \ Cy where s; denotes
the random input Sim had sampled for C; € Cy in Hybs. Sim performs polynomial
interpolation to find the m + 1-degree polynomial px that satisfies p * (0) = Uy and
p(j) = Sj. Next, for all honest client, Sim computes the share for U = Uy + cheé uj

113

(Eq. by using the polynomial p+ and the relevant messages from ¢,,us. Clearly,
this hybrid is indistinguishable from the previous one by the perfect secrecy of Shamir’s

secret shares. This concludes our proof.

4.5 EIFFeL Optimizations

We propose several optimizations to improve the performance of EIFFel.

4.5.1 Probabilistic Reconstruction

The Gao’s decoding algorithm alongside the use of verifiable secret sharing guarantees that
the correct secret will be recovered (with probability one). However, we can improve perfor-

mance at the cost of a small probability of failure.

Verifying Secret Shares. As discussed in Chapter verifying the validity of the secret
shares is the dominating cost for client-side computation. To reduce this cost, we propose an
optimization where the validation of the shares corresponding to the proof m; = (hs, (ai, bi, ¢;))

can be eliminated. Specifically, we propose the following changes to Round 3:

e Each client C; skips verifying the validity of the shares (i, 7;;) for C; € C\;.

e Let e =|C*|. The server S samples two sets of clients Py, P, from C\ {C; UC*} of size at
least 3m — 2e + 1 (Py, P> can be overlapping) and performs Gao’s decoding on both the
sets to obtain polynomials p; and ps. The server accepts the w?* ();) only iff p; =p, and
p1(0) = p1(0) = 1(p1(0) = p1(0) = 0). The cost of this step is O(n?log? nloglogn) which is
less than verifying the shares of m; when m < n < d (improves runtime by 2.3x, see

Table .
n—k—l

Note that a [n, k,n—k + 1] Reed-Solomon error correcting code can correct up to |“==] errors
with [erasures. Thus, with m—e malicious clients, only 3m—2e+1 shares are sufficient to
correctly reconstruct the secret for honest clients. Since, the random sets P; and P» are not
known, a malicious client with more than m—e invalid shares can cheat only with probability
at most 1/(, "). We cannot extend this technique for the secret shares of the update u,

because, unlike the value of the digests (w**=1,A=0), the value of the final aggregate is

unknown and needs to be reconstructed from the shares.

Robust Reconstruction. In case m <./n— 2, the robust reconstruction mechanism can
be optimized as follows. Let ¢ =m —|C*| be the number of malicious clients that remain
undetected. The server S partitions the set of clients in C \ C* into at least ¢ + 2 disjoint
partitions, P = {Py,- -, P42} each of size m + 1. Let p;j(x) = ¢cjo + ¢j12 + cj,2$2 4+ 4

114

¢;,mx™ represent the polynomial corresponding to the m + 1 shares of partition P;. Recall
that recovering just p;(0) = ¢;o suffices for a typical Shamir secret share reconstruction.
However, now, the server S recovers the entire polynomial pj, i.e., all of its coefficients
{¢jo,¢j1, -+ ,cjq} for all ¢ + 2 partitions. Based on the pigeon hole principle, it can be
argued that at least two of the partitions (P}, P, € P) will consist of honest clients only.
Hence, we must have at least two polynomials p; and p; that match and the value of the
secret is their constant coefficient p;(0). Note that the above mentioned optimization of
skipping verifying the shares of the proof can be applied here as well. A malicious client can
cheat (i.e., make the server S accept even when wf* # 1V \; # 0 or reject the proof for an
honest client) only if they can manipulate the shares of at least two partitions which must
contain at least 2(m + 1) — ¢ honest clients. Since the random partition P is not known to

the clients, this can happen only with probability 1/(,"~ ™").

2(m+1)—gq
4.5.2 Crypto-Engineering Optimizations

We propose the following crypto-engineering optimizations.

Equality Checks. The equality operator = is relatively complicated to implement in an
arithmetic circuit. To circumvent this issue, we replace any validation check of the form
D(u) =c1 VP(u) =co V- VP®(u) = ¢ in the output nodes of Valid(-), where ®(-) is some arith-
metic function, by an output of the form (®(u) —¢1) x -+ x (®(u) — cx). Recall that in EIFFeL,
the honest clients have well-formed inputs that satisfy Valid(-) by definition. Hence, this op-

timization does not violate the privacy of honest, which is our security goal.

Proof Summary Computation. In addition to being a linear secret sharing scheme,
Shamir’s scheme is also multiplicative: given the shares of two secrets (i,z;) and (7,v;), a
party can locally compute (i, s;) with s =z -v. However, if the original shares correspond
to a polynomial of degree ¢, the new shares represent a polynomial of degree 2¢t. Hence, we
do not rely on this property for the multiplication gates of Valid(:) as it would support only
limited number of multiplications. However, if m <2, we can still leverage the multiplicative
property to generate shares of the random digest \; = f;(r) - gi(r) = hi(r) locally (instead of
using Beaver’s triples). Specifically, each client can locally multiply the shares (j, f;;) and
(4, 9ij) to generate (7,(f; - gj)i). In order to make the shares consistent, C; multiplies the
share of (i, hj;) with (7, z;) where z = 1 (these can be generated and shared by the server S in
the clear). In this way, C; can locally generate a share of the digest (j,d;;) that correspond
to a polynomial of degree 2m. Since m < ”T_l, this optimization is still compatible with
robust reconstruction. This saves a round of communication and reduces the number of

robust reconstructions for A; from three to just one (see Chapter |4.3.1]).

115

Random Projection. As shown in Table both communication and computation grows
linearly with the data dimension d. Hence, we rely on the random projection technique
for reducing the dimension of the updates. Specifically, we use the fast random projection
using Walsh-Hadamard transforms .

Client
10200 5% malicious clients 20200 Client
- 10%
82001 —#— 15% L6200
= +~0— 20%
€ 62001 -
e 12200
v E
E 42001 s
= E 82001
|_
22001
4200
2001 | | : |
50 100 150 200 250 200 L2 | ‘
Number of Clients 1,000 5000 10,000
Data Dimension
Server 000 Server
82001
. 62001 12000
o (73]
£ £
o 4200 p
I £ 70001
F =
2200
20001
200 ‘ | |
50 100 150 200 250 1,000 5,000 10,000
Number of Clients Data Dimension

Figure 4.5: Computation cost analysis of EIFFeL. The left two plots show the runtime of a
single client client in milliseconds as a function of: (left) the number of clients n and (right)
dimensionality of the updates d. The right two plots show the runtime of the server as a
function of the same variables. The results demonstrate that performance decays quadrati-

cally in n, and linearly in d.

4.6 Experimental Evaluation

We perform experiments to evaluate the practical performance of EIFFeL.

4.6.1 Performance Evaluation.

In this section, we analyze the performance of EIFFel.

116

80 Client Client
28] 5% malicious clients ~ 1501
= ¥ 10% = s
‘(:" 601 —*— 15% _E,
(0] o
9 —o— 20% 9 100
o O
Q 40 T 751
Q o
8 S
= = 501
Q 20 a
© T 251
2 £
o Fool , |
50 100 150 200 250 1,000 5000 10,000
Number of Clients Data Dimension
75 Server Server
Q o 125
2 S
o @ 1001
2 501 >
N (0]
n n 751
= —
e S
@ 5 501
3 251 ©
o a
e — 25
2 2
SENE ' | ‘ E ol | |
50 100 150 200 250 1,000 5,000 10,000
Number of Clients Data Dimension

Figure 4.6: Communication cost analysis of EIFFeL. The left two plots show the amount
of communication (in MB) for each client as a function of: (left) the number of clients n
and (right) dimensionality of the updates d. The right two plots show the the amount of
communication (in MB) for the server as a function of the same variables. The results show

communication increases quadratically in n, and linearly in d.

Configuration. We run experiments on two Amazon EC2 c5.9large instances with Intel
Xeon Platinum 8000 processors. To emulate server-client communication, we use two in-
stances in the US East (Ohio) and US West (Oregon) regions, with a round trip time of 21
ms. We implemented EIFFel in Python and C++ using NTL library . We use AES-
GCM for encryption and a 44-bit prime field F. For key agreement, we use elliptic curve
Diffie-Hellman over the NIST P-256 curve. Unless otherwise specified, the default
settings are d =1000, n=100, m =10% and |Valid(-)| ~ 4d. We report the mean of 10 runs

for each experiment.

117

Computation Costs. Figure presents EIFFel’s runtime. We vary the number of mali-
cious clients between 5%-20% of the number of clients. We observe that per-client runtime
of EIFFeL is low: it is 1.3 seconds if m = 10%, d = 1000, and n = 100. The runtime scales
quadratically in n because a client has O(mnd) computation complexity (see Table and
m is a linear function of n. As expected, the runtime increases linearly with d. A client
takes around 11 seconds when d = 10,000, n = 100, and m = 10%. The runtime for the
server is also low: the server completes its computation in about 1 second for n = 100,
d = 1K, and m = 10%. The server’s runtime also scales quadratically in n due to the

O(mnd) computation complexity (Table . The runtime increases linearly with d.

In Figure we break down the runtime per round. We observe that: Round 1 (announcing
public information) incurs negligible cost for both clients and the server; and Round 3 (verify
proof) is the costliest round for both clients and the server where the dominating cost is
verifying the validity of the shares (Chapter . Note that the server has no runtime cost

for Round 2 since the proof generation only involves clients.

Table presents our end-to-end performance which contains the runtimes of a client, the
server and the communication latencies. For instance, the end-to-end runtime for n =
100, d = 1,000 and m = 10% is ~ 2.4s. We also present the impact of one of our key
optimizations — eliminating the verification of the secrets shares of the proof — which cuts
down the costliest step in EIFFeL and improves the performance by 2.3x. Additionally,
we compare EIFFel’s performance with BREA [SGA20], which is a Byzantine-robust secure
aggregator. EIFFeL differs from BREA in two key ways: (1) EIFFeL is a general framework for
per-client update integrity checks whereas BREA implements the multi-Krum aggregation
algorithm [BMGS17b| that considers the entire dataset to determine the malicious updates
(computes all the pairwise distances between the clients and then, detects the outliers),
and (2) BREA has an additional privacy leakage as it reveals the values of all the pairwise
distances between clients. Nevertheless, we choose BREA as our baseline because, to the
best of our knowledge, this is the only prior work that: (1) detects and removes malformed
updates, and (2) works in the malicious threat model for the general FL setting (see Chapter
. We observe that EIFFeL outperforms BREA and that the improvement increases with
n. For instance, for n =250, EIFFeL is 18.5x more performant than BREA. This is due to
BREA’s complexity of O(n3log?nloglogn + mnd), where the O(n?) factor is due to each

client partaking in the computation of the O(n?) pairwise distances.

Communication Cost. Figure [4.6] depicts the total data transferred by a client and the
server in EIFFelL. The communication complexity is O(mnd) for a single client and for the
server. Hence, the total communication increases quadratically with n and linearly with

d, respectively. We observe that EIFFeL has acceptable communication cost. For instance,

118

Improvement over

Clients (n) Time (ms) Unoptimized EIFFeL BREA 'SGAQO

50 1,072 2.3% 2.5%
100 2,367 2.3%x 5.2%
150 4,326 2.3%x 7.8%
200 6,996 2.3x 12.8x
250 10,389 2.3% 18.5x

Table 4.2: End-to-end time for a single iteration of EIFFeL with d = 1000 and m = 10%
malicious clients, as a function of the number of clients, n. We also compare it with a

variant of EIFFelL without optimizations, and with BREA [SGA20].
4000

I Round 1
I Round 2
30001 E=3 Round 3
I Round 4

ms)

~

2000+

Time

1000

100 200
Number of clients

Figure 4.7: Computation cost per round in EIFFeL.

the total data consumed by a client is 94MB for the configuration n = 100,d = 10K, m = 10%.
This is equivalent to streaming a full-HD video for 20s [dat|. Since most clients partake in

FL training iterations infrequently, this amount of communication is acceptable.

4.6.2 Integrity Guarantee Evaluation

In this section, we evaluate EIFFel’s efficacy in ensuring update integrity on real-world

datasets.

Datasets. We evaluate EIFFel on three image datasets:
e MNIST |LCBJ is a handwritten digit dataset of 60,000 training images and 10,000 test

images with ten classes (each digit is its own class).

e FMNIST is a dataset of display clothing items that is identical to MNIST in

terms number of classes, and number of training and test images.

e CIFAR-10 [Kri] contains RGB images with ten object classes. It has 50,000 training
and 10,000 test images.

Models. We test EIFFel with three classification models:

119

100 100
B —m—
80]
> > 80
© ©
— —
3 3
60
Iv] O 60
< <
0 - No attack 0
(0] (O]
= 404 No defense F 401 ‘
- Defense plaintext
—— EIFFeL
201
100 200 300 400 500 100 200 300 400 500
Number of Iterations Number of Iterations

(a) MNIST: Sign flip attack with norm(b) MNIST: Scaling attack and cosine

ball validation predicate (defense). similarity validation predicate.

80 801
> >
© ®

601]
= £ 60
[®) [©)
Q Q
< <
+ 401 4+ 40
3 3
[=

201 201

100 200 300 400 500 100 300 500 700 900
Number of Iterations Number of Iterations

(c) FMNIST: Additive noise attack with (d) CIFAR-10: Scaling attack with norm

Zeno++ validation predicate. bound validation predicate.

Figure 4.8: Accuracy analysis of EIFFeL. Test accuracy is shown as a function of the FL

iteration for different datasets and attacks.

e LeNet-5 [LBBHOS] is one of the first successful convolutional network architectures. It
has five layers and 60,000 parameters. We use LeNet-5 to experiment on MNIST.

e For FMNIST, we use a five-layer convolutional network with 70,000 parameters and a

similar architecture as LeNet-5.
e ResNet-20 [HZRS16| is a more modern convolutional network with 20 layers and
273,000 parameters. We use it for our experiments on the CIFAR-10 dataset.

Validation Predicates. To demonstrate the flexibility of EIFFelL, we evaluate four valida-

tions predicates as follows:

120

e Norm Bound [SKSM19a]. This method checks whether the /o-norm of a client update
is bounded: Valid(u) = I[||u|2 < p] where I|-] is the indicator function and the threshold
p is computed from the public dataset Dp.

e Norm Ball |[SKL17|. This method checks whether a client update is within a spherical
radius from v which is the gradient update computed from the clean public dataset

Dp: Valid(u) =1[|lu — vz < p| where radius p is also computed from Dp.

e Zeno++ |Xiel9] compares the client update v with a loss gradient v that is computed
on public dataset Dp: Valid(u) = I[y{v,u) — p||u||]2 > —ve] where v, p and € are threshold
parameters also computed from Dp and u is fo-normalized to have the same norm as

.

e Cosine Similarity [CFLG21, BVH18|. This method compares the cosine similarity
between the client update u and the global model update of the last iteration u':
Valid(u) = H[m < p] where p is computed from Dp and u is f-normalized to have

the same norm as u'.

Poisoning Attacks. To test the efficacy of EIFFel’s implementations of the four validation

predicates introduced above, we test it against three poisoning attacks:

o Sign Flip Attack [DMG™18|. In this attack, the malicious clients flip the sign of their

local update: &« = —c-u,c € Ry.

e Scaling Attack |BCMC19| scales a local update to increase its influence on the global
update: & =c-u,c € Ry.

e Additive Noise Attack [LXCT19] adds Gaussian noise to the local update: @ = u+mn,n ~
N (o,).

Configuration. We use the same configuration as before. We implement the image-
classification models in PyTorch. We randomly select 10,000 samples from each training
set as the public dataset Dp and train on the remaining samples. The training set is divided
into 5,000 subsets to create the local dataset for each client. For each training iteration, we

sample the required number of data subsets out of these 5,000 subsets.

Results. Figure reports the accuracy of training different image-classification models in
EIFFeL. We set n = 100 and m = 10%, and use random projection to project the updates
to a dimension d of 1,000 (MNIST), 5,000 (FMNIST), or 10,000 (CIFAR-10). Our exper-
iment assesses how the random projection affects the efficacy of the integrity checks. We
observe that for MNIST (Figures [4.8a) and [4.8b]) and FMNIST (Figure [4.8d), EIFFeL achieves

performance comparable to a baseline that applies the defense (validation predicate) on the

121

plaintext. In most cases, the defenses retain their efficacy even after random projection. This
is because they rely on computing inner products and norms of the update; these operations
preserve their relative values after the projection with high probability [Nel]. We do observe
a drop in accuracy (~ 7%) on CIFAR-10 as updates for ResNet-20 with 273,000 parame-
ters are projected to 10,000. The end-to-end per-iteration time for MNIST, FMNIST, and
CIFAR-10 is 2.4s (Table , 10.7s, and 20.5s, respectively. The associated communication
costs for the client are 9.5MB, 47MB, and 94MB (Figure [4.6).

4.7 Extension to Differential Privacy

EIFFeL is the first step toward designing aggregation protocols for federated learning that
ensures both input privacy and integrity. In this chapter, we discuss how to extend EIFFeL to

support differential privacy.

Recall that the goal of secure aggregation is to protect the individual client updates and
reveal only the final aggregate. However, privacy violations can arise even from this ag-
gregate [ASYT18]. The common approach to tackle this is to add noise to the revealed
aggregate to ensure DP. EIFFel outputs an aggregate with an additional property — all the
aggregated updates are well-formed. EIFFeL can be used as a building block and easily
extended to support DP along the lines of prior work |[ASYT18,[KLS21b]. Specifically, we
need to introduce the following two changes to the protocol. First, DP requires the client
updates to be clipped in order to bound the sensitivity. This can be enforced by introduc-
ing an additional check in the validation predicate Valid(-). Next, in Round 4, the clients
add shares of discretized Gaussian noise to the shares of the aggregate. The privacy budget
(e) across multiple training iterations can be controlled using standard privacy accounting
techniques [BS16,|DR16, WBK19,|Mir17b).

Prior work has shown that DP provides robustness guarantees as well [SKSM19b,NHC21].
Hence, DP can enhance both goals of EIFFeL — ensuring privacy for clients and Byzantine

robustness for the federated learner.

4.8 Discussion
In this chapter, we discuss several possible avenues for future research.

Handling Higher Fraction of Malicious Clients. For |%31] <m < |21 (honest ma-
jority), the current implementation of EIFFelL can detect but not remove malformed inputs

(Gao’s decoding algorithm returns L if m > |21]). To robustly reconstruct in this case as

122

well, we could use techniques such as Guruswami-Sudan list decoder [McEO03]. We do not do

so in EIFFelL because the reconstruction might fail sometimes.

Handling Client Dropouts. In practice, clients might have only sporadic access to con-
nectivity and so, the protocol must be robust to clients dropping out. EIFFelL can already
accommodate malicious client dropping out — it is straightforward to extend this for the case

of honest clients as well.

Reducing Client’s Computation. Currently, verifying the validity of the secret shares is
the dominant cost for clients. This task can be offloaded to the server S by using a publicly
verifiable secret sharing scheme (PVSS) [Sch99,Sta96, TPH| where the validity of a secret
share can be verified by any party. However, typically PVSS employs public key cryptography
(which is costlier than symmetric cryptography) which might increase the end-to-end running

time.

Private Validation Predicate. If Valid(-) contains some secrets of the server S, we can
employ multiple servers where the computation of Valid(u) is done at the servers [CGB17].

We leave a single-server solution of this problem for future work.

Identifying All Malicious Clients. Currently, EIFFel identifies a partial list of malicious
clients. To detect all malicious clients, one can use: (1) PVSS to identify all clients who
have submitted at least one invalid share, and (2) decoding algorithms such as Berlekamp-
Welch [Bla83] that can detect the location of the errors from the reconstruction. We do not

use them in EIFFel as they have higher computation cost.

Byzantine-Robust Aggregation. In ElFFel, the integrity check is done individually on
each client update, independent of all other clients. An alternative approach to compare the
local model updates of all the clients (via pairwise distance/ cosine similarity) [BMGS17a,
BMGS17b, CFLG21, FCJG20] and remove statistical outliers before using them to update
the global model. A general framework to support secure Byzantine-robust aggregations

rules, such as above, is an interesting future direction.

Valid(-) Structure. If Valid(-) contains repeated structures, the G-gate technique [BBCG ™19

can improve efficiency.

Scaling EIFFeL. Our experimental results in Chapter show that EIFFel has reasonable
performance for clients sizes up to 250. One way of scaling EIFFelL for larger client sizes can

be by dividing the clients into smaller subsets of size ~ 250 and then running EIFFel for
each of these subsets [BEG™19).

123

Revealing Malicious Clients. In our current implementation, EIFFeL publishes the (par-
tial) list of malicious clients C*. To hide the identity of malicious clients, we could include an
equal number of honest clients in the list before publishing it, thereby providing those clients

plausible deniability. We leave more advanced cryptographic solutions as a future direction.

Complex Aggregation Rules. EIFFelL can be used for more complex aggregation rules,
such as mode, by extending SNIP with affine-aggregatable encodings (AFE) [CGB17].

4.9 Related Work

In this chapter, we discuss the relevant prior literature on FL.

Secure Aggregation. Prior work has addressed the problem of (non-Byzantine) secure
aggregation in FL [BIKT17,BBG™20,/AC11,SGA21]. A popular approach is to use pairwise
random masking to protect the local updates |[BIKT17,/AC11]. Recent approaches have
improved the communication overhead, by training in a smaller parameter space [KMY *16],

autotuning the parameters [BSK™ 19|, or via coding techniques [SGA21].

Robust Machine Learning. A large number of studies have explored methods to make
machine learners robust to Byzantine failures [BVHT18BCMC19,[KMA*19|. Many of these
robust machine-learning methods require the learned to have full access to the training data
or to fully control the training process |[CSLT08,GDGG17,LDGG18,SS19,SKL17,WYST19]
which is infeasible in FL. Another line of work has focused on the development of estimators
that are inherently robust to Byzantine errors [BMGS17b, CWCP18, PZW ™20, RWCP19,
YCKB19]. In our work, we target a set of methods that provides robustness by checking
per-client updates [BMGS17blFYBI18,STS16|.

Verifying Data Integrity in Secure Aggregation. There is limited prior work that
seeks to develop cryptographic protocols for data-integrity verification in secure aggregation.
Most similar to our work is RoFL |[BLV 21|, which uses range proofs to check update in-
tegrity. There are three key differences between RoFL and EIFFelL: (1) RoFL supports only
range checks with £5 or £, norms. By contrast, EIFFelL is a general framework that supports
arbitrary validation predicates. (2) RoFL is susceptible to DoS attacks because it only de-
tects malformed updates and aborts if it finds one. By contrast, EIFFeL is a SAVI protocol
that detects and removes malformed updates in every round. (3) RoFL assumes an honest-
but-curious server, whereas EIFFeL considers a malicious threat model. BREA [SGA20] also
removes outlying updates but, unlike EIFFeL, it leaks pairwise distances between inputs. Al-

ternative solutions [NRY 21, HKJ20] for distance-based Byzantine-robust aggregation uses

124

two non-colluding servers in the semi-honest threat model, which is incompatible with cen-
tralized FL. Other work [VXK21| randomly clusters clients, reveals inputs from the clusters
and then robustly aggregates them; but doing this requires small clusters, which affects input

privacy.

4.10 Conclusion

Practical federated learning settings need to ensure both the privacy and integrity of model
updates provided by clients. In this paper, we have formalized these goals in a new protocol,
SAVI, that securely aggregates only well-formed inputs (i.e., updates). To demonstrate
the feasibility of SAVI, we have proposed EIFFel: a system that efficiently instantiates a
SAVI protocol. OPec works under a malicious threat model and ensures both privacy for
honest clients and Byzantine robustness for the federated learner. Our empirical evaluation

has shown that EIFFelL is practical for real-world usage.

125

Chapter 5
Conclusion

Be it online shopping on Instagram, streaming the newest Netflix series or doomscrolling
our Twitter feed, today we spend more than quarter of our lives online — and our every
movement is documented. Private corporations hold large swathes of personal data about
every individual. Without proper regulation, this could be easily harnessed to manipulate
our online lives and lead to violation of personal autonomy. Hence, data privacy can no
longer be limited to just an academic pursuit — privacy has to be concomitant with every

click we make.

In this dissertation, we have provided a way forward. We have shown that it is possible to
build large scale privacy-first systems by combining techniques from differential privacy and
cryptography. In fact, this synergy is multi-faceted: (1) cryptography can push the frontiers
of deployment of DP, as demonstrated by Crypte, (2) DP can aid in making cryptographic
systems robust to inference attacks, as demonstrated by OPe, and (3) privacy-preserving
decentralized learning requires co-designing both DP and cryptography, as demonstrated by
EIFFeL.

Modern technology must do a better job of upholding the privacy of our personal data. I
am hopeful of a future where we as individuals are entitled to and empowered with our data

sovereignty.

126

LIST OF REFERENCES

[ABCP13]

[ABE*13]

[ABFMOOS]

[ABK*19]

[ABY]

[ACO6]

[AC11]

[ACC12]

Miguel E. Andrés, Nicoldas E. Bordenabe, Konstantinos Chatzikokolakis,
and Catuscia Palamidessi. Geo-indistinguishability: Differential privacy for
location-based systems. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, CCS 13, page 901-914, New York,
NY, USA, 2013. Association for Computing Machinery.

Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Koss-
mann, Ravi Ramamurthy, and Ramaratnam Venkatesan. Orthogonal security
with cipherbase. In Proc. of the 6th CIDR, Asilomar, CA, 2013.

Esma Aimeur, Gilles Brassard, José M. Fernandez, and Flavien Serge
Mani Onana. Alambic: a privacy-preserving recommender system for elec-
tronic commerce. International Journal of Information Security, 7(5), Oct
2008.

Jayadev Acharya, Keith Bonawitz, Peter Kairouz, Daniel Ramage, and Ziteng
Sun. Context-aware local differential privacy, 2019.

https://github.com/encryptogroup/aby.

Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast
johnson-lindenstrauss transform. In Proceedings of the Thirty-FEighth Annual
ACM Symposium on Theory of Computing, STOC ’06, page 557-563, New
York, NY, USA, 2006. Association for Computing Machinery.

Gergely Acs and Claude Castelluccia. 1 have a dream! differentially pri-
vate smart metering. In Proceedings of the 13th International Conference on
Information Hiding, ITH’11, page 118-132, Berlin, Heidelberg, 2011. Springer-
Verlag.

G. Acs, C. Castelluccia, and R. Chen. Differentially private histogram publish-
ing through lossy compression. In 2012 IEEE 12th International Conference
on Data Mining, pages 1-10, Dec 2012.

[ACFR20]

[ACG+16]

[ACPP18]

[AHKM18a]

[AHKM18b)]

[AKL*09]

[AKSX04]

[AN10]

[AS19]

[ASY 18]

127

Shimaa Ahmed, Amrita Roy Chowdhury, Kassem Fawaz, and Parmesh Ra-
manathan. Preech: A system for Privacy-Preserving speech transcription. In
29th USENIX Security Symposium (USENIX Security 20), pages 2703-2720.
USENIX Association, August 2020.

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential pri-
vacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, pages 308-318, New York, NY, USA,
2016. ACM.

M. Alvim, K. Chatzikokolakis, C. Palamidessi, and A. Pazii. Invited paper:
Local differential privacy on metric spaces: Optimizing the trade-off with util-
ity. In 2018 IEEE 31st Computer Security Foundations Symposium (CSF),
pages 262-267, 2018.

A. Agarwal, M. Herlihy, S. Kamara, and Tarik Moataz. Encrypted databases
for differential privacy. Proceedings on Privacy Enhancing Technologies,
2019:170-190, 2018.

Archita Agarwal, Maurice Herlihy, Seny Kamara, and Tarik Moataz. En-
crypted databases for differential privacy, 01 2018. https://eprint.iacr.
org/2018/860.

Joél Alwen, Jonathan Katz, Yehuda Lindell, Giuseppe Persiano, abhi shelat,
and Ivan Visconti. Collusion-free multiparty computation in the mediated
model. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, pages
524-540, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order
preserving encryption for numeric data. In Proceedings of the 2004 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’04, page
563-574, New York, NY, USA, 2004. Association for Computing Machinery.

A.Asuncion and D. Newman. Uci machine learning repository, 2010.

John M. Abowd and Tan M. Schmutte. An economic analysis of privacy pro-
tection and statistical accuracy as social choices. American Economic Review,
109(1):171-202, January 2019.

Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar,
and Brendan McMahan. cpsgd: Communication-efficient and differentially-
private distributed sgd. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018.

https://eprint.iacr.org/2018/860
https://eprint.iacr.org/2018/860

[BBCG*19]

[BBDS12]

[BBGT20]

[BBOOT]

[BCIV17]

[BCLOOY]

[BCM*20]

[BCMC19]

[BCOL11]

[BCSZ18]

128

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval
Ishai. Zero-knowledge proofs on secret-shared data via fully linear pcps. In
CRYPTO, 2019.

Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-
lindenstrauss transform itself preserves differential privacy. 2012 IEEE 53rd
Annual Symposium on Foundations of Computer Science, Oct 2012.

James Henry Bell, Kallista A. Bonawitz, Adria Gascén, Tancrede Lepoint,
and Mariana Raykova. Secure single-server aggregation with (poly)logarithmic
overhead. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’20, page 1253-1269, New York, NY, USA,
2020. Association for Computing Machinery.

Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and ef-
ficiently searchable encryption. In Alfred Menezes, editor, Advances in Cryp-
tology - CRYPTO 2007, pages 535-552, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

Joppe W. Bos, Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren.
Privacy-friendly forecasting for the smart grid using homomorphic encryption
and the group method of data handling. In Marc Joye and Abderrahmane
Nitaj, editors, Progress in Cryptology - AFRICACRYPT 2017, pages 184-201,
Cham, 2017. Springer International Publishing.

Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill.
Order-preserving symmetric encryption. In Proceedings of the 28th Annual
International Conference on Advances in Cryptology - EUROCRYPT 2009 -
Volume 5479, page 224-241, Berlin, Heidelberg, 2009. Springer-Verlag.

Raef Bassily, Albert Cheu, Shay Moran, Aleksandar Nikolov, Jonathan Ull-
man, and Zhiwei Steven Wu. Private query release assisted by public data. In
ICML, 2020.

Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.
Analyzing federated learning through an adversarial lens. In Proceedings of
the International Conference on Machine Learning, pages 634—643, 2019.

Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving
encryption revisited: Improved security analysis and alternative solutions.
In Proceedings of the 31st Annual Conference on Advances in Cryptology,
CRYPTO’11, page 578-595, Berlin, Heidelberg, 2011. Springer-Verlag.

C. Borgs, J. Chayes, A. Smith, and I. Zadik. Revealing network structure,
confidentially: Improved rates for node-private graphon estimation. In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pages 533-543, 2018.

[BDF+18]

[Bea92]

[Bea95]

[BEG*19]

[BEM*17]

[BGCT18]

[BGPT19]

[BHT*+18]

[BIK*17]

[BKN*20]

129

Abhishek Bhowmick, John C. Duchi, Julien Freudiger, Gaurav Kapoor, and
Ryan M. Rogers. Protection against reconstruction and its applications in
private federated learning. ArXiv, abs/1812.00984, 2018.

Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO 91, pages
420-432, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

Donald Beaver. Precomputing oblivious transfer. In Proceedings of the
15th Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO 95, pages 97-109, Berlin, Heidelberg, 1995. Springer-Verlag.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Koneény, Stefano Maz-
zocchi, H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel
Ramage, and Jason Roselander. Towards federated learning at scale: System
design, 2019.

Andrea Bittau, Ulfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth
Raghunathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes,
and Bernhard Seefeld. Prochlo: Strong privacy for analytics in the crowd. In
Proceedings of the 26th Symposium on Operating Systems Principles, SOSP
17, pages 441-459, New York, NY, USA, 2017. ACM.

Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and
Vitaly Shmatikov. The tao of inference in privacy-protected databases. Proc.
VLDB Endow., 11(11):1715-1728, July 2018.

Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, Kurt Rohloff, and Vinod
Vaikuntanathan. Optimized homomorphic encryption solution for secure
genome-wide association studies. TACR Cryptology ePrint Archive, 2019:223,
2019.

Johes Bater, Xi He, S Yu Tendryakova, Ashwin Machanavajjhala, and Jennie
Duggan. Shrinkwrap: Differentially-private query processing in private data
federations. CoRR, abs/1810.01816(3):307-320, November 2018.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-
dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth.
Practical secure aggregation for privacy-preserving machine learning. In Pro-
ceedings of the ACM SIGSAC Conference on Computer and Communications
Security, pages 1175-1191, 2017.

Amos Beimel, Aleksandra Korolova, Kobbi Nissim, Or Sheffet, and Uri Stem-
mer. The power of synergy in differential privacy: Combining a small curator
with local randomizers. In ITC, 2020.

[Blag3]

[BLR"15]

[BLV+21]

[BMGS17a]

[BMGS17b]

[BNL12]

[BNOOS]

[BNO11]

[BNS14]

[BROG6]

[BS15]

[BS16]

130

Richard E. Blahut. Theory and practice of error control codes. 1983.

Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and
Joe Zimmerman. Semantically secure order-revealing encryption: Multi-input
functional encryption without obfuscation. In Proceedings of EUROCRYPT,
2015.

Lukas Burkhalter, Hidde Lycklama, Alexander Viand, Nicolas Kiichler, and
Anwar Hithnawi. Rofl: Attestable robustness for secure federated learning.
In arXiw:2107.03311, 2021.

P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer. Byzantine-
tolerant machine learning. In arXiv:1705.02757, 2017.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
Machine learning with adversaries: Byzantine tolerant gradient descent. In
Advances in Neural Information Processing Systems, pages 118128, 2017.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against
support vector machines. In Proceedings of the International Coference on
International Conference on Machine Learning, pages 1467-1474, 2012.

Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data analy-
sis: Simultaneously solving how and what. In Proceedings of the 28th Annual
Conference on Cryptology: Advances in Cryptology, CRYPTO 2008, pages
451-468, Berlin, Heidelberg, 2008. Springer-Verlag.

Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data anal-
ysis: On simultaneously solving how and what. CoRR, abs/1103.2626, 2011.

Amos Beimel, Kobbi Nissim, and Uri Stemmer. Private learning and san-
itization: Pure vs. approximate differential privacy. CoRR, abs/1407.2674,
2014.

Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Advances in Cryptology -
EUROCRYPT 2006, pages 409-426, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

Raef Bassily and Adam Smith. Local, private, efficient protocols for succinct
histograms. In Proceedings of the Forty-seventh Annual ACM Symposium on
Theory of Computing, STOC 15, pages 127-135, New York, NY, USA, 2015.
ACM.

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifi-
cations, extensions, and lower bounds, 2016.

[BSKT19]

[BSW07]

[BTS5]

[BVHT18]

[CABP13]

[CC17)

[CCDD*21]

[CCMS19a)

[CCMS19b]

[cep]

[CDJ*21]

131

Keith Bonawitz, Fariborz Salehi, Jakub Konecny, H. Brendan McMahan, and
Marco Gruteser. Federated learning with autotuned communication-efficient

secure aggregation. 2019 53rd Asilomar Conference on Signals, Systems, and
Computers, pages 1222-1226, 2019.

J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based
encryption. In 2007 IEEE Symposium on Security and Privacy (SP ’07), pages
321-334, 2007.

Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast pro-
tocols. J. ACM, 32(4):824-840, oct 1985.

FEugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. How to backdoor federated learning. In arXiv:1807.00459, 2018.

Konstantinos Chatzikokolakis, Miguel E. Andrés, Nicolds Emilio Bordenabe,
and Catuscia Palamidessi. Broadening the scope of differential privacy using
metrics. In Emiliano De Cristofaro and Matthew Wright, editors, Privacy En-
hancing Technologies, pages 82-102, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

Pyrros Chaidos and Geoffroy Couteau. Efficient designated-verifier non-
interactive zero-knowledge proofs of knowledge. I[ACR Cryptology ePrint
Archive, 2017:1029, 2017.

Christopher A. Choquette-Choo, Natalie Dullerud, Adam Dziedzic, Yunxiang
Zhang, Somesh Jha, Nicolas Papernot, and Xiao Wang. Ca{pc} learning:
Confidential and private collaborative learning. In International Conference
on Learning Representations, 2021.

T-H. Hubert Chan, Kai-Min Chung, Bruce M. Maggs, and Elaine Shi. Foun-
dations of differentially oblivious algorithms. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, pages
2448-2467, Philadelphia, PA, USA, 2019. Society for Industrial and Applied
Mathematics.

TH Hubert Chan, Kai-Min Chung, Bruce M Maggs, and Elaine Shi. Founda-
tions of differentially oblivious algorithms. In Proceedings of the Thirtieth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 2448-2467. STAM,
2019.

California consumer privacy act (ccpa). https://oag.ca.gov/privacy/ccpa.

Amrita Roy Chowdhury, Bolin Ding, Somesh Jha, Weiran Liu, and Jingren
Zhou. Strengthening order preserving encryption with differential privacy,
2021.

https://oag.ca.gov/privacy/ccpa

[CDPM18]

[CAWM*17]

[cen]

[Cen20]

[CEP17]

[CFLG21]

[CGB17]

[CGJIvdM21]

[CKS18]

[CLL*17]

[CLM13]

[CLRS09]

132

Thee Chanyaswad, Alex Dytso, H. Vincent Poor, and Prateek Mittal. Mvg
mechanism: Differential privacy under matrix-valued query. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 18, pages 230-246, New York, NY, USA, 2018. ACM.

Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,
and Emmanuel Prouff. Privacy-preserving classification on deep neural net-
work. TACR Cryptology ePrint Archive, 2017:35, 2017.

National population by characteristics: 2010-2019. https://www.
census.gov/data/tables/time-series/demo/popest/2010s-national-
detail.html/.

Disclosure avoidance and the 2020 census. https://www.census.gov/about/
policies/privacy/statistical_safeguards/disclosure-avoidance-
2020-census.html/, 2020.

Kostas Chatzikokolakis, Ehab FElsalamouny, and Catuscia Palamidessi. Effi-
cient utility improvement for location privacy. Proceedings on Privacy FEn-
hancing Technologies, 2017, 10 2017.

Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhengiang Gong. Fltrust:
Byzantine-robust federated learning via trust bootstrapping. 2021.

Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable
computation of aggregate statistics. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation, 2017.

Amrita Roy Chowdhury, Chuan Guo, Somesh Jha, and Laurens van der
Maaten. Eiffel: Ensuring integrity for federated learning, 2021.

Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. Marginal release
under local differential privacy. In Proceedings of the 2018 International Con-
ference on Management of Data, SIGMOD 18, pages 131-146, New York, NY,
USA, 2018. ACM.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Tar-
geted backdoor attacks on deep learning systems using data poisoning. In
arXiw:1712.05526, 2017.

Ellick M. Chan, Peifung E. Lam, and John C. Mitchell. Understanding the
challenges with medical data segmentation for privacy. In Proceedings of the
2013 USENIX Conference on Safety, Security, Privacy and Interoperability of
Health Information Technologies, HealthTech’13, page 2, USA, 2013. USENIX
Association.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

https://www.census.gov/data/tables/time-series/demo/popest/2010s-national-detail.html/
https://www.census.gov/data/tables/time-series/demo/popest/2010s-national-detail.html/
https://www.census.gov/data/tables/time-series/demo/popest/2010s-national-detail.html/
https://www.census.gov/about/policies/privacy/statistical_safeguards/disclosure-avoidance-2020-census.html/
https://www.census.gov/about/policies/privacy/statistical_safeguards/disclosure-avoidance-2020-census.html/
https://www.census.gov/about/policies/privacy/statistical_safeguards/disclosure-avoidance-2020-census.html/

[CLWW16]

[CMY9]

[com16a]

[com16b]

[com16¢]

[CPST12]

[CRJ20]

[CSL*08]

[CSS12a]

[CSS12b)]

[CSU*18]

133

Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu. Practical
order-revealing encryption with limited leakage. In Revised Selected Papers

of the 23rd International Conference on Fast Software Encryption - Volume
9783, FSE 2016, page 474-493, Berlin, Heidelberg, 2016. Springer-Verlag.

Jan Camenisch and Markus Michels. Proving in zero-knowledge that a num-
ber is the product of two safe primes. In Proceedings of the 17th International
Conference on Theory and Application of Cryptographic Techniques, EURO-
CRYPT’99, pages 107-122, Berlin, Heidelberg, 1999. Springer-Verlag.

Ciphercloud. http://www.ciphercloud.com/} 2016.

Microsoft, always encrypted (database engine). https://msdn.microsoft.
com/en-us/library/mt163865.aspx/, 2016.

Perspecsys: A blue coat company. http://perspecsys.com/, 2016.

Graham Cormode, Cecilia Procopiuc, Divesh Srivastava, Entong Shen, and
Ting Yu. Differentially private spatial decompositions. 2012 IEEE 28th In-
ternational Conference on Data Engineering, Apr 2012.

Amrita Roy Chowdhury, Theodoros Rekatsinas, and Somesh Jha. Data-
dependent differentially private parameter learning for directed graphical mod-
els. In Hal Daumé IIT and Aarti Singh, editors, Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 1939-1951. PMLR, 13-18 Jul 2020.

Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto, Salvatore J. Stolfo,
and Angelos D. Keromytis. Casting out demons: Sanitizing training data for
anomaly sensors. In IEEE Symposium on Security and Privacy (SP), pages
81-95, 2008.

T-H. Hubert Chan, Elaine Shi, and Dawn Song. Optimal lower bound for dif-
ferentially private multi-party aggregation. In Proceedings of the 20th Annual
FEuropean Conference on Algorithms, ESA’12, pages 277-288, Berlin, Heidel-
berg, 2012. Springer-Verlag.

T. H. Hubert Chan, Elaine Shi, and Dawn Song. Privacy-preserving stream
aggregation with fault tolerance. In Angelos D. Keromytis, editor, Financial
Cryptography and Data Security, pages 200214, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

Albert Cheu, Adam D. Smith, Jonathan Ullman, David Zeber, and Maxim
Zhilyaev. Distributed differential privacy via mixnets. CoRR, abs/1808.01394,
2018.

http://www.ciphercloud.com/
https: //msdn.microsoft.com/en-us/library/mt163865.aspx/
https: //msdn.microsoft.com/en-us/library/mt163865.aspx/
http://perspecsys.com/

[CSU*19]

[CWO09]

[CWCP18]

[dat]

[dat16al]

[dat16D]

[dat17a]

[dat17b]

[dat18]

[dat19]

[DDC16]

[DH76]

[DHK20]

134

Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim
Zhilyaev. Distributed differential privacy via shuffling. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology — EUROCRYPT 2019, pages
375403, Cham, 2019. Springer International Publishing.

Scott A. Crosby and Dan S. Wallach. Efficient data structures for tamper-
evident logging. In Proceedings of the 18th Conference on USENIX Security
Symposium, SSYM’09, page 317-334, USA, 2009. USENIX Association.

Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos.
Draco: Byzantine-resilient distributed training via redundant gradients. In
Proceedings of the International Conference on Machine Learning, 2018.

Youtube system requirements. https://support.google.com/youtube/
answer/783587hl=en.

Anthem. anthem data breach. https://www.anthemfacts.com/, 2016.

Yahoo data breach. https://money.cnn.com/2016/09/22/technology/
yahoo-data-breach/, 2016.

Wikipedia. sony pictures entertainment hack. https://en.wikipedia.org/
wiki/Sony_Pictures_Entertainment_hack/, 2017.

Wikipedia. target customer privacy. https://en.wikipedia.org/wiki/
Target_Corporation#Customer_privacy/l, 2017.

Wikipedia. facebook—cambridge analytica data scandal. https:
//en.wikipedia.org/wiki/Facebook/E2%80%93Cambridge_Analytica_
data_scanda/|, 2018.

Facebook data breach. https://www.forbes.com/sites/daveywinder/
2019/09/05/facebook-security-snafu-exposes-419-million-user-
phone-numbers/, 2019.

F. Betil Durak, Thomas M. DuBuisson, and David Cash. What else is
revealed by order-revealing encryption? In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16,
page 1155-1166, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

W. Diffie and M. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, 22(6):644-654, 1976.

Shaleen Deep, Xiao Hu, and Paraschos Koutris. Join project query evalua-
tion using matrix multiplication. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, 2020.

https://support.google.com/youtube/answer/78358?hl=en
https://support.google.com/youtube/answer/78358?hl=en
https://www.anthemfacts.com/
https://money.cnn.com/2016/09/22/technology/yahoo-data-breach/
https://money.cnn.com/2016/09/22/technology/yahoo-data-breach/
https://en. wikipedia.org/wiki/Sony_Pictures_Entertainment_hack/
https://en. wikipedia.org/wiki/Sony_Pictures_Entertainment_hack/
https://en.wikipedia.org/wiki/Target_Corporation# Customer_privacy/
https://en.wikipedia.org/wiki/Target_Corporation# Customer_privacy/
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scanda/
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scanda/
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scanda/
https://www.forbes.com/sites/daveywinder/2019/09/05/facebook-security-snafu-exposes-419-million-user-phone -numbers/
https://www.forbes.com/sites/daveywinder/2019/09/05/facebook-security-snafu-exposes-419-million-user-phone -numbers/
https://www.forbes.com/sites/daveywinder/2019/09/05/facebook-security-snafu-exposes-419-million-user-phone -numbers/

[DHK21a]

[DHK21b]

[DJW13]

[DK18]

[DK21]

[DKM+06]

[DKY17]

[DMG+18]

[DR14a)

[DR14Db]

[DR16]

[DSZ15]

135

Shaleen Deep, Xiao Hu, and Paraschos Koutris. Enumeration algorithms
for conjunctive queries with projection. In 24th International Conference on
Database Theory (ICDT 2021). Schloss Dagstuhl-Leibniz-Zentrum fiir Infor-
matik, 2021.

Shaleen Deep, Xiao Hu, and Paraschos Koutris. Space-time tradeoffs for an-
swering boolean conjunctive queries. arXiv preprint arXiv:2109.10889, 2021.

J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical
minimax rates. In 2013 IEEE 5/th Annual Symposium on Foundations of
Computer Science, pages 429-438, Oct 2013.

Shaleen Deep and Paraschos Koutris. Compressed representations of conjunc-
tive query results. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 307-322, 2018.

Shaleen Deep and Paraschos Koutris. Ranked enumeration of conjunctive
query results. In 24th International Conference on Database Theory (ICDT
2021). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2021.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. Our data, ourselves: Privacy via distributed noise generation. In
Proceedings of the 24th Annual International Conference on The Theory and
Applications of Cryptographic Techniques, EUROCRYPT 06, pages 486-503,
Berlin, Heidelberg, 2006. Springer-Verlag.

Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry
data privately. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 3571-3580. Curran Associates, Inc., 2017.

Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui, Rhicheek Pa-
tra, and Mahsa Taziki. Asynchronous byzantine machine learning (the case of
sgd). In ICML, 2018.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential
privacy. Found. Trends Theor. Comput. Sci., 9:211-407, August 2014.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential
privacy. Found. Trends Theor. Comput. Sci., 9(3&+#8211;4):211-407, August
2014.

Cynthia Dwork and Guy N. Rothblum. Concentrated differential privacy,
2016.

Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby - a framework
for efficient mixed-protocol secure two-party computation. In NDSS, 2015.

[EFM*18]

[EGS03]

[EMP]

[enc]

[EPK14]

[ES15]

[FCJG20]

[Fel87]

[FPE15]

[FVY*17]

[FYB18]

[Gao03]

[GBDL"16]

136

Ulfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal
Talwar, and Abhradeep Thakurta. Amplification by shuffling: From local to
central differential privacy via anonymity. CoRR, abs/1811.12469, 2018.

Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limit-
ing privacy breaches in privacy preserving data mining. In Proceedings of the
Twenty-second ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’03, pages 211-222, New York, NY, USA, 2003.
ACM.

https://github.com/emp-toolkit.

Nist, block cipher techniques. https://csrc.nist.gov/projects/block-
cipher-techniques/bcm/modes-development/.

Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Random-
ized aggregatable privacy-preserving ordinal response. In CCS, 2014.

Hamid Ebadi and David Sands. Featherweight ping, 2015.

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqgiang Gong. Local
model poisoning attacks to byzantine-robust federated learning. In USENIX
Security Symposium, 2020.

Paul Feldman. A practical scheme for non-interactive verifiable secret sharing.
In 28th Annual Symposium on Foundations of Computer Science (sfcs 1987),
pages 427-438, 1987.

Giulia Fanti, Vasyl Pihur, and Ulfar Erlingsson. Building a rappor with the
unknown: Privacy-preserving learning of associations and data dictionaries,
2015.

B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gadepally,
R. Shay, J. D. Mitchell, and R. K. Cunningham. Sok: Cryptographically
protected database search. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 172-191, May 2017.

Clement Fung, Chris J.M. Yoon, and Ivan Beschastnikh. Mitigating sybils in
federated learning poisoning. In arXiv:1808.04866, 2018.

Shuhong Gao. A New Algorithm for Decoding Reed-Solomon Codes, pages
55-68. Springer US, Boston, MA, 2003.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael
Naehrig, and John Robert Wernsing. Cryptonets: Applying neural networks
to encrypted data with high throughput and accuracy. In ICML, 2016.

https://csrc.nist.gov/projects/block-cipher-techniques/bcm/modes-development/
https://csrc.nist.gov/projects/block-cipher-techniques/bcm/modes-development/

[GbF14]

[GCP]

[GDGG17]

[gdp]

[GG13]

[GHIM19]

[GJI*18]

[GIK*18]

[GKL*+20]

[GLMP18]

[GLMP19a]

[GLMP19b)]

[Grel6]

137

Carl Gunter, Mike berry, and Martin French. Decision support for data seg-
mentation (ds2): application to pull architectures for hie. 2014.

Google cloud platform. https://cloud.google.com.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Iden-
tifying vulnerabilities in the machine learning model supply chain. In
arXiv:1708.06733, 2017.

General data protection regulation gdpr. https://gdpr-info.eu/.

Joachim von zur Gathen and Jrgen Gerhard. Modern Computer Algebra.
Cambridge University Press, USA, 3rd edition, 2013.

Chang Ge, Xi He, Thab F. Ilyas, and Ashwin Machanavajjhala. Apex:
Accuracy-aware differentially private data exploration. In Proceedings of the
2019 International Conference on Management of Data, SIGMOD ’19, pages
177-194, New York, NY, USA, 2019. ACM.

Irene Giacomelli, Somesh Jha, Marc Joye, C. David Page, and Kyonghwan
Yoon. Privacy-preserving ridge regression with only linearly-homomorphic
encryption. In Bart Preneel and Frederik Vercauteren, editors, Applied Cryp-
tography and Network Security, pages 243-261, Cham, 2018. Springer Inter-
national Publishing.

Irene Giacomelli, Somesh Jha, Ross Kleiman, David Page, and Kyonghwan
Yoon. Privacy-preserving collaborative prediction using random forests, 2018.

Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown,
Rachit Li, Lucy Agarwal, and Thomas Ristenpart. Pancake: Frequency
smoothing for encrypted data stores, 2020.

Paul Grubbs, Marie-Sarah Lacharite, Brice Minaud, and Kenneth G. Paterson.
Pump up the volume: Practical database reconstruction from volume leakage
on range queries. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 18, page 315-331, New York,
NY, USA, 2018. Association for Computing Machinery.

P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson. Learning to recon-
struct: Statistical learning theory and encrypted database attacks. In 2019
IEEE Symposium on Security and Privacy (SP), pages 1067-1083, 2019.

P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson. Learning to recon-
struct: Statistical learning theory and encrypted database attacks. In 2019
IEEE Symposium on Security and Privacy (SP), pages 1067-1083, 2019.

Andy Greenberg. Apple’s ‘differential privacy’ is about collecting your data—
but not your data. Wired, Jun 13 2016.

https://cloud.google.com
https://gdpr-info.eu/

[GRR19a]

[GRR19b)]

[GSB+16]

[GSBT17a]

[GSB+17b)

[GTT+19]

[GZ07]

[HGH*14]

[HILM02]

[HKJ20]

[HMD14]

138

Adam Groce, Peter Rindal, and Mike Rosulek. Cheaper private set inter-
section via differentially private leakage. Cryptology ePrint Archive, Report
2019/239, 2019. https://eprint.iacr.org/2019/239.

Adam Groce, Peter Rindal, and Mike Rosulek. Cheaper private set inter-
section via differentially private leakage. Proceedings on Privacy Enhancing
Technologies, 2019:25-6, 2019.

Adria Gascén, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack
Doerner, Samee Zahur, and David Evans. Secure linear regression on vertically
partitioned datasets. TACR Cryptology ePrint Archive, 2016:892, 2016.

Adria Gascon, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Do-
erner, Samee Zahur, and David Evans. Privacy-preserving distributed linear
regression on high-dimensional data. PoPETs, 2017:345-364, 2017.

P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart.
Leakage-abuse attacks against order-revealing encryption. In 2017 IEEE Sym-
posium on Security and Privacy (SP), pages 655-672, 2017.

Mehmet Emre Gursoy, Acar Tamersoy, Stacey Truex, Wenqi Wei, and Ling
Liu. Secure and utility-aware data collection with condensed local differential
privacy. ArXiv, abs/1905.06361, 2019.

T. Ge and S. Zdonik. Fast, secure encryption for indexing in a column-oriented
dbms. In 2007 IEEE 23rd International Conference on Data Engineering,
pages 676685, 2007.

Justin Hsu, Marco Gaboardi, Andreas Haeberlen, Sanjeev Khanna, Arjun
Narayan, Benjamin C. Pierce, and Aaron Roth. Differential privacy: An
economic method for choosing epsilon. 2014 IEEE 27th Computer Security
Foundations Symposium, pages 398410, 2014.

Hakan Hacigiimiig, Bala Iyer, Chen Li, and Sharad Mehrotra. Executing sql
over encrypted data in the database-service-provider model. In Proceedings of
the 2002 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’02, page 216227, New York, NY, USA, 2002. Association for Com-
puting Machinery.

Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. Secure byzantine-robust
machine learning, 2020.

Xi He, Ashwin Machanavajjhala, and Bolin Ding. Blowfish privacy: Tuning
privacy-utility trade-offs using policies. In Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’14, page
1447-1458, New York, NY, USA, 2014. Association for Computing Machinery.

https://eprint.iacr.org/2019/239

[HMFS17]

[HMVK21]

[HRMS10a]

[HRMS10b)]

[HTG17]

[HZRS16]

[IQr16]

[JKU11]

[INS17]

[JNS1§]

[KAK10]

[Kea9s]

[Kerl5]

139

Xi He, Ashwin Machanavajjhala, Cheryl Flynn, and Divesh Srivastava. Com-
posing differential privacy and secure computation: A case study on scaling
private record linkage. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, pages 1389-1406, New
York, NY, USA, 2017. ACM.

Thomas Humphries, Rasoul Akhavan Mahdavi, Shannon Veitch, and Florian
Kerschbaum. Selective MPC: distributed computation of differentially private
key value statistics. CoRR, abs/2107.12407, 2021.

Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the
accuracy of differentially private histograms through consistency. Proc. VLDB
Endow., 3(1-2):1021-1032, September 2010.

Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the
accuracy of differentially private histograms through consistency. Proceedings
of the VLDB Endowment, 3(1-2):1021-1032, Sep 2010.

Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep
neural networks over encrypted data, 2017.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770778, 2016.

[Qrypt. Iqrypt: Encrypt and query your database, 2016.

Kristjan Valur Jénsson, Gunnar Kreitz, and Misbah Uddin. Secure multi-
party sorting and applications. Cryptology ePrint Archive, Report 2011/122,
2011. https://eprint.iacr.org/2011/122.

Noah M. Johnson, Joseph P. Near, and Dawn Xiaodong Song. Practical differ-
ential privacy for SQL queries using elastic sensitivity. CoRR, abs/1706.09479,
2017.

Noah Johnson, Joseph P. Near, and Dawn Song. Towards practical differential
privacy for sql queries. Proc. VLDB Endow., 11(5):526-539, January 2018.

Hasan Kadhem, Toshiyuki Amagasa, and Hiroyuki Kitagawa. A secure and
efficient order preserving encryption scheme for relational databases. In KMIS,
2010.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. J.
ACM, 45(6):983-1006, November 1998.

Florian Kerschbaum. Frequency-hiding order-preserving encryption. In Pro-
ceedings of the 22Nd ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’15, pages 656667, New York, NY, USA, 2015. ACM.

https://eprint.iacr.org/2011/122

[KGM™14]

[KKK*16]

[KL14a]

[KL14b]

[KLNT08]

[KLS21a]

[KLS21b)]

[KMA*19]

[KMR11]

140

J. Kepner, V. Gadepally, P. Michaleas, N. Schear, M. Varia, A. Yerukhimovich,
and R. K. Cunningham. Computing on masked data: a high performance
method for improving big data veracity. In 2014 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1-6, 2014.

Sungwook Kim, Jinsu Kim, Dongyoung Koo, Yuna Kim, Hyunsoo Yoon, and
Junbum Shin. Efficient privacy-preserving matrix factorization via fully ho-
momorphic encryption: Extended abstract. In Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, ASTA CCS
16, pages 617-628, New York, NY, USA, 2016. ACM.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. Chapman & Hall/CRC, 2nd edition, 2014.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. Chapman & Hall/CRC, 2nd edition, 2014.

S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith.
What can we learn privately? In 2008 49th Annual IEEE Symposium on
Foundations of Computer Science, pages 531-540, Oct 2008.

Peter Kairouz, Ziyu Liu, and Thomas Steinke. The distributed discrete gaus-
sian mechanism for federated learning with secure aggregation, 2021.

Peter Kairouz, Ziyu Liu, and Thomas Steinke. The distributed discrete
gaussian mechanism for federated learning with secure aggregation. ArXiv,
abs/2102.06387, 2021.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurelien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Gra-
ham Cormode, Rachel Cummings, Rafael G.L. D’Oliveira, Hubert Eichner,
Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adria
Gascon, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui,
Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin
Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecny, Aleksandra
Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrede Lepoint, Yang Liu,
Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Ozgur, Rasmus Pagh,
Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song,
Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Flo-
rian Tramer, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang
Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open problems in
federated learning. In arXiw:1912.04977, 2019.

Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-
party computation. Cryptology ePrint Archive, Report 2011/272, 2011.
https://eprint.iacr.org/2011/272.

https://eprint.iacr.org/2011/272

[KMY*16]

[KPT19]

[KPT20]

[KPT21]

[Kri]

[KT19]

[KTH*19]

[Kul19]

[LBBHYS]

[LCO4]

[LC11]

141

Jakub Konecny, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies
for improving communication efficiency. ArXiv, abs/1610.05492, 2016.

Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto
Tamassia. Data recovery on encrypted databases with k-nearest neighbor
query leakage. In 2019 IEEE Symposium on Security and Privacy (SP), pages
1033-1050, 2019.

Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto
Tamassia. The state of the uniform: Attacks on encrypted databases be-
yond the uniform query distribution. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1223-1240, 2020.

Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto
Tamassia. Response-hiding encrypted ranges: Revisiting security via
parametrized leakage-abuse attacks. Cryptology ePrint Archive, Report
2021/093, 2021. https://eprint.iacr.org/2021/093.

Alex Krizhevsky. The cifar-10 dataset.

F. Kerschbaum and A. Tueno. An efficiently searchable encrypted data struc-
ture for range queries. In In: Sako K., Schneider S., Ryan P. (eds) Computer
Security — ESORICS 2019 ESORICS 2019. Lecture Notes in Computer Sci-
ence, vol 11736. Springer, Cham, 2019.

lIos Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin
Machanavajjhala, Michael Hay, and Gerome Miklau. Privatesql: A differen-
tially private sql query engine. Proc. VLDB Endow., 12(11):1371-1384, July
2019.

Tejas Kulkarni. Answering range queries under local differential privacy. In
Proceedings of the 2019 International Conference on Management of Data,
SIGMOD 19, page 1832-1834, New York, NY, USA, 2019. Association for
Computing Machinery.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324,
1998.

Shu Lin and Daniel J. Costello. Error control coding: fundamentals and ap-
plications. Pearson/Prentice Hall, Upper Saddle River, NJ, 2004.

Jaewoo Lee and Chris Clifton. How much is enough? choosing e for differential
privacy. In Proceedings of the 14th International Conference on Information
Security, ISC’11, pages 325-340, Berlin, Heidelberg, 2011. Springer-Verlag.

https://eprint.iacr.org/2021/093

[LCB]

[LCFK21]

[LCW*20]

[LDGG18]

[LLSY16]

[LMP18]

[Lov19]

[LP09a]

[LPO9D)]

[LP15]

[LP18]

[LPLT09]

[LSL17]

142

Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The mnist
database of handwritten digits.

Jingjie Li, Amrita Roy Chowdhury, Kassem Fawaz, and Younghyun Kim.
Kaleido: Real-Time privacy control for Eye-Tracking systems. In 30th
USENIX Security Symposium (USENIX Security 21), pages 1793-1810.
USENIX Association, August 2021.

Suyi Li, Yong Cheng, Wei Wang, Yang Liu, and Tianjian Chen. Learning to
detect malicious clients for robust federated learning. CoRR, abs/2002.00211,
2020.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: De-
fending against backdooring attacks on deep neural networks. pages 273294,
2018.

N. Li, M. Lyu, D. Su, and W. Yang. Differential Privacy: From Theory to
Practice. Morgan and Claypool, 2016.

M. Lacharité, B. Minaud, and K. G. Paterson. Improved reconstruction at-
tacks on encrypted data using range query leakage. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 297-314, 2018.

Ben Lovejoy. We now spend more than a quarter of our lives online, shows dig-
ital 2019 report. https://9tobmac.com/2019/01/31/digital-2019/} 2019.

Yehuda Lindell and Benny Pinkas. A proof of security of yao’s pro-
tocol for two-party computation. J. Cryptol., 22(2):161-188, April 2009.

Yehuda Lindell and Benny Pinkas. A proof of security of yao’s pro-
tocol for two-party computation. J. Cryptol., 22(2):161-188, April 2009.

Marie-Sarah Lacharit e and Kenneth G Paterson. A note on the optimality
of frequency analysis vs. [,-optimization, 2015.

Marie-Sarah Lacharité and Kenneth G. Paterson. Frequency-smoothing en-
cryption: preventing snapshot attacks on deterministically encrypted data.
IACR Transactions on Symmetric Cryptology, 2018(1):277-313, Mar. 2018.

Seungmin Lee, Tae-Jun Park, Donghyeok Lee, Taekyong Nam, and Sehun
Kim. Chaotic order preserving encryption for efficient and secure queries on
databases. IFICE Transactions, 92-D:2207-2217, 11 2009.

Min Lyu, Dong Su, and Ninghui Li. Understanding the sparse vector technique
for differential privacy. PVLDB, 10:637-648, 2017.

https://9to5mac.com/2019/01/31/digital-2019/

[LVS+21]

[LW12]

[LW13]

[LW16]

[LWLZ*20]

[LXC+19)

[Mat]

[MCCJ21]

[McE03]

[MCOT15]

143

Terrance Liu, Giuseppe Vietri, Thomas Steinke, Jonathan Ullman, and Zhi-
wei Steven Wu. Leveraging public data for practical private query release,
2021.

Dongxi Liu and Shenlu Wang. Programmable order-preserving secure index
for encrypted database query. In Proceedings of the 2012 IEEE Fifth Inter-
national Conference on Cloud Computing, CLOUD ’12, page 502-509, USA,
2012. IEEE Computer Society.

Dongxi Liu and Shenlu Wang. Nonlinear order preserving index for encrypted
database query in service cloud environments. Concurr. Comput. Pract. Fxp.,
25:1967-1984, 2013.

Kevin Lewi and David J. Wu. Order-revealing encryption: New construc-
tions, applications, and lower bounds. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16,
page 1167-1178, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

Zitao Li, Tianhao Wang, Milan Lopuhaa-Zwakenberg, Ninghui Li, and Boris
Skoric. Estimating numerical distributions under local differential privacy. In
Proceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’20, page 621-635, New York, NY, USA, 2020.
Association for Computing Machinery.

Liping Li, Wei Xu, Tianyi Chen, Georgios Giannakis, and Qing Ling. Rsa:
Byzantine-robust stochastic aggregation methods for distributed learning from
heterogeneous datasets. Proceedings of the AAAI Conference on Artificial
Intelligence, 33:1544-1551, 07 2019.

Wolfram Mathworld. Lagrange interpolating polynomial. https://
mathworld.wolfram.com/LagrangelnterpolatingPolynomial.html.

Casey Meehan, Amrita Roy Chowdhury, Kamalika Chaudhuri, and Somesh
Jha. A shuffling framework for local differential privacy, 2021.

R. J. McEliece. The guruswami—sudan decoding algorithm for reed—solomon
codes, 2003.

Charalampos Mavroforakis, Nathan Chenette, Adam O’Neill, George Kollios,
and Ran Canetti. Modular order-preserving encryption, revisited. In Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’15, page 763-777, New York, NY, USA, 2015. Association
for Computing Machinery.

https://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html
https://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html

[McS09]

[MG18a]

[MG18b)

[Mir17al

[Mirl7b]

[MKA+08]

[MMMM20]

[MMR*17]

[MPC]

[MPRV09)]

[MR17]

[MRS18]

144

Frank D. McSherry. Privacy integrated queries: An extensible platform for
privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, SIGMOD 09, pages 19-30,
New York, NY, USA, 2009. ACM.

Sahar Mazloom and S. Dov Gordon. Secure computation with differentially
private access patterns. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 18, pages 490-507, New
York, NY, USA, 2018. ACM.

Sahar Mazloom and S. Dov Gordon. Secure computation with differentially
private access patterns. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 18, page 490-507, New
York, NY, USA, 2018. Association for Computing Machinery.

Ilya Mironov. Renyi differential privacy. CoRR, abs/1702.07476, 2017.

Ilya Mironov. Rényi differential privacy. 2017 IEEE 30th Computer Security
Foundations Symposium (CSF), Aug 2017.

A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. Pri-
vacy: Theory meets practice on the map. In 2008 IEEE 2jth International
Conference on Data Engineering, pages 277-286, 2008.

Ryan McKenna, Raj Kumar Maity, Arya Mazumdar, and Gerome Miklau. A
workload-adaptive mechanism for linear queries under local differential pri-
vacy, 2020.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agiiera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Proceedings of the International Conference on
Artificial Intelligence and Statistics, 2017.

http://www.multipartycomputation.com/mpc-software.

Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. Compu-
tational differential privacy. In Shai Halevi, editor, Advances in Cryptology
- CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages
126-142, Berlin, Heidelberg, 1620 August 2009. Springer-Verlag, Springer
Berlin Heidelberg.

Brendan McMahan and Daniel Ramage. Federated learning: Collaborative
machine learning without centralized training data, 2017.

Matteo Maffei, Manuel Reinert, and Dominique Schroder. On the security of
frequency-hiding order-preserving encryption. In Srdjan Capkun and Sherman
S. M. Chow, editors, Cryptology and Network Security, pages 51-70, Cham,
2018. Springer International Publishing.

[MSDCS19)

[MZ15]

[MZ17]

[Nel]

[NH12]

[NHC21]

[NIW*13]

[NKW15]

[NRY*21]

[NSH19]

[NTL]

145

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.
Exploiting unintended feature leakage in collaborative learning. In 2019 IFEFE
Symposium on Security and Privacy (SP), pages 691-706, 2019.

Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal
training-set attacks on machine learners. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, pages 2871-2877, 2015.

P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 19-38, May 2017.

Jelani Nelson. Sketching algorithms.

Arjun Narayan and Andreas Haeberlen. Djoin: Differentially private join
queries over distributed databases. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’12, pages
149-162, Berkeley, CA, USA, 2012. USENIX Association.

Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. Local and
central differential privacy for robustness and privacy in federated learning,
2021.

Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg, Marc Joye, Nina Taft,
and Dan Boneh. Privacy-preserving matrix factorization. In Proceedings of
the 2013 ACM SIGSAC Conference on Computer E#38; Communications
Security, CCS ’13, pages 801-812, New York, NY, USA, 2013. ACM.

Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks
on property-preserving encrypted databases. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, CCS 15,
page 644-655, New York, NY, USA, 2015. Association for Computing Ma-
chinery.

Thien Duc Nguyen, Phillip Rieger, Hossein Yalame, Helen Moéllering, Hossein
Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Ahmad-
Reza Sadeghi, Thomas Schneider, and Shaza Zeitouni. Flguard: Secure and
private federated learning, 2021.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning. 2019 IEEE Symposium on Security
and Privacy (SP), May 2019.

https://libntl.org/.

https://libntl.org/

[NWI+13]

[NXY*16]

INYC]

[Ode09]

[Pai99]

[Ped92]

[PLZ13a]

[PLZ13b]

[PRZB11]

[PUD]

[PZW+20]

[QYL13a]

146

V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft.
Privacy-preserving ridge regression on hundreds of millions of records. In 2013
IEEE Symposium on Security and Privacy, pages 334-348, May 2013.

Thong T. Nguyén, Xiaokui Xiao, Yin Yang, Siu Cheung Hui, Hyejin Shin,
and Junbum Shin. Collecting and analyzing data from smart device users
with local differential privacy. CoRR, abs/1606.05053, 2016.

Hospital inpatient discharges. https://health.data.ny.gov/Health/
Hospital-Inpatient-Discharges-SPARCS-De-Identified/udud-wb5t/.

Goldreich Oded. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York, NY, USA, 1st edition, 2009.

Pascal Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In Proceedings of the 17th International Conference on Theory
and Application of Cryptographic Techniques, EUROCRYPT’99, pages 223—
238, Berlin, Heidelberg, 1999. Springer-Verlag.

Torben P. Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In Proceedings of the 11th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO 91, pages 129-140, London,
UK, UK, 1992. Springer-Verlag.

R. A. Popa, F. H. Li, and N. Zeldovich. An ideal-security protocol for order-
preserving encoding. In 2013 IEEE Symposium on Security and Privacy, pages
463-477, 2013.

R. A. Popa, F. H. Li, and N. Zeldovich. An ideal-security protocol for order-
preserving encoding. In 2013 IEEFE Symposium on Security and Privacy, pages
463-477, 2013.

Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari
Balakrishnan. Cryptdb: Protecting confidentiality with encrypted query pro-
cessing. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP 11, page 85-100, New York, NY, USA, 2011. As-
sociation for Computing Machinery.

Hospital discharge data public use data file. http://www.dshs.state.tx.
us/THCIC/Hospitals/Download.shtm/.

Xudong Pan, Mi Zhang, Duocai Wu, Qifan Xiao, Shouling Ji, and Zhemin
Yang. Justinian’s GAAvernor: Robust distributed learning with gradient ag-
gregation agent. In USENIX Security, pages 1641-1658, 2020.

W. Qardaji, W. Yang, and N. Li. Differentially private grids for geospa-
tial data. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 757-768, April 2013.

https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t/
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t/
http:// www.dshs.state.tx.us/THCIC/Hospitals/Download.shtm/
http:// www.dshs.state.tx.us/THCIC/Hospitals/Download.shtm/

[QYL13b]

[QYY+16]

[RACY16]

[ran]
[R.B&4]

[RCWH*20]

[RN10]

[RNFH19]

[RWCP19]

[sall5]

[SC17]

[Sca]

147

Wahbeh Qardaji, Weining Yang, and Ninghui Li. Understanding hierar-
chical methods for differentially private histograms. Proc. VLDB Endow.,
6(14):1954-1965, September 2013.

Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. Heavy
hitter estimation over set-valued data with local differential privacy. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, pages 192203, New York, NY, USA, 2016. ACM.

Daniel S. Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhimovich.
Pope: Partial order preserving encoding. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16,
page 1131-1142, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

Ranking. https://en.wikipedia.org/wiki/Ranking/.
Williams R.B.G. Measures of Central Tendency. 1984.

Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanavajjhala,
and Somesh Jha. Crypte: Crypto-assisted differential privacy on untrusted
servers. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’20, page 603-619, New York, NY, USA,
2020. Association for Computing Machinery.

Vibhor Rastogi and Suman Nath. Differentially private aggregation of dis-
tributed time-series with transformation and encryption. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD 10, pages 735-746, New York, NY, USA, 2010. ACM.

Edo Roth, Daniel Noble, Brett Hemenway Falk, and Andreas Haeberlen. Hon-
eycrisp: Large-scale differentially private aggregation without a trusted core.
In Proceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP 19, page 196-210, New York, NY, USA, 2019. Association for Comput-
ing Machinery.

Shashank Rajput, Hongyi Wang, Zachary Charles, and Dimitris Papailiopou-
los. Detox: A redundancy-based framework for faster and more robust gradi-
ent aggregation. 2019.

Sf salaries, kaggle. https://www.kaggle.com/kaggle/sf-salaries/, 2015.
Fundamental right to privacy. https://www.scobserver.in/reports/k-
s-puttaswamy-right-to-privacy-judgment-of-the-court-in-plain-

english-i/, 2017.

https://github.com/kuleuven-cosic/scale-mamba.

https://en.wikipedia.org/wiki/Ranking/
https://www.kaggle.com/kaggle/sf-salaries/
https://www.scobserver.in/reports/k-s-puttaswamy-right-to-privacy-judgment-of-the-court-in-plain-english-i/
https://www.scobserver.in/reports/k-s-puttaswamy-right-to-privacy-judgment-of-the-court-in-plain-english-i/
https://www.scobserver.in/reports/k-s-puttaswamy-right-to-privacy-judgment-of-the-court-in-plain-english-i/

[Sch80)]

[Sch99]

[Sch16]

[SGA20]

[SGA21]

[SH21]

[Sha79]

[SHCGR™*11]

[SKL17]

[SKSM19a]

[SKSM19b)

[SS19]

[Sta96]

[sto]

148

J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701-717, October 1980.

Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and
its application to electronic voting. In In CRYPTO, pages 148-164. Springer-
Verlag, 1999.

Andreas Schaad. Sap seeed project, 2016.

Jinhyun So, Basak Guler, and A. Salman Avestimehr. Byzantine-resilient
secure federated learning. IFEE Journal in Selected Areas in Communications:
Machine Learning in Communications and Networks, 2020.

Jinhyun So, Basak Guler, and A. Salman Avestimehr. Turbo-aggregate:
Breaking the quadratic aggregation barrier in secure federated learning, 2021.

Virat Shejwalkar and Amir Houmansadr. Manipulating the byzantine: Opti-
mizing model poisoning attacks and defenses for federated learning. In NDSS,
2021.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, Novem-
ber 1979.

Elaine Shi, T.-H Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn
Song. Privacy-preserving aggregation of time-series data. volume 2, 01 2011.

Jacob Steinhardt, Pang Wei W. Koh, and Percy S. Liang. Certified defenses
for data poisoning attacks. In Advances in Neural Information Processing
Systems (NeurIPS), pages 3517-3529, 2017.

Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H. Brendan McMa-
han. Can you really backdoor federated learning? ArXiv, abs/1911.07963,
2019.

Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H. Brendan McMa-
han. Can you really backdoor federated learning? In arXiv:1911.07963, 2019.

Yanyao Shen and Sujay Sanghavi. Learning with bad training data via it-
erative trimmed loss minimization. In International Conference on Machine
Learning (ICML), pages 5739-5748, 2019.

Markus Stadler. Publicly verifiable secret sharing. pages 190-199. Springer-
Verlag, 1996.

Aws pricing. https://aws.amazon.com/s3/pricing/.

https://aws.amazon.com/s3/pricing/

[STS16]

[TPH]

[TSD20]

[VBMW18]

[vdHLZZ15]

[VSA17]

[VXK21]

[War65]

[WBK19]

[WBLJ17a]

[WBLJ17b]

149

Shigi Shen, Shruti Tople, and Prateek Saxena. Auror: Defending against
poisoning attacks in collaborative deep learning systems. In ACM ACSAC,
pages 508-519, 2016.

Chunming Tang, Dingyi Pei, and Zhuojun Liu Yong He. Non-interactive and
information-theoretic secure publicly verifiable secret sharing.

M. C. Tschantz, S. Sen, and A. Datta. Sok: Differential privacy as a causal
property. In 2020 IEEE Symposium on Security and Privacy (SP), pages
354-371, 2020.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: Extracting the keys to the intel sgx kingdom
with transient out-of-order execution. In Proceedings of the 27th USENIX
Conference on Security Symposium, SEC’18, pages 991-1008, Berkeley, CA,
USA, 2018. USENIX Association.

Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich.
Vuvuzela: Scalable private messaging resistant to traffic analysis. In Proceed-
ings of the 25th Symposium on Operating Systems Principles, SOSP ’15, page
137-152, New York, NY, USA, 2015. Association for Computing Machinery.

Lars Vilhuber, lan M. Schmutte, and John M. Abowd. Proceedings from the
2016 NSF-Sloan workshop on practical privacy, Jan 2017.

Raj Kiriti Velicheti, Derek Xia, and Oluwasanmi Koyejo. Secure byzantine-
robust distributed learning via clustering, 2021.

Stanley L. Warner. Randomized response: A survey technique for eliminating
evasive answer bias. Journal of the American Statistical Association, 60 60,
no. 309:63-69, 1965.

Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled
rényi differential privacy and analytical moments accountant. In AISTATS,
2019.

Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. Locally dif-
ferentially private protocols for frequency estimation. In Proceedings of the
26th USENIX Conference on Security Symposium, SEC’17, pages 729-745,
Berkeley, CA, USA, 2017. USENIX Association.

Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. Locally differ-
entially private protocols for frequency estimation. In Proceedings of the 26th
USENIX Conference on Security Symposium, pages 729-745, Berkeley, CA,
USA, 2017. USENIX Association.

[WCM18]

[WHMM20]

[WLJ17]

[WLJ18]

[WNW+17]

[WRK17]

[WYS*19]

[XDHZ19]

[XHCL20]

[Xiel9)]

[XKG19]

[XKG20]

150

Sameer Wagh, Paul Cuff, and Prateek Mittal. Differentially private oblivious
ram. Proceedings on Privacy Enhancing Technologies, 2018(4):64-84, 2018.

Sameer Wagh, Xi He, Ashwin Machanavajjhala, and Prateek Mittal. Dp-
cryptography: Marrying differential privacy and cryptography in emerging
applications, 2020.

Tianhao Wang, Ninghui Li, and Somesh Jha. Locally differentially private
heavy hitter identification, August 2017.

T. Wang, N. Li, and S. Jha. Locally differentially private frequent itemset
mining. In 2018 IEEE Symposium on Security and Privacy (SP), pages 127—
143, May 2018.

S. Wang, Y. Nie, P. Wang, H. Xu, W. Yang, and L. Huang. Local private
ordinal data distribution estimation. In IFEE INFOCOM 2017 - IEEE Con-
ference on Computer Communications, pages 1-9, 2017.

Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling
and efficient maliciously secure two-party computation. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 17, pages 21-37, New York, NY, USA, 2017. ACM.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath,
Haitao Zheng, and Ben Y. Zhao. Neural cleanse: Identifying and mitigat-
ing backdoor attacks in neural networks. In IEEE Symposium on Security
and Privacy (SP), pages 707723, 2019.

Zhuolun Xiang, B. Ding, X. He, and Jingren Zhou. Linear and range count-
ing under metric-based local differential privacy. arXiv: Cryptography and
Security, 2019.

Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed backdoor
attacks against federated learning. In ICLR, 2020.

Cong Xie. Zeno++: robust asynchronous SGD with arbitrary number of
byzantine workers. CoRR, abs/1903.07020, 2019.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Zeno: Distributed
stochastic gradient descent with suspicion-based fault-tolerance. In Proceed-
ings of the International Conference on Machine Learning, 2019.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Zeno++: Robust fully
asynchronous SGD. In Proceedings of the International Conference on Ma-
chine Learning, 2020.

[XWG10]

[XZX*12]

[Yao86]

[YCKB19]

[YMV+21]

[Zal]

[ZCXH

[ZipT9]

[ZLH19)

[ZMK*+18]

[ZWL*18]

151

Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. Differential privacy
via wavelet transforms. 2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010), 2010.

J. Xu, Z. Zhang, X. Xiao, Y. Yang, and G. Yu. Differentially private his-
togram publication. In 2012 IEEE 28th International Conference on Data
Engineering, pages 32-43, April 2012.

A. C. Yao. How to generate and exchange secrets. In 27th Annual Symposium
on Foundations of Computer Science (sfcs 1986), pages 162-167, Oct 1986.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett.
Byzantine-robust distributed learning: Towards optimal statistical rates. In
International Conference on Machine Learning (ICML), 2019.

Hongxu Yin, Arun Mallya, Arash Vahdat, José Manuel Alvarez, Jan Kautz,
and Pavlo Molchanov. See through gradients: Image batch recovery via grad-
inversion. 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 16332-16341, 2021.

Zalando. Fashion mnist.

Xiaojian Zhang, Rui Chen, Jianliang Xu, Xiaofeng Meng, and Yingtao Xie.
Towards accurate histogram publication under differential privacy. In Pro-
ceedings of the 2014 SIAM International Conference on Data Mining, pages
587-595.

Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceed-
ings of the International Symposiumon on Symbolic and Algebraic Computa-
tion, EUROSAM 79, page 216226, Berlin, Heidelberg, 1979. Springer-Verlag.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In
NeurIPS, 2019.

Dan Zhang, Ryan McKenna, los Kotsogiannis, Michael Hay, Ashwin
Machanavajjhala, and Gerome Miklau. EKTELO: A framework for defining
differentially-private computations. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018, pages 115-130, 2018.

Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He, and Jiming Chen. Calm:
Consistent adaptive local marginal for marginal release under local differential
privacy. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, pages 212229, New York, NY, USA,
2018. ACM.

	ABSTRACT
	 Introduction
	Contributions

	 Crypt: Crypto-Assisted Differential Privacy on Untrusted Servers
	Crypt Overview
	System Architecture
	Crypt Design Principles

	Background
	Differential Privacy
	Cryptographic Primitives

	Crypt System Description
	Crypt Workflow
	Crypt Modules
	Trust Model

	Crypt Operators
	Transformation operators
	Measurement operators

	Implementation
	General n-way Multiplication for labHE
	Operator Implementation
	Classification of Crypt Programs

	Crypt Security Analysis
	Crypt Optimizations
	DP Index Optimization
	Crypto-Engineering Optimizations

	Experimental Evaluation
	Methodology
	End-to-end Accuracy Comparison
	Performance Gain From Optimizations
	Scalability
	Communication Costs

	Extension of Crypt to the Malicious Model
	Approach 1
	Approach 2

	Related Work
	Conclusions

	 Strengthening Order Preserving Encryption with Differential Privacy
	Brief Overview of Key Ideas
	Background
	Differential Privacy
	Order Preserving Encryption

	-dLDP Order Preserving Encoding (OPc)
	Definition of OPc
	Construction of OPc

	-dDP Order Preserving Encryption (OP)
	Definition of OP
	New Security Definition for OP

	OP and Inference Attacks
	OP for Encrypted Databases
	LDP Mechanisms using OPc
	Ordinal Queries
	Frequency Estimation

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Discussion
	Related Work
	Conclusion

	 EIFFeL: Ensuring Integrity for Federated Le- arning
	Problem Overview
	Problem Setting
	Security Goals
	Threat Model
	Solution Overview

	Secure Aggregation with Verified Inputs
	EIFFeL System Description
	Cryptographic Building Blocks
	System Building Blocks
	EIFFeL Workflow
	Complexity Analysis

	Security Analysis
	EIFFeL Optimizations
	Probabilistic Reconstruction
	Crypto-Engineering Optimizations

	Experimental Evaluation
	Performance Evaluation.
	Integrity Guarantee Evaluation

	Extension to Differential Privacy
	Discussion
	Related Work
	Conclusion

	 Conclusion
	LIST OF REFERENCES

