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ABSTRACT

Data is the new oil of the 21st century. The modern data economy is built on a two-pronged

approach: (1) collect large amounts of data from diverse domains, and (2) efficiently analyze

the data at scale to glean useful information. Its success and continued sustenance is rooted

in the ubiquity of technology in our daily lives – every individual carrying a smart device

today constitutes a source of data. This has resulted in a distributed data ecosystem where

the data collected often comprises sensitive, personal information. Hence, there is an urgent

need to develop technical solutions that can support analysis over distributed data without

violating data privacy.

Over the past few years, differential privacy (DP) has emerged as the de-facto standard for

achieving data privacy. On the other hand, modern cryptography has been the backbone of

building secure systems in the presence of mutually distrusting parties for over three decades

now. Traditionally, DP and cryptography have been studied in isolation from each other.

In this dissertation, we show that moving forward, privacy concerns of modern applications

can be addressed by combining techniques from both DP and cryptography. We present three

directions for leveraging this synergy to develop privacy-first solutions that (1) provide formal

privacy guarantees, (2) support high utility data analysis, and (3) are practical for real-world

usage. First, we present Cryptϵ, a system that demonstrates how cryptography can enable

high utility differentially private query analytics on distributed data. Second, we present

OPϵ, a novel differentially private order-preserving encryption scheme that allows efficient

data analysis involving the order of the data on an untrusted server. Finally, we present

EIFFeL that allows privacy-preserving decentralized learning by co-designing both DP and



vii

cryptography. Through the work presented in this dissertation, we show that it is possible

for us to enjoy the benefits of modern computing while protecting the privacy of our data.
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Chapter 1

Introduction

The landscape of data privacy has changed in the 21st century due to a multitude of reasons.

First, machine learning (ML) has become ubiquitous in our lives. Ranging from spam filtering

for emails to diagnosing cancer, ML is driving almost all the decision-making in modern

society. The success of ML is rooted in the continued availability of large amounts of data

from diverse domains. Consequently, there has been an explosion in the amount of personal

data being collected and analyzed. In fact, every individual today constitutes a source of

data, owing to our daily interactions with smart devices. This has led to the development of

a decentralized data ecosystem which consists of multiple resource constrained data owners

(clients) and a resource-heavy service provider (server), aiming at performing analysis on

the joint dataset. Second, we spend more than quarter of our lives online today [Lov19],

leaving behind a massive digital footprint. With access to such rich auxiliary information

about individuals just a Google search away, adversaries are now more powerful than ever

– the extent of privacy attacks range from de-identification of anonymized records to full

data reconstruction [Cen20]. Hence, the threat of privacy violation is becoming increasingly

real, as evident from the plethora of recent privacy breach incidents [dat16a,dat16b,dat17a,

dat17b,dat18,dat19]. Finally, public awareness about the urgency of ensuring data privacy

is growing. For instance, in 2017, a landmark decision by the Supreme Court of India

granted her 1.3 billion citizens the Right to Privacy [SC17]. Additionally, several government

agencies across the world have introduced privacy regulations, such as EU’s GDPR [gdp]

and California’s CCPA [ccp], that make companies legally obligated to uphold the privacy

of individuals. Hence, a key question facing us today is:

How to disseminate results of data analysis on sensitive data, that is distributed

across multiple parties, without violating privacy?

An emerging answer to the question of safe dissemination of the outputs of data analysis

is differential privacy (DP). DP limits the amount of information leaked by an algorithm.
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Semantically, this provides a rigorous guarantee of privacy for individuals in a dataset, regard-

less of an adversary’s auxiliary knowledge [TSD20]. DP is currently the de-facto standard for

data privacy and has been adopted by both government agencies [Cen20,MKA+08,VSA17]

as well as major commercial organizations, such as Microsoft [DKY17], Apple [Gre16],

Google [EPK14,FPE15] and Uber [JNS18]. It is characterized by a parameter ϵ > 0 where

lower the value of ϵ, greater the privacy achieved.

On the other hand, modern cryptography is the backbone of building secure systems and

holds the key to the problem of secure data analysis over distributed data. Specifically,

multi-party computation (MPC) enables multiple mutually distrusting parties to collaborate

and compute over their joint dataset without seeing the data. Tremendous advancement

have been made over the past few decades towards the goal of making secure computation

practical for real-world usage.

Traditionally, DP and cryptography have been studied in isolation from each other. However,

as motivated above, DP and cryptography are complementary techniques that are key to

addressing the privacy concerns of modern applications. We argue that combining techniques

from the two areas would lead to mutually beneficial solutions that pushes the frontiers of

practical deployment of privacy-first technologies. In this dissertation, we explore the

synergy between DP and cryptography through novel algorithms that expose

the rich interconnections between the two areas, both in theory and practice.

Specifically, we explore three paradigms: (1) Cryptography for DP, (2) DP for Cryptography,

and (3) Co-design of DP and Cryptography.

1.1 Contributions

(1) Cryptography for DP

Two popular models of DP are centralized differential privacy (CDP) and local differential

privacy (LDP). In CDP, data from individuals are collected and stored in the clear in a

trusted centralized data curator which then executes DP programs on the sensitive data

and releases outputs to an untrusted data analyst. However, this assumption of a trusted

server is ill-suited in practice as it constitutes a single point of failure for data breaches,

and saddles the trusted curator with legal and ethical obligations to uphold data privacy.

Hence, most commercial deployments have opted for the alternative LDP model which does

not require a trusted curator; each individual perturbs their data using a DP algorithm. The

data analyst uses these noisy data to infer aggregate statistics of the datasets. For instance,

Microsoft follows the LDP model to collect Window’s usage statistics. LDP’s attractive

privacy properties, however, come at a cost. Under the CDP model, the expected additive

error for an aggregate count over a dataset of size n is at most Θ(1/ϵ) to achieve ϵ-DP. In
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contrast, under the LDP model, at least Ω(
√
n/ϵ) additive expected error must be incurred

by any ϵ-DP program, owing to the randomness of each data owner. In other words, under

the LDP model, for a database of a billion people, one can only learn properties that are

common to at least 30, 000 people. Under CDP, on the other hand, one can learn properties

that are shared by as few as a 100 people. The LDP model imposes additional penalties on

the algorithmic expressibility; there exists an exponential separation between the accuracy

and sample complexity of LDP and CDP algorithms. Thus, the LDP model operates under

more practical trust assumptions than CDP, but as a result incurs higher loss in data utility.

This raises the following question:

Is it possible to design a practical system that can bridge the trust-utility gap between

LDP and CDP?

Proposed Solution. Chapter 2 of the dissertation discusses Cryptϵ [RCWH+20], a sys-

tem and a programming framework for executing DP programs that: (1) never stores or

computes on sensitive data in the clear (2) achieves the accuracy guarantees and algorith-

mic expressibility of the CDP model. Cryptϵ employs a pair of untrusted but non-colluding

servers – Analytics Server (AS) and Cryptographic Service Provider (CSP). The AS executes

DP programs (like the data curator in CDP) but on encrypted records. The CSP initializes

and manages the cryptographic primitives, and collaborates with the AS to generate the pro-

gram outputs. Under the assumption that the AS and the CSP are semi-honest and do not

collude (a common assumption in cryptographic systems), Cryptϵ ensures ϵ-DP guarantee

for its programs via two cryptographic primitives – linear homomorphic encryption (LHE)

and garbled circuits.

(2) DP for Cryptography

Resource-constrained data owners often rely on outsourcing their data for efficient data

storage and management. However, as exposed by frequent mass data breaches, such out-

sourced data storage is vulnerable to privacy threats in practice. This has lead to a rapid

development of systems that aim to protect the data (even in the event of a whole-system

compromise) while enabling statistical analysis on the dataset. Encrypted database systems

that allow query computation over the encrypted data is a popular approach in this regard.

Typically such systems rely on property-preserving encryption schemes to enable efficient

computation. Order-preserving encryption (OPE) is one such cryptographic primitive that

preserves the numerical order of the plaintexts even after encryption. This allows actions like

sorting, ranking, and answering range queries to be performed directly over the encrypted

data. However, this efficiency of encrypted databases comes at a cost – such systems are
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vulnerable to inference attacks that can reveal the plaintexts with good accuracy. Most

of these attacks are inherent to any property-preserving encryption scheme – they do not

leverage any weakness in the cryptographic security guarantee of the schemes but are rather

carried out based on just the preserved property. For example, the strongest cryptographic

guarantee for OPEs (IND-FA-OCPA) informally states that only the order of the plaintexts

will be revealed from the ciphertexts. However, inference attacks can be carried out by lever-

aging only this ordering information. In contrast, an appealing property of DP is that any

post-processing (inferential) computation performed on the noisy output of a DP algorithm

does not incur additional privacy loss. This prompts the following question:

Is it possible to leverage the properties of DP for providing a formal security guarantee

for OPEs even in the face of inference attacks?

Proposed Solution. Chapter 3 discusses a novel differentially private order preserving

encryption scheme, OPϵ [CDJ+21], that combines the two approaches. Recall that standard

OPE schemes are designed to reveal nothing but the order of the plaintexts. Our proposed

scheme, OPϵ, ensures that this leakage of order is differentially private. In other words, the

cryptographic guaratantee of OPEs is bolstered with a layer of DP guarantee. As a result,

even if the cryptographic security guarantee of standard OPEs proves to be inadequate (in

the face of inference attacks), the DP guarantee would continue to hold true. Intuitively, the

reason behind is DP’s resilience to post-processing computations. To the best of our knowl-

edge, this is the first work to combine DP with a property-preserving encryption scheme.

(3) Co-design of DP and Cryptography

Federated learning (FL; [MMR+17]) is a learning paradigm for decentralized data in which

multiple clients collaborate with a server to train a machine-learning (ML) model. Each

client computes an update on its local training data and shares it with the server; the server

aggregates the local updates into a global model update. This allows clients to contribute to

model training without sharing their private data. However, the local updates can still reveal

information about a client’s private data [MSDCS19,BDF+18,ZLH19,YMV+21,NSH19]. FL

addresses this problem via a two-fold mechanism. First, a federated learner performs secure

aggregation – clients mask the updates they share, and the server can only recover the

aggregate in the clear. Next, suitable noise is added to the aggregate to guarantee DP which

protects the clients from any privacy violation arising from the aggregate itself.

An additional challenge is that the distributed nature of federated learning makes it vulnera-

ble to Byzantine failures wherein clients submit malformed updates to the server [BCMC19,

KMA+19, SKSM19a]. Specifically, one or more (colluding) malicious clients can ingest
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specially crafted inputs to stage poisoning attacks that can either reduce model accuracy

[BNL12,MZ15,FCJG20] or implant targeted back-doors in that model that can be exploited

later [CLL+17,BVH+18]. Even a single malformed update can significantly alter the trained

model [BMGS17b]. Thus, ensuring the well-formedness of the updates, i.e., upholding their

integrity is a primary task for ensuring robustness in federated learning. This problem is

especially challenging in the context of secure aggregation where the individual updates are

masked from the server which prevents any audits on them. These vulnerabilities in FL lead

to the research question:

How can a federated learner efficiently verify the integrity of clients’ updates without

violating their privacy?

Proposed Solution. In Chapter 4, we formalize this problem by proposing secure aggrega-

tion of verified inputs (SAVI, [CGJvdM21]) protocols that: (1) securely verify the integrity

of each local update, (2) aggregate only well-formed updates, and (3) release only the final

aggregate in the clear. A SAVI protocol allows for checking the well-formedness of updates

without observing them, thereby ensuring both the privacy and integrity of updates.

In order to demonstrate the feasibility of SAVI, we propose EIFFeL: a system that instantiates

a SAVI protocol that can perform any integrity check that can be expressed as an arithmetic

circuit with public parameters. This provides EIFFeL the flexibility to implement a plethora of

modern ML approaches that ensure robustness to Byzantine errors by checking the integrity

of per-client updates before aggregating them [SKSM19b,SKL17,XKG20,XKG19,LCW+20,

DMG+18,BVH+18,SH21]. EIFFeL is a general framework that empowers a federated learner

to deploy (multiple) arbitrary integrity checks of their choosing on the “masked” updates.

With EIFFeL, we take the first step towards designing aggregation protocols for federated

learning that ensures both input privacy and integrity. EIFFeL can be used as a building

block and easily extended to release differentially private aggregates.

In this dissertation, we show that it is possible to build practical systems that address the

privacy needs of modern applications by combining techniques from differential privacy and

cryptography. We present three directions for leveraging this synergy to develop privacy-first

solutions that (1) provide formal privacy guarantees, (2) support high utility data analysis,

and (3) are practical for real-world usage.
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Chapter 2

Cryptϵ: Crypto-Assisted Differential Pri-
vacy on Untrusted Servers

Differential privacy (DP) is typically implemented in one of two models – centralized differ-

ential privacy (CDP) and local differential privacy (LDP). In CDP, data from individuals are

collected and stored in the clear in a trusted centralized data curator which then executes DP

programs on the sensitive data and releases outputs to an untrusted data analyst. In LDP,

there is no trusted data curator. Rather, each individual perturbs his/her own data using a

(local) DP algorithm. The data analyst uses these noisy data to infer aggregate statistics of

the datasets. In practice, CDP’s assumption of a trusted server is ill-suited for many appli-

cations as it constitutes a single point of failure for data breaches, and saddles the trusted

curator with legal and ethical obligations to uphold data privacy. Hence, recent commercial

deployments of DP [EPK14,Gre16] have preferred LDP over CDP. However, LDP’s attractive

privacy properties comes at a cost. Under the CDP model, the expected additive error for

a aggregate count over a dataset of size n is at most Θ(1/ϵ) to achieve ϵ-DP. In contrast,

under the LDP model, at least Ω(
√
n/ϵ) additive expected error must be incurred by any

ϵ-DP program [BNO08,CSS12a,DJW13], owing to the randomness of each data owner. In

other words, under the LDP model, for a database of a billion people, one can only learn

properties that are common to at least 30, 000 people. Under CDP, on the other hand, one

can learn properties that are shared by as few as a 100 people. The LDP model in fact im-

poses additional penalties on the algorithmic expressibility; the power of LDP is equivalent

to that of the statistical query model [Kea98] and there exists an exponential separation

between the accuracy and sample complexity of LDP and CDP algorithms [KLN+08].

In this chapter, we strive to bridge the gap between LDP and CDP. We propose, Cryptϵ, a

system and a programming framework for executing DP programs that:

• never stores or computes on sensitive data in the clear, but still

• achieves the accuracy guarantees and algorithmic expressibility of the CDP model



7

Cryptϵ employs a pair of untrusted but non-colluding servers – Analytics Server (AS) and

Cryptographic Service Provider (CSP). The AS executes DP programs (like the data curator

in CDP) but on encrypted data records. The CSP initializes and manages the cryptographic

primitives, and collaborates with the AS to generate the program outputs. Under the as-

sumption that the AS and the CSP are semi-honest and do not collude (a common assumption

in cryptographic systems [NWI+13,NIW+13,GSB+17a,KKK+16,MZ17,GJJ+18,GSB+16]),

Cryptϵ ensures ϵ-DP guarantee for its programs via two cryptographic primitives – linear ho-

momorphic encryption (LHE) and garbled circuits. One caveat here is that due to the usage

of cryptographic primitives, the DP guarantee obtained in Cryptϵ is that of computational

differential privacy or SIM-CDP [MPRV09] (details in Chapter 3.4.2).

Cryptϵ provides a data analyst with a programming framework to author logical DP programs

just like in CDP. Like in prior work [McS09,ES15,ZMK+18], access to the sensitive data is

restricted via a set of predefined transformations operators (inspired by relational algebra)

and DP measurement operators (Laplace mechanism and Noisy-Max [DR14a]). Thus, any

program that can be expressed as a composition of the above operators automatically satisfies

ϵ-DP (in the CDP model) giving the analyst a proof of privacy for free. Cryptϵ programs

support constructs like looping, conditionals, and can arbitrarily post-process outputs of

measurement operators.

The main contributions of this work are:

• New Approach. We present the design and implementation of Cryptϵ, a novel system

and programming framework for executing DP programs over encrypted data on two

non-colluding and untrusted servers.

• Algorithm Expressibility. Cryptϵ supports a rich class of state-of-the-art DP pro-

grams expressed in terms of a small set of transformation and measurement operators.

Thus, Cryptϵ achieves the accuracy guarantees of the CDP model without the need for

a trusted data curator.

• Ease Of Use. Cryptϵ allows the data analyst to express the DP program logic using

high-level operators. Cryptϵ automatically translates this to the underlying imple-

mentation specific secure protocols that work on encrypted data and provides a DP

guarantee (in the CDP model) for free. Thus, the data analyst is relieved of all concerns

regarding secure computation protocol implementation.

• Performance Optimizations. We propose optimizations that speed up computation

on encrypted data by at least an order of magnitude. A novel contribution of this work
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Figure 2.1: Cryptϵ System

is a DP indexing optimization that leverages the fact that noisy intermediate statistics

about the data can be revealed.

• Practical for Real World Usage. For the same tasks, Cryptϵ programs achieve

accuracy comparable to CDP and 50× more than LDP for a dataset of size ≈ 30, 000.

Cryptϵ runs within 3.6 hours for a large class of programs on a dataset with 1 million

rows and 4 attributes.

• Generalized Multiplication Using LHE. Our implementation uses an efficient way

for performing n-way multiplications using LHE which maybe of independent interest.

2.1 Cryptϵ Overview

2.1.1 System Architecture

Figure 2.1 shows Cryptϵ’s system architecture. Cryptϵ has two servers: Analytics server

(AS) and Cryptographic Service Provider (CSP). At the very outset, the CSP records the

total privacy budget, ϵB (provided by the data owners), and generates the key pair, ⟨sk, pk⟩
(details in Chapter 3.2), for the encryption scheme. The data owners, DOi, i ∈ [m] (m =

number of data owners), encrypt their data records, Di, in the appropriate format with

the public key, pk, and send the encrypted records, D̃i, to the AS which aggregates them

into a single encrypted database, D̃. Next, the AS inputs logical programs from the data

analyst and translates them to Cryptϵ’s implementation specific secure protocols that work
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on D̃. A Cryptϵ program typically consists of a sequence of transformation operators followed

by a measurement operator. The AS can execute most of the transformations on its own.

However, each measurement operator requires an interaction with the CSP for (1) decrypting

the answer, and (2) checking that the total privacy budget, ϵB, is not exceeded. In this way,

the AS and the CSP compute the output of a Cryptϵ program with the data owners being

offline.

2.1.2 Cryptϵ Design Principles

Minimal Trust Assumptions. As mentioned above, the overarching goal of Cryptϵ is to

mimic the CDPmodel but without a trusted server. A natural solution for dispensing with the

trust assumption of the CDP model is using cryptographic primitives [BEM+17, CSU+18,

EFM+18, SHCGR+11, CSS12b, AHKM18b, RN10, DKM+06, BNO11, BHT+18]. Hence, to

accommodate the use of cryptographic primitives, we assume a computationally bounded

adversary in Cryptϵ. However, a generic m-party SMC would be computationally expensive.

This necessitates a third-party entity that can capture the requisite secure computation

functionality in a 2-party protocol instead. This role is fulfilled by the CSP in Cryptϵ. For

this two-server model, we assume semi-honest behaviour and non-collusion. This is a very

common assumption in the two-server model [NWI+13,NIW+13,GSB+17a,KKK+16,MZ17,

GJJ+18,GSB+16].

Programming Framework. Conceptually, the aforementioned goal of achieving the best

of both worlds can be obtained by implementing the required DP program using off-the-self

secure multi-party computation (SMC) tools like [EMP,MPC,Sca,ABY]. However, when it

comes to real world usage, Cryptϵ outperforms such approaches due to the following reasons.

First, without the support of a programming framework like that of Cryptϵ, every DP pro-

gram must be implemented from scratch. This requires the data analyst to be well versed

in both DP and SMC techniques; he/she must know how to implement SMC protocols, esti-

mate sensitivity of transformations and track privacy budget across programs. In contrast,

Cryptϵ allows the data analyst to write the DP program using a high-level and expres-

sive programming framework. Cryptϵ abstracts out all the low-level implementation details

like the choice of input data format, translation of queries to that format, choice of SMC

primitives and privacy budget monitoring from the analyst thereby reducing his/her burden

of complex decision making. Thus, every Cryptϵ program is automatically translated to

protocols corresponding to the underlying implementation.
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Second, SMC protocols can be prohibitively costly in practice unless they are carefully tuned

to the application. Cryptϵ supports optimized implementations for a small set of operators,

which results in efficiency for all Cryptϵ programs.

Third, a DP program can be typically divided into segments that (1) transform the private

data, (2) perform noisy measurements, and (3) post-process the noisy measurements without

touching the private data. A naive implementation may implement all the steps using SMC

protocols even though post-processing can be performed in the clear. Given a DP program

written in a general purpose programming language (like Python), automatically figuring out

what can be done in the clear can be subtle. In Cryptϵ programs, however, transformation

and measurement are clearly delineated, as the data can be accessed only through a pre-

specified set of operators. Thus, SMC protocols are only used for transformations and

measurements, which improves performance.

For example, the AHP algorithm for histogram release [ZCX+] works as follows: first, a

noisy histogram, Ĥ, is released using budget ϵ1. This is followed by post-processing steps of

thresholding, sorting and clustering resulting in H̄. Then a final histogram, H̃, is computed

with privacy budget ϵ − ϵ1. An implementation of the entire algorithm in a single SMC

protocol using the EMP toolkit [EMP] takes 810s for a dataset of size ≈ 30K and histogram

size 100. In contrast, Cryptϵ uses SMC protocols only for the first and third steps. Cryptϵ

automatically detects that the second post-processing step can be performed in the clear. A

Cryptϵ program for this runs in 238s (3.4× less time than that of the EMP implementation)

for the same dataset and histogram sizes.

Last, the security (privacy) proofs for just stand-alone cryptographic and DP mechanisms

can be notoriously tricky [BR06,LSL17]. Combining the two thus exacerbates the technical

complexity, making the design vulnerable to faulty proofs [HMFS17]. For example, given any

arbitrary DP program written under the CDP model, the distinction between intermediate

results that can be released and the ones which have to be kept private is often ambiguous.

An instance of this is observed in the Noisy-Max algorithm, where the array of intermediate

noisy counts is private. However, these intermediate noisy counts correspond to valid query

responses. Thus, an incautious analyst, in a bid to improve performance, might reuse a

previously released noisy count query output for a subsequent execution of the Noisy-Max

algorithm leading to privacy leakage. In contrast, Cryptϵ is designed to reveal nothing other

than the outputs of the DP programs to the untrusted servers; every Cryptϵ program comes

with an automatic proof of security (privacy). Referring back to the aforementioned exam-

ple, in Cryptϵ, the Noisy-Max algorithm is implemented as a secure measurement operator
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thereby preventing any accidental privacy leakage. The advantages of a programming frame-

work is further validated by the popularity of systems like PINQ [McS09], Featherweight

PINQ [ES15], Ektelo [ZMK+18] - frameworks for the CDP setting.

Data Owners are Offline. Recall, Cryptϵ’s goal is to mimic the CDP model with untrusted

servers. Hence, it is designed so that the data owners are offline after submitting their

encrypted records to the AS.

Low Burden on CSP. Cryptϵ views the AS as an extension of the analyst; the AS has a

vested interest in obtaining the result of the programs. Thus, we require the AS to perform

the majority of the work for any program; interactions with the CSP should be minimal

and related to data decryption. Keeping this in mind, the AS performs most of the data

transformations by itself (Table 2.3). Specifically, for every Cryptϵ program, the AS processes

the whole database and transforms it into concise representations (an encrypted scalar or

a short vector) which is then decrypted by the CSP. An example real world setting can be

when Google and Symantec assumes the role of the AS and the CSP respectively.

Separation of Logical Programming Framework and Underlying Physical Imple-

mentation. The programming framework is independent of the underlying implementation.

This allows certain flexibility in the choice for implementation. For example, we use one-

hot-encoding as the input data format (Chapter 4.1). However, any other encoding scheme

like range based encoding can be used instead. Another example is that for Cryptϵ, we use

ϵ-DP (pure DP) for our privacy analysis. However, other DP notions like (ϵ, δ)-DP, Rènyi

DP [Mir17a] can also be used instead. Similarly, it is straightforward to replace LHE with

the optimized HE scheme in [BGP+19] or garbled circuits with the ABY framework [DSZ15].

Yet another alternative implementation for Cryptϵ could be where the private database

is equally shared between the two servers and they engage in a secret share-based SMC

protocol for executing the DP programs. This would require both the servers to do almost

equal amount of work for each program. Such an implementation would be justified only if

both the servers are equally invested in learning the DP statistics and is ill-suited for our

context. A real world analogy for this can be if Google and Baidu decide to compute some

statistics on their combined user bases.

2.2 Background

In this chapter, we give a brief introduction to the definitions and primitives relevant to

Cryptϵ.
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2.2.1 Differential Privacy

Differential privacy is a quantifiable measure of the stability of the output of a randomized

mechanism to changes to its input.

Definition 1. An algorithm A satisfies ϵ-differential privacy (ϵ-DP), where ϵ > 0 is a privacy

parameter, iff for any two neighboring datasets D and D′ such that D = D′−t or D′ = D−t,
we have

∀S ⊂ Range(A),Pr
[
A(D) ∈ S

]
≤ eϵPr

[
A(D′) ∈ S

]
(2.1)

The above definition is sometimes called unbounded DP. A variant is bounded-DP where

neighboring datasets D and D′ have the same number of rows and differ in one row. Any

ϵ-DP algorithm also satisfies 2ϵ-bounded DP [LLSY16].

When applied multiple times, the DP guarantee degrades gracefully as follows.

Theorem 1. (Sequential Composition) If A1 and A2 are ϵ1-DP and ϵ2-DP algorithms with

independent randomness, then releasing A1(D) and A2(D) on database D satisfies ϵ1+ϵ2-DP.

Another important result is that any post-processing computation performed on the noisy

output of a differentially private algorithm does not degrade privacy.

Theorem 2. (Post-Processing) Let A : D 7→ R be a randomized algorithm that is ϵ-DP. Let

f : R 7→ R′ be an arbitrary randomized mapping. Then f ◦ A : D 7→ R′ is ϵ- DP.

The stability of a transformation operation is defined as

Definition 2. A transformation T is defined to be t-stable if for two datasets D and D′, we

have

|T (D)⊖ T (D′)| ≤ t · |D ⊖D′| (2.2)

where (i.e., D ⊖D′ = (D −D′) ∪ (D′ −D).

Transformations with bounded stability scale the DP guarantee of their outputs, by their

stability constant [McS09].

Theorem 3. If T is an arbitrary t-stable transformation on dataset D and A is an ϵ-DP

algorithm which takes output of T as input, the composite computation A◦T provides (ϵ · t)-
DP.
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2.2.2 Cryptographic Primitives

Linearly Homomorphic Encryption (LHE). If (M,+) is a finite group, an LHE scheme

for messages inM is:

• Key Generation (Gen). This algorithm takes the security parameter κ as input and

outputs a pair of secret and public keys, ⟨sk, pk⟩ $←− Gen(κ).

• Encryption (Enc). This is a randomized algorithm that encrypts a message, m ∈M,

using the public key, pk, to generate the ciphertext, c
$←− Encpk(m).

• Decryption (Dec). This uses the secret key, sk, to recover the plaintext, m, from the

ciphertext, c, deterministically.

In addition, LHE supports the operator ⊕ that allows the summation of ciphers as follows:

Operator ⊕. Let c1 ← Encpk(m1), . . . , ca ← Encpk(ma) and a ∈ Z>0. Then we have

Decsk(c1 ⊕ c2...⊕ ca) = m1 + . . .+ma.

One can multiply a cipher c ← Encsk(m) by a plaintext positive integer a by a repetitions

of ⊕. We denote this operation by cMult(a, c) such that Decsk
(
cMult(a, c)

)
= a ·m.

Labeled Homomorphic Encryption(labHE). Let (Gen,Enc,Dec) be an LHE scheme

with security parameter κ and message space M. Assume that a multiplication operation

exists in M, i.e., is a finite ring. Let F : {0, 1}s × L → M be a pseudo-random function

with seed space {0, 1}s( s= poly(κ)) and the label space L. A labHE scheme is defined as

• labGen(κ). Runs Gen(κ) and outputs (sk, pk).

• localGen(pk). For each user i and with the public key as input, it samples a random

seed σi ∈ {0, 1}s and computes pki = Encpk(σi) where σi is an encoding of σi as an

element ofM. It outputs (σi, pki).

• labEncpk(σi,m, τ). On input a message m ∈ M with label τ ∈ L from user i, it

computes b = F(σi, τ) (mask) and outputs the labeled ciphertext c = (a, d) ∈ M× C
with a = m − b (hidden message) in M and d = Encpk(b). For brevity we just use

notation labEncpk(m) to denote the above functionality, in the rest of paper.

• labDecsk(c). This functions inputs a cipher c = (a, d) ∈ M × C and decrypts it as

m = a−Decsk(d).

• labMult(c1, c2): On input two labHE ciphers c1 = (a1, d1) and c2 = (a2, d2), it com-

putes a ”multiplication” ciphertext e = labMult(c1, c2) = Encpk(a1, a2)⊕cMult(d1, a2)⊕
cMult(d2, a1). Observe that Decsk(e) = m1 ·m2 − b1 · b2.
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• labMultDecsk(d1, d2, e): On input two encrypted masks d1, d2 of two labHE ciphers

c1, c2, this algorithm decryts the output e of labMult(c1, c2) as m3 = Decsk(e) +

Decsk(d1) ·Decsk(d2) which is equals to m1 ·m2.

Garbled Circuit. Garbled circuit [Yao86,LP09a] is a generic method for secure computa-

tion. Two data owners with respective private inputs x1 and x2 run the protocol such that,

no data owner learns more than f(x1, x2) for a function f . One of the data owners, called

generator, builds a “garbled” version of a circuit for f and sends it to the other data owner,

called evaluator, alongside the garbled input values for x1. The evaluator, then, obtains the

garbled input for x2 from the generator via oblivious transfer and computes f(x1, x2).

2.3 Cryptϵ System Description

In this chapter, we describe Cryptϵ in detail. First, we start with workflow (Chapter 2.3.1),

followed by its modules (Chapter 2.3.2) and trust assumptions (Chapter 2.3.3).

2.3.1 Cryptϵ Workflow

Cryptϵ operates in three phases:

• Setup Phase. At the outset, data owners initialize the CSP with a privacy budget, ϵB,

which is stored in its Privacy Engine module. Next, the CSP’s Key Manager module

generates key pair (sk, pk) for labHE, publishes pk and stores sk.

• Data Collection Phase. In the next phase, each data owner encodes and encrypts

his/her record using the Data Encoder and Data Encryption modules and sends the

encrypted data records to the AS. The data owners are relieved of all other duties and

can go completely offline. The Aggregator module of the AS, then, aggregates these

encrypted records into a single encrypted database, D̃.

• Program Execution Phase. In this phase, the AS executes a Cryptϵ program pro-

vided by the data analyst. Cryptϵ programs (details in Chapters 2.4 and 2.5) access

the sensitive data via a restricted set of transformation operators, that filter, count or

group the data, and measurement operators, which are DP operations to release noisy

answers. Measurement operators need interactions with the CSP as they require (1) de-

cryption of the answer, and (2) a check that the privacy budget is not exceeded. These

functionalities are achieved by CSP’s Data Decryption and Privacy Engine modules.

The Setup and Data Collection phases occur just once at the very beginning, every subse-

quent program is handled via the corresponding Program Execution phase.
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2.3.2 Cryptϵ Modules

Cryptographic Service Provider (CSP)

• Key Manager. The Key Manager module initializes the labHE scheme for Cryptϵ

by generating its key pair, ⟨sk, pk⟩. It stores the secret key, sk, with itself and releases

the public key, pk. The CSP has exclusive access to the secret key, sk, and is the only

entity capable of decryption in Cryptϵ.

• Privacy Engine. Cryptϵ starts off with a total privacy budget of ϵB chosen by

the data owners. The choice of value for ϵB should be guided by social preroga-

tives [AS19,HGH+14,LC11] and is currently outside the scope of Cryptϵ. For execut-

ing any program, the AS has to interact with the CSP at least once (for decrypting

the noisy answer), thereby allowing the CSP to monitor the AS’s actions in terms of

privacy budget expenditure. The Privacy Engine module gets the program, P , and its

allocated privacy budget, ϵ, from the data analyst, and maintains a public ledger that

records the privacy budget spent in executing each such program. Once the privacy

cost incurred reaches ϵB, the CSP refuses to decrypt any further answers. This ensures

that the total privacy budget is never exceeded. The ledger is completely public allow-

ing any data owner to verify it.

• Data Decryption. The CSP being the only entity capable of decryption, any mea-

surement of the data (even noisy) has to involve the CSP. The Data Decryption module

is tasked with handling all such interactions with the AS.

Data Owners (DO)

• Data Encoder. Each data owner, DOi, i ∈ [m], has a private data record, Di, of

the form ⟨A1, ...Al⟩ where Aj is an attribute. At the very outset, every data owner,

DOi, represents his/her private record, Di, in its respective per attribute one-hot-

encoding format. The one-hot-encoding is a way of representation for categorical at-

tributes and is illustrated by the following example. If the database schema is given

by ⟨Age,Gender⟩, then the corresponding one-hot-encoding representation for a data

owner, DOi, i ∈ [m], with the record ⟨30,Male⟩, is given by D̃i = ⟨[0, . . . , 0︸ ︷︷ ︸
29

, 1, 0, . . . , 0︸ ︷︷ ︸
70

], [1, 0]⟩.

• Data Encryption. The Data Encryption module stores the public key pk of labHE

which is announced by the CSP. Each data owner, DOi, i ∈ [m], performs an element-

wise encryption of his/her per attribute one-hot-encodings using pk and sends the



16

encrypted record, D̃i, to the AS via a secure channel. This is the only interaction

that a data owner ever participates in and goes offline after this.

Analytics Server (AS)

• Aggregator. The Aggregator collects the encrypted records, D̃i, from each of the

data owners, DOi, and collates them into a single encrypted database, D̃.

• Program Executor. This module inputs a logical Cryptϵ program, P , and privacy

parameter, ϵ, from the data analyst, translates P to the implementation specific secure

protocol and computes the noisy output with the CSP’s help.

2.3.3 Trust Model

There are three differences in Cryptϵ from the LDP setting:

• Semi-honest Model. We assume that the AS and the CSP are semi-honest, i.e., they

follow the protocol honestly, but their contents and computations can be observed by

an adversary. Additionally, each data owner has a private channel with the AS. For

real world scenarios, the semi-honest behaviour can be imposed via legal bindings.

Specifically, both the AS and the CSP can swear to their semi-honest behavior in legal

affidavits; there would be loss of face in public and legal implications in case of breach

of conduct.

• Non-collusion. We assume that the AS and the CSP are non-colluding, i.e., they avoid

revealing information [KMR11] to each other beyond what is allowed by the protocol

definition. This restriction can be imposed via strict legal bindings as well. Addition-

ally, in our setting the CSP is a third-party entity with no vested interested in learning

the program outputs. Hence, the CSP has little incentive to collude with the AS. Phys-

ical enforcement of the non-collusion condition can be done by implementing the CSP

inside a trusted execution environment (TEE) or via techniques which involve using a

trusted mediator who monitors the communications between the servers [AKL+09].

• Computational Boundedness. The adversary is computationally bounded. Hence,

the DP guarantee obtained is that of computational differential privacy or SIM-CDP

[MPRV09]. There is a separation between the algorithmic power of computational

DP and information-theoretic DP in the multi-party setting [MPRV09]. Hence, this

assumption is inevitable in Cryptϵ.



17

Table 2.1: Cryptϵ Operators

Types Name Notation Input Output Functionality

Transformation

CrossProduct ×Ai,Aj→A′(·) T̃ T̃ ′ Generates a new attribute A′ (in one-hot-coding) to represent

the data for both the attributes Ai and Aj

Project A∗(·) T̃ T̃ ′ Discards all attributes but A∗

Filter σϕ(·) T̃ B′ Zeros out records not satisfying ϕ in B

Count count(·) T̃ c Counts the number of 1s in B

GroupByCount γcountA (·) T̃ V Returns encrypted histogram of A

GroupByCountEncoded γ̃countA (·) T̃ Ṽ Returns encrypted histogram of A in one-hot-encoding

CountDistinct countD(·) V c Counts the number of non-zero values in V

Measurement
Laplace Lapϵ,∆(·) V nc V̂ Adds Laplace noise to V

NoisyMax NoisyMaxkϵ,∆(·) V P̂ Returns indices of the top k noisy values

2.4 Cryptϵ Operators

Let us consider an encrypted instance of a database, D̃, with schema ⟨A1, . . . , Al⟩. In this

chapter, we define the Cryptϵ operators (summarized in Table 2.1) and illustrate how to

write logical Cryptϵ programs for DP algorithms on D̃. The design of Cryptϵ operators are

inspired by previous work [ZMK+18,McS09].

2.4.1 Transformation operators

Transformation operators input encrypted data and output a transformed encrypted data.

These operators thus work completely on the encrypted data without expending any privacy

budget. Three types of data are considered in this context: (1) an encrypted table, T̃ , of

x rows and y columns/attributes where each attribute value is represented by its encrypted

one-hot-encoding; (2) an encrypted vector, V ; and (3) an encrypted scalar, c. In addition,

every encrypted table, T̃ , of x rows has an encrypted bit vector, B, of size x to indicate

whether the rows are relevant to the program at hand. The i-th row in T̃ will be used for

answering the current program only if the i-th bit value of B is 1. The input to the first

transformation operator in Cryptϵ program is D̃ with all bits of B set to 1. For brevity, we

use just T̃ to represent both the encrypted table, T̃ , and B. The transformation operators

are:

• CrossProduct ×(Ai,Aj)→A′(T̃ ). This operator transforms the two encrypted one-hot-

encodings for attributes Ai and Aj in T̃ into a single encrypted one-hot-encoding of

a new attribute, A′. The domain of the new attribute, A′, is the cross product of the

domains for Ai and Aj . The resulting table, T̃ ′, has one column less than T̃ . Thus,

the construction of the one-hot-encoding of the entire y-dimensional domain can be

computed by repeated application of this operator.



18

• Project πĀ(T̃ ). This operator projects T̃ on a subset of attributes, Ā, of the input

table. All the attributes that are not in Ā are discarded from the output table T̃ ′.

• Filter σϕ(T̃ ). This operator specifies a filtering condition that is represented by a

Boolean predicate, ϕ, and defined over a subset of attributes, Ā, of the input table, T̃ .

The predicate can be expressed as a conjunction of range conditions over Ā, i.e., for a

row r ∈ T̃ , ϕ(r) =
∧

Ai∈Ā (r.Ai ∈ VAi
), where r.Ai is value of attribute Ai in row r

and VA is a subset of values (can be a singleton) that Ai can take. For example, Age ∈
[30, 40]∧Gender =M can be a filtering condition. The Filter operator affects only the

associated encrypted bit vector of T̃ and keeps the actual table untouched. If any row,

r ∈ T̃ , does not satisfy the filtering condition, ϕ, the corresponding bit in B will be set

to labEncpk(0); otherwise, the corresponding bit value in B is kept unchanged. Thus

the Filter transformation suppresses all the records that are extraneous to answering

the program at hand (i.e., does not satisfy ϕ) by explicitly zeroing the corresponding

indicator bits and outputs the table, T̃ ′, with the updated indicator vector.

• Count count(T̃ ). This operator simply counts the number of rows in T̃ that are

pertinent to the program at hand, i.e. the number of 1s in its associated bit vector B.

This operator outputs an encrypted scalar, c.

• GroupByCount γcountA (T̃). The GroupByCount operator partitions the input table,

T̃, into groups of rows having the same value for an attribute, A. The output of this

transformation is an encrypted vector, V, that counts the number of unfiltered rows for

each value of A. This operator serves as a preceding transformation for other Cryptϵ

operators specifically, NoisyMax, CountDistinct and Laplace.

• GroupByCountEncoded γ̃countA (T̃). This operator is similar to GroupByCount. The

only difference between the two is that GroupByCountEncoded outputs a new table

that has two columns – the first column corresponds to A and the second column

corresponds to the number of rows for every value of A (in one-hot-encoding). This

operator is useful for expressing computations of the form “count the number of age

values having at least 200 records” (see P7 in Table 2.2).

• CountDistinct countD(V). This operator is always preceded by GroupByCount. Hence

the input vector, V, is an encrypted histogram for attribute, A, and this operator

returns the number of distinct values of A that appear in D̃ by counting the non-zero

entries of V .
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Cryptϵ Program Description

P1: ∀i ∈ [1, 100], ĉi ← Lapϵi,1(count(σAge∈(0,i](Age(D̃)))); postc.d.f ([ĉ1, . . . , ĉ100]) Outputs the c.d.f of Age with domain [1, 100].

P2: P̂ ← NoisyMax5ϵ,1(γ
count
Age (D̃)) Outputs the 5 most frequent age values.

P3: V̂ ← Lapϵ,2(γ
count
Race×Gender(Race×Gender(×Race,Gender→Race×Gender(D̃)))) Outputs the marginal over the attributes Race and Gender.

P4: V̂ ← Lapϵ,2(γ
count
Age×Gender(σNativeCountry=Mexico(Age×Gender,NativeCountry(×Age,Gender→Age×Gender(D̃))))) Outputs the marginal over Age and Gender for Mexican employees.

P5: ĉ← Lapϵ,1(count(σAge=30∧Gender=Male∧NativeCountry=Mexico(Age,Gender,NativeCountry(D̃)))) Counts the number of male employees of Mexico having age 30.

P6: ĉ← Lapϵ,2(countD(γcountAge (σGender=Male(Age,Gender(D̃))))) Counts the number of distinct age values for the male employees.

P7: ĉ← Lapϵ,2(count(σCount∈[200,m](γ̃
count
Age (Age(D̃))))) Counts the number of age values having at least 200 records.

Table 2.2: Examples of Cryptϵ Program

2.4.2 Measurement operators

The measurement operators take encrypted vector of counts, V (or a single count, c), as input

and return noisy measurements on it in the clear. These two operators correspond to two

classic DP mechanisms – Laplace mechanism and Noisy-Max [DR14a]. Both mechanisms

add Laplace noise, η, scaled according to the transformations applied to D̃.

Let the sequence of transformations applied on D̃ to get V be T̄ (D) = Tl(· · · T2((T1(D)))).

The sensitivity of a sequence of transformations is defined as the maximum change to the out-

put of this sequence of transformations [McS09] when changing a row in the input database,

i.e., ∆T̄ = maxD,D′ ∥T̄ (D)− T̄ (D′)∥1 where D and D′ differ in a single row. The sensitivity

of T̄ can be upper bounded by the product of the stability [McS09] of these transformation

operators, i.e., ∆T̄ =(Tl,...,T1) =
∏l

i=1∆Ti. The transformations in Table 2.1 have a stability

of 1, except for GroupByCount and GroupByCountEncoded which are 2-stable. Given ϵ and

∆T̄ , we define the measurement operators:

• Laplace Lapϵ,∆(V/c). This operator implements the classic Laplace mechanism [DR14a].

Given an encrypted vector, V , or an encrypted scalar, c, a privacy parameter ϵ and

sensitivity ∆ of the preceding transformations, the operator adds noise drawn from

Lap(2∆ϵ ) to V or c and outputs the noisy answer.

• NoisyMaxNoisyMaxkϵ,∆(V). Noisy-Max is a differentially private selection mechanism

[DR14a,GHIM19] to determine the top k highest valued queries. This operator takes

in an encrypted vector V and adds independent Laplace noise from Lap(2k∆ϵ ) to each

count. The indices for the top k noisy values, P̂, are reported as the desired answer.

2.5 Implementation

In this chapter, we describe the implementation of Cryptϵ. First, we discuss our proposed

technique for extending the multiplication operation of labHE to support n > 2 multiplicands

which will be used for the CrossProduct operator. Then, we describe the implementations of

Cryptϵ operators.
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Figure 2.2: genLabMult() - Batching of multiplicands for labHE

2.5.1 General n-way Multiplication for labHE

The labMult() operator of a labHE scheme allows the multiplication of two ciphers. However,

it cannot be used directly for a n-way muplication where n > 2. It is so because the

”multiplication” cipher e = labMult(c1, c2) does not have a corresponding label, i.e., it is

not in the correct labHE cipher representation. Hence, we propose Algorithm 1 to generate a

label τ ′ and a seed b′ for every intermediary product of two multiplicands so that it we can do

a generic n-way multiplication on the ciphers. Note that the mask r protects the value of (m1·
m2) from the CSP (Step 3) and b′ hides (m1 ·m2) from the AS (Step 6). For example, suppose

we want to multiply the respective ciphers of 4 messages {m1,m2,m3,m4} ∈ M4 and obtain

e = labEncpk(m1 ·m2 ·m3 ·m4). For this, the AS first generates e1,2 = labEncpk(m1 ·m2)

and e3,4 = labEncpk(m3 ·m4) using Algorithm 1. Both operations can be done in parallel in

just one interaction round between the AS and the CSP. In the next round, the AS can again

use Algorithm 1 with inputs e1,2 and e3,4 to obtain the final answer e. Thus for a generic

n − way multiplication the order of multiplication can be, in fact, parallelized as shown in

Figure 2.2 to require a total of ⌈log n⌉ rounds of communication with the CSP.

2.5.2 Operator Implementation

We now summarize how Cryptϵ operators are translated to protocols that the AS and CSP

can run on encrypted data.

Project πĀ(T̃ ). The implementation of this operator simply drops off all but the attributes

in Ā from the input table, T̃ , and returns the truncated table, T̃ ′.

Filter σϕ(T̃ ). The predicate ϕ in this operator is a conjunction of range conditions over Ā,

defined as: for a row r in input table T̃ , ϕ(r) =
∧

Aj∈Ā (r.Aj ∈ VAj
), where r.Aj is the

value of attribute Aj in row r and VAj
⊆ {0, 1, . . . , sAj

} (the indices for attribute values of

Aj with domain size sAj
).
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Algorithm 1: genLabMult - generate label for labMult

Input: c1 = (a1, d1) = labEncpk(m1) and c2 = labEncpk(m2) where a1 = m1 − b1,
d1 = Encpk(b1), a2 = m2 − b2, d2 = Encpk(b2)

Output: e = labEncpk(m1 ·m2)

AS:

1: Computes e′ = labMult(c1, c2)⊕ Encpk(r) where r is a random mask

�e′ corresponds to m1 ·m2 − b1 · b2 + r

2: Sends e′, d1, d2 to CSP

CSP:

3: Computes e′′ = Decsk(e
′) +Decsk(d1) ·Decsk(d2)

�e′′ corresponds to m1 ·m2 + r

4: Picks a seed σ′ and label τ ′ and computes b′ = F(σ′, τ ′)
5: Sends ē = (ā, d′) to AS, where ā = e′′ − b′ and d′ = Encpk(b

′)

�ā corresponds to m1 ·m2 + r − b′
AS:

6: Computes true cipher e = (a′, d′) where a′ = ā− r

First, we will show how to evaluate whether a row r satisfies r.Aj ∈ VAj
. Let ṽj be the

encrypted one-hot-encoding of Aj , then the indicator function can be computed as

Ir.Aj∈VAj
=
⊕

l∈VAj

ṽj [l].

If the attribute of Aj in r has a value in VAj
, then Ir.Aj∈VAj

equals 1; otherwise, 0.

Next, we can multiply all the indicators using genLabMult() to check whether all attributes

in Aj ∈ Ā of r satisfy the conditions in ϕ. Let Ā = {A1, . . . , Am}, then

ϕ(r) = genLabMult(IA1∈VA1
, . . . , IAm∈VAm

).

Last, we update the bit of r in B, i.e., B′[i] = labMult(B[i], ϕ(r)), given r is the ith row

in the input table. This step zeros out some additional records which were found to be

extraneous by some preceding filter conditions.

Note that when the Filter transformation is applied for the very first time in a Cryptϵ

program and the input predicate is conditioned on a single attribute A ∈ VA, we can directly

compute the new bit vector using Ir.A∈VA
, i.e., for the ith record r in input table T̃ , we have

B′[i] =
⊕

l∈VA
ṽj [l]. This avoids the unnecessary multiplication labMult(B[i], ϕ(r)).

CrossProduct ×Ai,Aj→A′(T̃ ). This operator replaces the two attributes Ai and Aj by a single

attribute A′. Given the encrypted input table T̃ , where all attributes are in one-hot-encoding
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and encrypted, the attributes of T̃ except Ai and Aj remain the same. For every row in T̃ ,

we denote the encrypted one-hot-encoding for Ai and Aj by ṽ1 and ṽ2. Let s1 and s2 be the

domain sizes of Ai and Aj respectively. Then the new one-hot-encoding for A′, denoted by

ṽ, has a length of s = s1 · s2. For l ∈ {0, 1, . . . , s− 1}, we have

ṽ[l] = labMult(ṽ1[l/s2], ṽ2[l%s2]).

Only one bit in ṽ for A′ will be encrypted 1 and the others will be encrypted 0s. When

merging more than two attributes, Cryptϵ uses the genLabMult() described in Chapter 2.5.1

to speed up the computation.

Count count(T̃ ).This operator simply adds up the bits in B corresponding to input table

T̃ , i.e.,
⊕

iB[i].

GroupByCount γcountA (T̃). The implementations for Project, Filter and Count are reused here.

First, Cryptϵ projects the input table T̃ on attribute A, i.e. T̃1 =A (T̃ ). Then, Cryptϵ loops

each possible value of A. For each value v, Cryptϵ initializes a temporary Bv = B and filters

T̃ ′ on A = v to get an updated B′
v. Finally, Cryptϵ outputs the number of 1s in B′

v.

GroupByCountEncoded γ̃countA (T̃). The implementation detail of this operator is given by Al-

gorithm ?? and described below. First, the AS uses GroupByCount to generate the encrypted

histogram, V , for attribute A. Since each entry of V is a count of rows, its value ranges

from {0, ..., |T̃ |}. The AS, then, masks V and sends it to the CSP. The purpose of this

mask is to hide the true histogram from the CSP. Next, the CSP generates the encrypted

one-hot-coding representation for this masked histogram Ṽ and returns it to the AS. The

AS can simply rotate Ṽ [i], i ∈ [|V |] by its respective mask value M [i] and get back the true

encrypted histogram in one-hot-coding Ṽ .

CountDistinct countD(V ). The implementation of this operator involves both AS and CSP.

Given the input encrypted vector of counts V of length s, the AS first masks V to form a new

encrypted vector V with a vector of random numbers M , i.e., for i ∈ {0, 1, . . . , s− 1}, V[i] =
V [i]⊕ labEncpk(M [i]). This masked encrypted vector is then sent to CSP and decrypted by

CSP to a plaintext vector V using the secret key.

Next, CSP generates a garbled circuit which takes (i) the mask M from the AS, and (ii) the

plaintext masked vector V and a random number r from the CSP as the input. This circuit

first removes the mask M from V to get V and then counts the number of non-zero entries

in V , denoted by c. A masked count c′ = c+ r is outputted by this circuit. CSP send both

the circuit and the encrypted random number labEncpk(r) to AS.
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Algorithm 2: GroupByCountEncoded γ̃countA (T̃)

Input: T̃

Output: Ṽ

AS:

1: Computes V = γcountA (T̃ ).

2: Masks the encrypted histogram V for attribute A as follows

V [i] = V[i]⊕ labEncpk(M [i])

M [i] ∈R [m], i ∈ [|V |]

3: Sends V to CSP.

CSP:

4: Decrypts V as V[i] = labDecsk(V), i ∈ [|V |].
5: Converts each entry of V to its corresponding one-hot-coding and encrypts it,

Ṽ [i] = labEncpk( ˜V[i]), i ∈ [|V |]
6: Sends Ṽ to AS.

AS:

7: Rotates every entry by its corresponding mask value to obtain the desired encrypted

one-hot-coding Ṽ [i].

Ṽ [i] = RightRotate(Ṽ ,M [i]), i ∈ [|V |]

Last, the AS evaluates this circuit to the masked count c′ and obtains the final output to

this operator: c = labEncpk(c
′)− labEncpk(r).

Laplace Lapϵ,∆(V /c): The Laplace operator has two phases (since both the AS and the CSP

adds Laplace noise). In the first phase, the AS adds an instance of encrypted Laplace noise,

η1 ∼ Lap(2∆ϵ ), to the encrypted input to generate ĉ. In the second phase, the CSP first

checks whether
∑t

i=1 ϵi+ ϵ ≤ ϵB where ϵi represents the privacy budget used for a previously

executed program, Pi (presuming a total of t ∈ N programs have been executed hitherto the

details of which are logged into the CSP’s public ledger). Only in the event the above check

is satisfied, the CSP proceeds to decrypt ĉ, and records ϵ and the current program details

(description, sensitivity) in the public ledger. Next, the CSP adds a second instance of the

Laplace noise, η2 ∼ Lap(2∆ϵ ), to generate the final noisy output, ĉ, in the clear. The Laplace

operator with an encrypted scalar, V , as the input is implemented similarly.

NoisyMax NoisyMaxkϵ,∆(Valid). The input to this operator is an encrypted vector of counts

V of size s. Similar to Laplace operator, both AS and CSP are involved. First, the AS
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adds to V an encrypted Laplace noise vector and a mask M , i.e., for i ∈ {0, 1, . . . , s},
V̂ [i] = V [i] ⊕ labEncpk(ηi) ⊕M [i], where ηi ∼ Lap(2k∆ϵ ). This encrypted noisy, masked

vector V̂ is then sent to the CSP.

The CSP first checks whether
∑t

i=1 ϵi + ϵ ≤ ϵB where ϵi represents the privacy budget used

for a previously executed program Pi (we presume that a total of t ∈ N programs have been

executed hitherto the details of which are logged into the CSP’s public ledger). Only in the

event the above check is satisfied, the CSP proceeds to decrypt V̂ using the secret key, i.e.,

for i ∈ {0, 1, . . . , s}, V̂ [i] = labDecsk(V̂ [i]). Next the CSP records ϵ and the current program

details in the public ledger. This is followed by the CSP adding another round of Laplace

noise to generate V̂ ′[i] = V̂ [i]⊕ labEncpk(η′i), where η′i ∼ Lap(2k∆ϵ ), i ∈ {0, 1, . . . , s}. (This

is to ensure that as long as one of the parties is semi-honest, the output does not violate

DP.) Finally, the CSP generates a garbled circuit which takes (i) the noisy, masked vector V̂

from the CSP, and (ii) the mask M from the AS as the input. This circuit will remove the

mask from V̂ to get the noisy counts V̂ ′ and find the indices of the top-k values in V̂ ′.

Finally, the AS evaluates the circuit above and returns the indices as the output of this

operator.

2.5.3 Classification of Cryptϵ Programs

Cryptϵ programs are grouped into three classes based on the number and type of interaction

between the AS and the CSP.

Class I: Single Decrypt Interaction Programs

For releasing any result (noisy) in the clear, the AS needs to interact at least once with the

CSP (via the two measurement operators) as the latter has exclusive access to the secret key.

Cryptϵ programs like P1, P2 and P3 (Table 2.2) that require only a single interaction of this

type fall in this class.

Class II: LabHE Multiplication Interaction Programs

Cryptϵ supports a n-way multiplication of ciphers for n > 2 as described in Chapter 2.5.1

which requires intermediate interactions with the CSP. Thus all Cryptϵ programs that require

multiplication of more than two ciphers need interaction with the CSP. Examples include P4

and P5 (Table 2.2).

Class III: Other Interaction Programs

The GroupByCountEncoded operator requires an intermediate interaction with the CSP. The

CountDistinct operator also uses a garbled circuit and hence requires interactions with the
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CSP. Therefore, any program with the above two operators, like P6 and P7 (Table 2.2),

requires at least two rounds of interaction.

2.6 Cryptϵ Security Analysis

In this chapter, we analysis the security guarantees of Cryptϵ in the semi-honest model using

the well established simulation argument [Ode09]. Cryptϵ takes as input a DP program, P ,

and a privacy parameter, ϵ, and translates P into a protocol, Π, which in turn is executed

by the AS and the CSP. In addition to revealing the output of the program P , Π also reveals

the number of records in the dataset, D. Let PCDP (D, ϵ/2) denote the random variable

corresponding to the output of running P in the CDP model under ϵ/2-DP (Definition 1).

We make the following claims:

• The views and outputs of the AS and CSP are computationally indistinguishable from

that of simulators with access to only PCDP (D, ϵ/2) and the total dataset size |D|.

• For every P that satisfies ϵ/2-DP (Definition 1), revealing its output (distributed identi-

cal to PCDP (D, ϵ/2)) as well as |D| satisfies ϵ-bounded DP, where neighboring databases

have the same size but differ in one row.

• Thus, the overall protocol satisfies computational differential privacy under the SIM-

CDP model.

Now, let PCDP
B (D, ϵ) denote the random variable corresponding to the output of running P

in the CDP model under ϵ-bounded DP such that PCDP
B (D, ϵ) ≡ (PCDP (D, ϵ/2), |D|).

Theorem 4. Let protocol Π correspond to the execution of program P in Cryptϵ. The views

and outputs of the AS and the CSP are denoted as V iewΠ
1 (P,D, ϵ), OutputΠ1 (P,D, ϵ) and

V iewΠ
2 (P,D, ϵ), OutputΠ2 (P,D, ϵ) respectively. Let ≡c denote computational indistinguisha-

bility. There exists Probabilistic Polynomial Time (PPT) simulators, Sim1 and Sim2, such

that:

• Sim1(P
CDP
B (D, ϵ)) is ≡c to (V iewΠ

1 (P,D, ϵ), OutputΠ(P,D, ϵ)), and

• Sim2(P
CDP
B (D, ϵ)) is ≡c to (V iewΠ

2 (P,D, ϵ), OutputΠ(P,D, ϵ)).

OutputΠ(P,D, ϵ)) is the combined output of the two parties1.

First, we present a proof sketch of the above theorem which is followed by the formal proof.

1Note that the simulators are passed a random variable PCDP
B (D, ϵ)), i.e., the simulator is given

the ability to sample from this distribution.
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Proof Sketch. The main ingredient for the proof is the composition theorem [Ode09], which

informally states: suppose a protocol, Πg
f , implements functionality f and uses function g as

an oracle (uses only input-output behavior of g). Assume that protocol Πg implements g and

calls to g in Πg
f are replaced by instances of Πg (referred to as the composite protocol). If

Πf and Πg are correct (satisfy the above simulator definition), then the composite protocol

is correct. Thus, the proof can be done in a modular fashion as long as the underlying

operators are used in a blackbox manner (only the input-output behavior are used and none

of the internal state are used).

Next, every Cryptϵ program expressed as a sequence of transformation operators followed

by a measurement operator, satisfies ϵ/2-DP (as in Definition 1). It is so because recall that

the measurement operators add noise from Lap(2·∆ϵ ) (Chapter 2.4.2) where ∆ denotes the

sensitivity of P (computed w.r.t to Definition 1) [DR14a,GHIM19]. However, Cryptϵ reveals

both the output of the program as well as the total size of the dataset D. While revealing

the size exactly would violate Definition 1, it does satisfy bounded -DP albeit with twice the

privacy parameter, ϵ – changing a row in D is equivalent to adding a row and then removing

a row.

Finally, since every program P executed on Cryptϵ satisfies ϵ-bounded DP, it follows from

Theorem 4 that every execution of Cryptϵ satisfies computational DP.

Formal Proof. Cryptϵ has nine operators (see Table 2.1).

• NoisyMax and CountDistinct use “standard” garbled circuit construction and their se-

curity proof follows from the proof of these schemes.

• All other operators except Laplace essentially use homomorphic properties of our en-

cryption scheme and thus there security follows from semantic-security of these scheme.

• The proof for the Laplace operator is given below.

The proof for an entire program P (which is a composition of these operators) follows from

the composition theorem [Ode09, Section 7.3.1]

We will prove the theorem for the Laplace operator. In this case the views are as follows (the

outputs of the two parties can simply computed from the views):

V iewΠ
1 (P,D, ϵ) = (pk, D̃, η1, P (D) + η2 + η1)

V iewΠ
2 (pk, sk, P,D, ϵ) = (η2, labEncpk(P (D) + η1))

The random variables η1 and η2 are random variables generated according to the Laplace

distribution Lap(2·∆ϵ ) where ∆ is the program sensitivity (computed w.r.t Definition 1).
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The simulators Sim1(z
B
1 ) (where z1 = (y1, |D|) is the random variable distributed according

to PCDP
B (D, ϵ)), y1 being the random variable distributed as PCDP (D, ϵ/2)) performs the

following steps:

• Generates a pair of keys (pk1, sk1) for the encryption scheme and generates random

data set D1 of the same size as D and encrypts it using pk1 to get D̃1.

• Generates η′1 according to the Laplace distribution Lap(2·∆ϵ ).

The output of Sim1(z1) is (D̃1, η
′
1, y1+ η

′
1). Recall that the view of the AS is (D̃, η1, P (D)+

η2 + η1). The computational indistinguishability of D̃1 and D̃ follows from the semantic

security of the encryption scheme. The tuple (η′1, y1 + η′1) has the same distribution as

(η1, P (D) + η2 + η1) and hence the tuples are computationally indistinguishable. Therefore,

Sim1(z1) is computational indistinguishable from V iewΠ
1 (P,D, ϵ).

The simulators Sim2(z2) (where z2 = (y2, |D|) is the random variable distributed according

to PCDP
B (D, ϵ)), y2 being the random variable distributed as PCDP (D, ϵ/2)) performs the

following steps:

• Generates a pair of keys (pk2, sk2) for our encryption scheme.

• Generates η′2 according to the Laplace distribution Lap(2·∆ϵ ).

The output of Sim2(z2) is (η
′
2, labEncpk(y2) + η′2). By similar argument as before Sim2(z2)

is computationally indistinguishable from V iewΠ
2 (P,D, ϵ).

Corollary 1. Protocol Π satisfies computational differential privacy under the SIM-CDP

notion [MPRV09].

Note that Theorem 4 assumes that AS and the CSP do not collude with the users (data

owners). However, if the AS colludes with a subset of the users, U , then Sim1 (Sim2) has

to be given the data corresponding to users in U as additional parameters. This presents no

complications in the proof (see the proof in [GJJ+18]). If a new user u joins, their data can

be encrypted and simply added to the database.

2.7 Cryptϵ Optimizations

In this chapter, we present the optimizations used by Cryptϵ.
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2.7.1 DP Index Optimization

This optimization is motivated by the fact that several programs, first, filter out a large

number of rows in the dataset. For instance, P5 in Table 2.2 constructs a histogram over

Age and Gender on the subset of rows for which NativeCountry is Mexico. Cryptϵ’s filter

implementation retains all the rows as the AS has no way of telling whether the filter condition

is satisfied. As a result, the subsequent GroupbyCount is run on the full dataset. If there were

an index on NativeCountry, Cryptϵ could run the GroupbyCount on only the subset of rows

with NativeCountry=Mexico. But an exact index would violate DP. Hence, we propose a

DP index to bound the information leakage while improving the performance.

At a high-level, the DP index on any ordinal attribute A is constructed as follows: (1)

securely sort the input encrypted database, D̃, on A and (2) learn a mapping, F , from the

domain of A to [1, |D̃|] such that most of the rows with index less than F(v), v ∈ domain(A),
have a value less than v. The secure sorting is done via the following garbled circuit that (1)

inputs D̃ (just the records without any identifying features) and indexing attribute A from

the AS (2) inputs the secret key sk from the CSP (3) decrypts and sort D on A (4) re-encrypt

the sorted database using pk and outputs D̃s = labEncpk(sort(D)). The mapping, F , must

be learned under DP, and we present a method for that below. Let P = (P1, . . . , Pk) be an

equi-width partition on the sorted domain of A such that each partition (bin) contains sA
k

consecutive domain values where sA is the domain size of A. The index is constructed using

a Cryptϵ program that firstly computes the noisy prefix counts, V̂ [i] =
∑

v∈∪i
l=1Pl

ctA,v + ηi

for i ∈ [k], where ηi ∼ Lap(2 ·k/ϵA) and ctA,v denotes the number of rows with value v for A.

Next, the program uses isotonic regression [HRMS10a] on V̂ to generate a noisy cumulative

histogram C̃ with non-decreasing counts. Thus, each prefix count in C̃ gives an approximate

index for the sorted database where the values of attribute A change from being in Pi to a

value in Pi+1. When a Cryptϵ program starts with a filter ϕ = A ∈ [vs, ve], we compute two

indices for the sorted database, is and ie, as follows. Let vs and ve fall in partitions Pi and

Pj respectively. If Pi is the first partition, then we set is = 0; otherwise set is to be 1 more

than the i− 1-th noisy prefix count from C̃. Similarly, if Pj is the last partition, then we set

ie = |D̃|; otherwise, we set ie to be the j +1-th noisy prefix count from C̃. This gives us the
DP mapping F . We then run the program on the subset of rows in [is, ie]. For example, in

Figure 2.3, the indexing attribute with domain {v1, · · · , v10} has been partitioned into k = 5

bins and if ϕ ∈ [v3, v6], is = C̃[1] + 1 = 6 and ie = C̃[3] = 13.

Lemma 1. Let P be the program that computes the mapping F . Let Π be the Cryptϵ

protocol corresponding to the construction of the DP index. The views and outputs of the

AS and the CSP are denoted as V iewΠ
1 (P,D, ϵA), OutputΠ1 (P,D, ϵA) and V iewΠ

2 (P,D, ϵA),
OutputΠ2 (P,D, ϵA) respectively. There exists PPT simulators Sim1 and Sim2 such that:
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• Sim1(P
CDP
B (D, ϵA)) ≡c (V iew

Π
1 (P,D, ϵA), OutputΠ(D, ϵA)), and

• Sim2(P
CDP
B (D, ϵ)) ≡c (V iew

Π
2 (P,D, ϵA), OutputΠ(D, ϵA)).

OutputΠ(P,D, ϵA)) is the combined output of the two parties

Proof. Recall that protocol Π consists of two parts; in the first part Π1, the AS obtains

the sorted encrypted database D̃s via a garbled circuit. Next Π2 computes F via a Cryptϵ

program. The security of the garbled circuit in Π1 follows from standard approaches [LP09b].

Hence, in this chapter we concentrate on Π2. The proof of the entire protocol Π follows from

the composition theorem [ [Ode09], Section 7.3.1]. The views of the servers for Π2 are as

follows:

V iewΠ2

1 (P,D, ϵA) = (pk, D̃, D̃s,F)
V iewΠ2

2 (pk, sk, P,D, ϵA) = (F)

The simulators Sim1(z1) (where z1 = (y1, |D|) is the random variable distributed according

to PCDP
B (D, ϵA), y1 being the random variable distributed as PCDP (D, ϵA/2)) performs the

following steps:

• Generates a pair of keys (pk1, sk1) for the encryption scheme and generates random

data set D1 of the same size as D and encrypts it using pk1 to get D̃1

• Generates another random dataset D2 of the same size and encrypts it with pk to get

D̃2.

The computational indistinguishability of D̃1 and D̃ follows directly from the semantic se-

curity of the encryption scheme. From the construction of the secure sorting algorithm, it

is evident that the records in D̃s cannot be associated back with the data owners by the

AS. This along with the semantic security of the encryption scheme ensures that D̃2 and

D̃s are computationally indistinguishable as well. The tuples (pk1, D̃1, D̃2, y1) has the same

distribution as (pk, D̃, D̃s,F) and hence are computationally indistinguishable. Therefore,

Sim1(z1) is computational indistinguishable from V iewΠ2

1 (P,D, ϵA).
For the simulator Sim2(z2) (where z2 = (y2, |D|) is the random variable distributed accord-

ing to PCDP
B (D, ϵA), y2 being the random variable distributed as PCDP (D, ϵA/2)), clearly

tuples (y2) and (F) have identical distribution. Thus, Sim2(z2) is also computationally in-

distinguishable from

V iewΠ2

2 (P,D, ϵA) thereby concluding our proof.

• Optimized feature. This optimization speeds up the program execution by reducing

the total number of rows to be processed for the program.
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Figure 2.3: Illustrative example for DP Index

• Trade-off. The trade-off is a possible increase in error as some of the rows that satisfy

the filter condition may not be selected due to the noisy index.

• Privacy Cost. Assuming the index is constructed with privacy parameter ϵA, the

selection of a subset of rows using it will be ϵA-bounded DP (Lemma 1). If ϵL is the

parameter used for the subsequent measurement primitives, then by Theorem 1, the

total privacy parameter is ϵA + ϵL.

Discussion. Here, we discuss the various parameters in the construction of a DP index.

The foremost parameter is the indexing attribute A which can be chosen with the help of

the following two heuristics. First, A should be frequently queried so that a large number of

queries can benefit from this optimization. Second, choose A such that the selectivity of the

popularly queried values of A is high. This would ensure that the first selection performed

alone on A will filter out the majority of the rows, reducing the intermediate dataset size to be

considered for the subsequent operators. The next parameter is the fraction of the program

privacy budget, ρ (ϵA = ρ ·ϵ where ϵ is the total program privacy budget) that should be used

towards building the index. The higher the value of ρ, the better is the accuracy of the index

(hence better speed-up). However, the privacy budget allocated for the rest of the program

decreases resulting in increased noise in the final answer. This trade-off is studied in Figures

2.5a and 2.5b in Chapter 2.8. Another parameter is the number of bins k. Finer binning

gives more resolution but leads to more error due to DP noise addition. Coarser binning

introduces error in indexing but has lower error due to noise. We explore this trade-off in

Figures 2.5c and 2.5d. To increase accuracy we can also consider bins preceding is and bins

succeeding ie. This is so because, since the index is noisy, it might miss out on some rows

that satisfy the filter condition. For example, in Figure 2.3, both the indices is = C̃[1]+1 = 6

and ie = C̃[3] = 14 miss a row satisfying the filter condition ϕ = A ∈ [v3, v6]; hence including

an extra neighboring bin would reduce the error.



31

Thus, in order to gain in performance, the proposed DP index optimization allows some DP

leakage of the data. This is in tune with the works in [MG18a,HMFS17,CCMS19a,GRR19a].

However, our work differs from earlier work in the fact that we can achieve pure DP (albeit

SIM-CDP). In contrast, previous work achieved a weaker version of DP, approximate DP

[BNS14], and added one-sided noise (i.e., only positive noise). One-sided noise requires

addition of dummy rows in the data, and hence increases the data size. However, in our

Cryptϵ programs, all the rows in the noisy set are part of the real dataset.

2.7.2 Crypto-Engineering Optimizations

DP Range Tree. If range queries are common, pre-compu-ted noisy range tree is a useful

optimization. For example, building a range tree on Age attribute can improve the accuracy

for P1 and P2 in Table 2.2. The sensitivity for such a noisy range tree is log sA where sA

is the domain size of the attribute on which the tree is constructed. Any arbitrary range

query requires access to at most 2 log sA nodes on the tree. Thus to answer all possible range

queries on A, the total squared error accumulated is O( s
2(log sA)2

ϵ ). In contrast for the naive

case, we would have incurred error O( s
3
A

ϵ ) [HRMS10a]. Note that, if we already have a DP

index on A, then the DP range tree can be considered to be a secondary index on A.

• Optimized Feature. The optimization reduces both execution time and expected

error when executed over multiple range queries.

• Trade-off. The trade-off for this optimization is the storage cost of the range tree

(O(2 · sA)).

• Privacy Cost. If the range tree is constructed with privacy parameter ϵR, then any

measurement on it is post-processing. Hence, the privacy cost is ϵR-bounded DP.

Precomputation. The CrossProduct primitive generates the one-hot-coding of data across

two attributes. However, this step is costly due to the intermediate interactions with the

CSP. Hence, a useful optimization is to pre-compute the one-hot-codings for the data across

a set of frequently used attributes Ā so that for subsequent program executions, the AS can

get the desired representation via simple look-ups. For example, this benefits P3 (Table 2.2).

• Optimized Feature. This reduces the execution time of Cryptϵ programs. The

multi-attribute one-hot-codings can be re-used for all subsequent programs.

• Trade-off. The trade-off is the storage cost (O(m · sĀ = m · ∏A∈Ā sA), m = the

number of data owners) incurred to store the multi-attribute one-hot-codings for Ā.
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• Privacy Cost. The computation is carried completely on the encrypted data, no

privacy budget is expended.

(3) Offline Processing. For GroupByCountEncoded, the CSP needs to generate the en-

crypted one-hot-codings for the masked histogram. Note that the one-hot-encoding represen-

tation for any such count would simply be a vector of (|D̃|−1) ciphertexts for ‘0’, labEncpk(0)
and 1 ciphertext for ‘1’, labEncpk(1). Thus one useful optimization is to generate these ci-

phertexts offline (similar to offline generation of Beaver’s multiplication triples [Bea95] used

in SMC). Hence, the program execution will not be blocked by encryption.

• Optimized Feature. This optimization results in a reduction in the run time of

Cryptϵ programs.

• Trade-off. A storage cost of O(m · sA) is incurred to store the ciphers for attribute A.

• Privacy Cost. The computation is carried completely on the encrypted data, no

privacy budget is expended.

2.8 Experimental Evaluation

In this chapter, we describe our evaluation of Cryptϵ along two dimensions, accuracy and

performance of Cryptϵ programs. Specifically, we address the following questions:

• Q1. Do Cryptϵ programs have significantly lower errors than that for the correspond-

ing state-of-the-art LDP implementations? Additionally, is the accuracy of Cryptϵ

programs comparable to that of the corresponding CDP implementations?

• Q2. Do the proposed optimizations provide substantial performance improvement over

unoptimized Cryptϵ?

• Q3. Are Cryptϵ programs practical in terms of their execution time and do they scale

well?

Evaluation Highlights:

• Cryptϵ can achieve up to 50× smaller error than the corresponding LDP implementation

on a data of size ≈ 30K (Figure 4.3). Additionally, Cryptϵ errors are at most 2× more

than that of the corresponding CDP implementation.

• The optimizations in Cryptϵ can improve the performance of unoptimized Cryptϵ by

up to 5667× (Table 2.3).



33

• A large class of Cryptϵ programs execute within 3.6 hours for a dataset of size 106, and

they scale linearly with the dataset size (Figure 2.6). The AS performs majority of the

work for most programs (Table 2.3).

2.8.1 Methodology

Programs. To answer the aforementioned questions, we ran the experiments on the Cryptϵ

programs previously outlined in Table 2.2. Specifically, we choose P1, P3, P5 and P7 since

these four cover all three classes of programs (Chapter 2.5.3) and showcase the advantages

for all of the four proposed optimizations.

Dataset. We ran our experiments on the Adult dataset from the UCI repository [AN10].

The dataset is of size 32, 651. For the scaling experiments (Figure 2.6), we create toy datasets

of sizes 100K and 1 million by copying over the Adult dataset.

Accuracy Metrics. Programs with scalar outputs (P5, P7) use absolute error |c− ĉ| where
c is the true count and ĉ is the noisy output. Programs with vector outputs (P1, P3) use

the L1 error metric given by Error =
∑

i |V [i] − V̂ [i]|, i ∈ [|V |] where V is the true vector

and V̂ is the noisy vector. We report the mean and s.t.d of error values over 10 repetitions.

Performance Metrics. We report the mean total execution time in seconds for each

program, over 10 repetitions.

Configuration. We implemented Cryptϵ in Python with the garbled circuit implemented

via EMP toolkit [EMP]. We use Paillier encryption scheme [Pai99]. All the experiments have

been performed on the Google Cloud Platform [GCP] with the configuration c2-standard-8.

For Adult dataset, Cryptϵ constructs a DP index optimization over the attributeNativeCoun-

try that benefits programs like P4 and P5. Our experiments assign 20% of the total program

privacy parameter towards constructing the index and the rest is used for the remaining pro-

gram execution. Cryptϵ also constructs a DP range tree over Age. This helps programs like

P1, P2 and P3. This is our default Cryptϵ implementation.

2.8.2 End-to-end Accuracy Comparison

In this chapter, we evaluate Q1 by performing a comparative analysis between the empirical

accuracy of the aforementioned four Cryptϵ programs (both optimized and unoptimized) and

that of the corresponding state-of-the-art LDP [WBLJ17a] and CDP (under bounded DP;

specifically, using the CDP view Cryptϵ is computationally indistinguishable from as shown

in Chapter 3.4.2) [DR14a] implementations.



34

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
Privacy Parameter ε

10−2

10−1

100

101

M
ea

n
L

1
E

rr
or

in
L

og
Sc

al
e

5667 X Speed Up

Unoptimized Cryptε
Cryptε
LDP
CDP

(a) Program 1

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Privacy Parameter ε

100

101

102

103

104

105

M
ea

n
L

1
E

rr
or

in
L

og
Sc

al
e

982.2 X Speed Up

(b) Program 3

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Privacy Parameter ε

10−1

100

101

102

103

104

M
ea

n
A

bs
ol

ut
e

E
rr

or
in

L
og

Sc
al

e

41 X Speed Up

(c) Program 5

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Privacy Parameter ε

0

10

20

30

40

50

60

M
ea

n
A

bs
ol

ut
e

E
rr

or

102 X Speed Up

(d) Program 7

Figure 2.4: Accuracy Analysis of Cryptϵ Programs

The first observation with respect to accuracy is that the mean error for a single frequency

count for Cryptϵ is at least 50× less than that of the corresponding LDP implementation.

For example, Figure 2.4b shows that for P3, ϵ = 0.1 results in a mean error of 599.7 as

compared to an error of 34301.02 for the corresponding LDP implementation. Similarly, P5

(Figure 2.4c) gives a mean error of only 58.7 for ϵ = 0.1. In contrast, the corresponding LDP

implementation has an error of 3199.96. For P1 (c.d.f on Age), the mean error for Cryptϵ

for ϵ = 0.1 is given by 0.82 while the corresponding LDP implementation has an error of 9.2.

The accuracy improvement on P7 (Figure 2.4d) by Cryptϵ is less significant as compared

to the other programs, because P7 outputs the number of age values ([1− 100]) having 200

records. At ϵ = 0.1, at least 52 age values out of 100 are reported incorrectly on whether

their counts pass the threshold. Cryptϵ reduces the error almost by half. Note that the

additive error for a single frequency count query in the LDP setting is at least Ω(
√
n/ϵ), thus

the error increases with dataset size. On the other hand, for Cryptϵ the error is of the order

Θ(1/ϵ), hence with increasing dataset size the relative the error improvement for Cryptϵ over

that of an equivalent implementation in LDP would increase.
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Table 2.3: Execution Time Analysis for Cryptϵ Programs

Time in (s) Program

1 3 5 7

Unoptimized Cryptϵ

AS 1756.71 6888.23 650.78 290

CSP 0.26 6764.64 550.34 30407.73

Total 1756.97 13652.87 1201.12 30697.73

Cryptϵ
Total 0.31 13.9 29.21 299.5

Speed Up × 5667.64 982.2 41.1 102.49

For P1 (Figure 2.4a), we observe that the error of Cryptϵ is around 5× less than that

of the unoptimized implementation. The reason is that P1 constructs the c.d.f over the

attribute Age (with domain size 100) by first executing 100 range queries. Thus, if the total

privacy budget for the program is ϵ, then for unoptimized Cryptϵ, each query gets a privacy

parameter of just ϵ
100 . In contrast, the DP range tree is constructed with the full budget

ϵ and sensitivity ⌈log 100⌉ thereby resulting in lesser error. For P5 (Figure 2.4c) however,

the unoptimized implementation has slightly better accuracy (around 1.4×) than Cryptϵ. It

is because of two reasons; first, the noisy index on NativeCountry might miss some of the

rows satisfying the filter condition (NativeCountry=Mexico). Second, since only 0.8% of

the total privacy parameter is budgeted for the Laplace operator in the optimized program

execution, this results in a higher error as compared to that of unoptimized Cryptϵ. However,

this is a small cost to pay for achieving a performance gain of 41×. The optimizations for

P3 (Figure 2.4b) and P7 (Figure 2.4d) work completely on the encrypted data and do not

expend the privacy budget. Hence they do not hurt the program accuracy in any way.

Another observation is that for frequency counts the error of Cryptϵ is around 2× higher

than that of the corresponding CDP implementation. This is intuitive because we add two

instances of Laplace noise in Cryptϵ (Chapter 2.5.2). For P1, the CDP implementation also

uses a range tree.

2.8.3 Performance Gain From Optimizations

In this chapter, we evaluate Q2 (Table 2.3) by analyzing how much speed-up is brought

about by the proposed optimizations in the program execution time.

DP Index. For P5, we observe from Table 2.3 that the unoptimized implementation takes

around 20 minutes to run. However, a DP index over the attribute NativeCountry reduces

the execution time to about 30s giving us a 41× speed-up. It is so because, only about 2%
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of the data records satisfy NativeCountry=Mexico. Thus the index drastically reduces the

number of records to be processed for the program.

Additionally, we study the dependency of the accuracy and execution time of P5 implemented

with the DP index on three parameters – (1) fraction of privacy budget ρ used for the index

(2) total number of domain partitions (bins) considered (3) number of neighboring bins

considered. The default configuration for Cryptϵ presented in this chapter uses ϵ = 2.2,

ρ = 0.2, total 10 bins and considers no extra neighboring bin.

In Figure 2.5a and 2.5b we study how the mean error and execution time of the final result

varies with ρ for P5. From Figure 2.5a, we observe that the mean error drops sharply from

ρ = 0.1 to ρ = 0.2, stabilises till ρ = 0.5, and starts increasing again. This is because, at

ρ = 0.2, the index correctly identifies almost all the records satisfying the Filter condition.

However, as we keep increasing ρ, the privacy budget left for the program after Filter (Laplace

operator) keeps decreasing resulting in higher error in the final answer. From Figure 2.5b,

we observe that the execution time increases till ρ = 0.5 and then stabilizes; the reason is

that the number of rows returned after ρ = 0.5 does not differ by much.

We plot the mean error and execution time for P5 by varying the total number of bins from

2 to 40 (domain size of NativeCountry is 40) in Figure 2.5c and 2.5d respectively. From

Figure 2.5c, we observe that the error of P5 increases as the number of bins increase. It is

so because from the computation of the prefix counts (Chapter 2.7.1), the amount of noise

added increases with k (as noise is drawn from Lap(kϵ )). Figure 2.5d shows that the execution

time decreases with k. This is intuitive because increase in k results in smaller bins, hence

the number of rows included in [is, ie] decreases.

To avoid missing relevant rows, more bins that are adjacent to the chosen range [is, ie] can be

considered for the subsequent operators. We increase the number of neighbouring bins from

0 to 8. As shown in Figure 2.5e, the error decreases and all the relevant rows are included

when 4 neighbouring bins are considered. However, the execution time naturally increases

with extra neighbouring bins as shown in Figure 2.5f.

DP Range Tree. For P1, we see from Table 2.3 that the total execution time of the

unoptimized Cryptϵ implementation is about half an hour. However, using the range tree

optimization reduces the execution time by 5667×. The reason behind this huge speed-up is

that the time required by the AS in the optimized implementation becomes almost negligible

because it simply needs to do a memory fetch to read off the answer from the pre-computed

range tree.
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Pre-computation. For P3, the unoptimized execution time on the dataset of 32561 records

is around 4 hours (Table 2.3). This is so because the CrossProduct operator has to perform

10 · 32561 labMult operations which is very time consuming. Hence, pre-computing the

one-hot-codings for 2-D attribute over Race and Gender is very useful; the execution time

reduces to less than a minute giving us a 982.2× speed up.

Offline Processing. The most costly operator for P7 is the GroupByCountEncoded operator

since the CSP has to generate ≈ 3300K ciphertexts of 0 and 1 for the encrypted one-hot-

codings. This results in a total execution time of about 8.5 hours in unoptimized Cryptϵ.

However, by generating the ciphertexts off-line, the execution time can be reduced to just 5

minutes giving us a speed up of 102.49×.

Another important observation from Table 2.3 is that the AS performs the major chunk of

the work for most program executions. This conforms with our discussion in Chapter 2.1.2.

2.8.4 Scalability

In this chapter, we evaluate Q3 by observing the execution times of the aforementioned four

Cryptϵ programs for dataset sizes up to 1 million. As seen from Figure 2.6, the longest

execution time (P7) for a dataset of 1 million records is ≈ 3.6 hours; this shows the practical

scalability of Cryptϵ. All the reported execution times are for default setting. For P1 we

see that the the execution time does not change with the dataset size. This is so because

once the range tree is constructed, the program execution just involves reading the answer

directly from the tree followed by a decryption by the CSP. The execution time for the P3

and P7 is dominated by the ⊕ operation for the GroupByCount operator. The cost of ⊕ is

linear to the data size. Hence, the execution time for P3 and P7 increases linearly with the

data size. For P5, the execution time depends on the % of the records in the dataset that

satisfy the condition NativeCountry =Mexico (roughly this many rows are retrieved from

the noisy index).

2.8.5 Communication Costs

We use Paillier encryption scheme [Pai99] in our prototype Cryptϵ. This means that each

ciphertext is a random number in the group (Z/N2Z)∗ where N is a RSA moduli. Thus

sending an encrypted data record entails in each data owner sending
∑

j |domain(Aj)|, where
Aj is an attribute of the database schema, such numbers to the AS. Communication is also

needed for the measurement operators and GroupByCountEncoded where the AS needs to send

a ciphertext (or a vector of ciphertexts) to the CSP. Additionally operators like NoisyMax and

CountDistinct need a round of communication for the garbled circuit however these circuits
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Figure 2.5: Accuracy and performance of P5 at different settings of the DP index optimiza-

tion

are simple and dataset size independent. The most communication intensive operator is

the CrossProduct which requires log2m where m is the dataset size rounds of interactions.

However, this can be done as a part of pre-processing and hence does not affect the actual

program execution time. Hence overall, Cryptϵ programs are not communication intensive.

2.9 Extension of Cryptϵ to the Malicious Model

Here, we discuss how to extend the current Cryptϵ system to account for malicious adver-

saries. There can be two approaches for achieving this as follows.
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Figure 2.6: Scalability of Cryptϵ Programs

2.9.1 Approach 1

The first approach to extend Cryptϵ to the malicious threat model is to implement the CSP

inside a trusted execution environment (TEE) [NIW+13,BEM+17,ABFMO08]. This ensures

non-collusion (as the CSP cannot collude with the AS since its operations are vetted). The

measurement operators are implemented as follows (the privacy budget over-expenditure

checking remains unchanged from that in Chapter 2.5.2 and we skip re-describing it here).

Laplace Lapϵ,∆(V /c). The new implementation requires only a single instance of noise

addition by the CSP. The AS sends the ciphertext c to the CSP. The CSP decrypts the

ciphertext, adds a copy of noise, η ∼ Lap(2·∆ϵ ), and sends it to the AS.

NoisyMax NoisyMaxkϵ,∆(V). The new implementation works without the garbled circuit

as follows. The AS sends the vector of ciphertexts, V , to the CSP. The CSP computes

Ṽ [i] = labDecryptsk(V [i]) + η[i], i ∈ [|V |], where η[i] ∼ Lap(2k∆/ϵ) and outputs the indices

of the top k values of Ṽ .

Malicious AS. Recall that a Cryptϵ program, P , consists of a series of transformation

operators that transform the encrypted database, D̃, to a ciphertext, c (or an encrypted

vector, V ). This is followed by applying a measurement operator on c (or V ). Let P1

represent the first part of the program P up to the computation of c and let P2 represent the

subsequent measurement operator (performed by the CSP inside a TEE). In the malicious

model, the AS is motivated to misbehave. For example, instead of submitting the correct

cipher c = P1(D̃) the AS could run a different program P ′ on the record of a single data

owner only. Such malicious behaviour can be prevented by having the CSP validate the AS’s

work via zero knowledge proofs (ZKP) [Ode09] as follows (similar proof structure as prior

work [NWI+13]). Specifically, the ZKP statement should prove that the AS 1) runs the

correct program P1 2) on the correct dataset D̃. For this, the CSP shares a random one-

time MAC key, mki, i ∈ [m] with each of the data owners, DOi. Along with the encrypted
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record D̃i, DOi sends a Pedersen commitment [Ped92] Comi to the one-time MAC [KL14a]

on D̃i and a short ZKP that the opening of this commitment is a valid one-time MAC on

D̃i. The AS collects all the ciphertexts and proofs from the data owners and computes

c = P1(D̃1, · · · , D̃m). Additionally, it constructs a ZKP that c is indeed the output of

executing P1 on D̃ = {D̃1, · · · , D̃m} [CM99]. Formally, the proof statement is

c = P1(D̃1, · · · , D̃m) ∧ ∀i Open(Comi) =MACmki
(D̃i) (2.3)

The AS submits the ciphertext c along with all the commitments and proofs to the CSP.

By validating the proofs, the CSP can guarantee c is indeed the desired ciphertext. The

one-time MACs ensure that the AS did not modify or drop any of the records received from

the data owners.

Efficient Proof Construction. Here we will outline an efficient construction for the afore-

mentioned proof. First note that our setting suits that of designated verifier non-interactive

zero knowledge (DV NIZK) proofs. In a DV NIZK setting, the proofs can be verified by a

single designated entity (as opposed to publicly verifiable proofs) who possesses some secret

key for the NIZK system. Thus in Cryptϵ, clearly the CSP can assume the role of the desig-

nated verifier. This relaxation of public verifiability leads to boast in efficiency for the proof

system.

The authors in [CC17] present a framework for efficient DV NIZKs for a group-dependent

language L where the abelian group L is initiated on is of order N and ZN is the plaintext-

space of an homomorphic cryptosystem. In other words, this framework enables proving

arbitrary relations between cryptographic primitives such as Pedersen commitments or Pail-

lier encryptions via DV NIZK proofs, in an efficient way. In what follows, we show that the

proof statement given by Eq. (2.3) falls in the language L and consists of simple arithmetic

computations.

The construction of the proof works as follows. First the AS creates linearly homomorphic

commitments (we use Pederson commitments) Come
i on the encrypted data records D̃i and

proves that Comc = P1(Com
e
1, . . . , Com

e
m) where Open(Comc) = c. This is possible because

of the homomorphic property of the Pederson commitment scheme; all the operations in

P1 can be applied to {Come
i} instead. We use Paillier encryption scheme [Pai99] for our

prototype Cryptϵ construction and hence base the rest of the discussion on it. Paillier

ciphertexts are elements in the group (Z/N2Z)∗ where N is an RSA modulus. Pedersen

commitments to such values can be computed as Com = gxhr ∈ F∗
p, 0 ≤ r < N2, g, h ∈

F∗
p, Order(g) = Order(h) = N2, p is a prime such that p = 1mod N2. This allows us to

prove arithmetic relations on committed values modulo N2. Finally, the AS just needs to

show that Comi opens to a MAC of the opening of Come
i . For this, the MACs we use are
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built from linear hash functions H(x) = ax + b [NWI+13] where the MAC signing key is

the pair of random values (a, b) ∈ (Z/N2Z). Proving to the CSP that the opening of Comi

is a valid MAC on the opening of Come
i is a simple proof of arithmetic relations. Thus,

quite evidently an efficient DV NIZK proof for eq (2.3) can be supported by the framework

in [CC17]. To get an idea of the execution overhead for the ZKPs, consider constructing a

DV NIZK for proving that a Paillier ciphertext encrypts the products of the plaintexts of two

other ciphertexts requires (this could be useful for proving the validity of our Filter operator).

In the framework proposed in in [CC17], this involves 4logN bits of communication and the

operations involve addition and multiplication of group elements. Each such operation takes

order of 10−5s execution time, hence for proving the above statement for 1 mil ciphers will

take only a few tens of seconds.

Malicious CSP. Recall that our extension implements the CSP inside a TEE. Hence, this

ensures that the validity of each of CSP’s actions in the TEE can be attested to by the data

owners. Since the measurement operators (P2) are changed to be implemented completely

inside the CSP, this guarantees the bounded ϵ-DP guarantee of Cryptϵ programs even under

the malicious model. Additionally sending the CSP the true ciphers c = P1(D̃) also does

not cause any privacy violation as it is decrypted inside the TEE.

Validity of the Data Owner’s Records. The validity of the one-hot-coding of the

data records, D̃i, submitted by the data owners DOi can be checked as follows. Let D̃ij

represent the encrypted value for attribute Aj in one-hot-coding for DOi. The AS selects

a set of random numbers R = {rk | k ∈ [|domain(Aj)|]} and computes the set Pij =

{labMult(D̃ij [k],

labEncpk(rk))}. Then it sends sets Pij and R to the CSP who validates the record only if

|Pij ∩ R| = 1∀Aj . Note that since the CSP does not have access to the index information

of Pij and R (since they are sets), it cannot learn the value of Dij . Alternatively each data

owner can provide a zero knowledge proof for ∀j, k, Dij [k] ∈ {0, 1} ∧
∑

kDij [k] = 1.

2.9.2 Approach 2

Here, we describe the second approach to extend Cryptϵ to account for a malicious adver-

sary. For this we propose the following changes to the implementation of the measurement

operator.

Laplace Lap∆,ϵ(c/V ). Instead of having both the servers, AS and CSP add two separate

instances of Laplace noise to the true answer, single instance of the Laplace noise is jointly

computed via a SMC protocol [NH12,DKM+06] as follows. First the AS adds a random

mask M to the encrypted input c to generate ĉ and sends it to the CSP. Next the CSP
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generates a garbled circuit that 1) inputs two random bit strings S1 and R1 from the AS 2)

inputs another pair of random strings S2 and R2 and a mask M ′ from the CSP 3) uses S1

and S2 to generate an instance of random noise, η ∼ Lap(2·∆ϵ ) using the fundamental law of

transformation of probabilities 4) uses R1⊕R2 as the randomness for generating a Pedersen

commitment for M ′, Com(M ′) 4) outputs c̃′ = ĉ+ labEncpk(η) + labEncpk(M
′), Com(M ′),

and labEncpk(r) (r is the randomness used for generating Com(M ′)). The CSP sends this cir-

cuit to the AS who evaluates the circuit and sends c̃′, Com(M ′), and labEncpk(r) back to the

CSP. Now, the CSP decrypts c̃′ and subtracts the mask M ′ to return c̃′ = labDecsk(c̃
′)−M ′

to the AS. Finally the AS can subtract out M to compute the answer c̃ = c̃′ −M . Note

that one can create an alternative circuit to the one given above which decrypts c̃ inside

the circuit. However, decrypting Pailler ciphertexts inside the garbled circuit is costly. The

circuit design given above hence results in a simpler circuit at the cost of an extra round of

communication.

NoisyMax NoisyMaxkϵ,∆(·). The AS sends a masked encrypted vector, V̂ to the CSP V̂ [i] =

V [i] +M [i], i ∈ [|V |]. The CSP generates a garbled circuit that 1) inputs the mask vector

M , a vector of random strings S1, a random number r and its ciphertext cr = labEncpk(r)

from the AS 2) inputs the secret key sk and another vector of random strings S2 the from the

CSP 3) checks if labDecsk(cr) == r, proceed to the next steps only if the check succeeds else

return −1 4) uses S1 and S2 to generate a vector η[i] ∼ Lap(2·k·∆ϵ ) using the fundamental law

of transformation of probabilities 5) computes V [i] = labDecsk(V̂ [i]) + η[i] −M [i] 6) finds

the indices of the top k highest values of V and outputs them. The CSP sends this circuit to

the AS who evaluates it to get the answer. Note that here we are forced to decrypt Paillier

ciphertexts inside the circuit because in order to ensure DP in the Noisy-Max algorithm, the

noisy intermediate counts cannot be revealed.

Malicious AS. Recall that a Cryptϵ program P consists of a series of transformation oper-

ators that transforms the encrypted database D̃ to a ciphertext c (or a vector of ciphertexts

V ). This is followed by applying a measurement operator on c (V ). Additionally, as shown

in the above discussion, in the very first step of the measurement operators the AS adds a

mask to c and sends the masked ciphertext ĉ = c+M to the CSP. For a given program P , let

P1 represent first part of the program up till the computation of c (V ). The zero knowledge

proof structure is very similar to the one discussed in the preceding chapter except for the

following changes. Now the CSP sends a one-time MAC key kAS to the AS as well and the

AS sends the masked ciphertext ĉ(or V̂ ), along with the commitments and zero knowledge

proofs from the data owners and an additional commitment to the one-time MAC on the
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mask M , ComAS and a proof for the statement

c = P1(D̃1, · · · , D̃m) ∧ ∀i Open(Comi) =MACmki
(D̃i)

∧ ĉ = c+ labEncpk(M) ∧ Open(ComAS) =MACkAS
(M)

The CSP proceeds with the rest of the computation only if it can validate the above proof.

As long as one of the bit strings (or vectors of bit strings) in {S1, S2} (and {R2, R2} in case of

the Laplace operator) is generated truly at random (in this case the honest CSP will generate

truly random strings), the garbled circuits for the subsequent measurement operators will

add the correct Laplace noise. Additionally, the mask M ′ prevents the AS from cheating in

the last round of communication with the CSP in the protocol. It is so because, if the AS

does not submit the correct ciphertext to the CSP in the last round, it will get back garbage

values (thereby thwarting any privacy leakage). Hence, this prevents a malicious AS from

cheating during any Cryptϵ program execution. Note that the construction of the ZKP is

similar to the one discussed in the preceding chapter and can be done efficiently via the

framework in [CC17].

Malicious CSP. As discussed in Chapter 2.3, the CSP maintains a public ledger with the

following information

• total privacy budget ϵB which is publicly known

• the privacy budget ϵ used up every time the AS submits a ciphertext for decryption

Since the ledger is public, the AS can verify whether the per program reported privacy budget

is correct preventing any disparities in the privacy budget allocation.

Recall that the CSP receives a masked cipher ĉ from the AS at the beginning of the measure-

ment operators. The mask M protects the value of c from the CSP. We discuss the setting

of a malicious CSP separately for the two measurement operators as follows.

Laplace. In case of the Laplace operator, a malicious CSP can cheat by 1) the generated

garbled circuit does not correspond to the correct functionality 2) reports back incorrect

decryption results. The correctness of the garbled circuit can be checked by standard mech-

anisms [WRK17] where the AS specifically checks that a) the circuit functionality is correct

b) the circuit uses the correct value for ĉ. For the second case, the CSP provides the AS with

a zero knowledge proof for the following statement

Open(Com(M ′), r) = labDecsk(c̃
′)− c̃′

NoisyMax. The garbled circuit for the NoisyMax operator is validated similarly by standard

mechanisms [WRK17] where the AS checks a) whether the circuit implements the correct
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functionality b) the correct value of V̂ is used. Note that the equality check of step (3) in

the circuit validates if the CSP has provided the correct secret key sk thereby forcing it to

decrypt the ciphertexts correctly.

Note that certain operators like CrossProduct, GroupByCount* and CountDistinct the involve

interactions with the CSP as well but their validity can also be proven by standard techniques

similar to the ones discussed above. Specifically CrossProduct and GroupByCount* can use

zero knowledge proof in the framework [CC17] while the garbled circuit in CountDistinct can

use [WRK17].

2.10 Related Work

Differential Privacy. Introduced by Dwork et al. [DR14a], differential privacy has enjoyed

immense attention from both academia and industry in the last decade. We will discuss the

recent directions in two models of differential privacy: the centralized differential privacy

(CDP), and local differential privacy (LDP).

The CDP model assumes the presence of a trusted server which can aggregate all users’

data before perturb the query answers. This allows the design of a complex algorithm

that releases more accurate query answers than the basic DP mechanisms. For example, an

important line of work in the CDP model has been towards proposing “derived” mechanisms”

[CDPM18] or “revised algorithms” [BBDS12] from basic DP mechanisms (like exponential

mechanism, Laplace mechanism, etc.). The design of these mechanisms leverages on specific

properties of the query and the data, resulting in a better utility than the basic mechanisms.

One such technique is based on data partition and aggregation [ZCX+,HRMS10b,QYL13b,

ACC12,CPS+12,XZX+12,QYL13a,XWG10,CRJ20] and is helpful in answering histogram

queries. The privacy guarantees of these mechanisms can be ensured via the composition

theorems and the post-processing property of differential privacy [DR14a]. We would like

to extend Cryptϵ to support many of these algorithms. Recent work have also extended the

applicability of DP from its traditional domain of tabular data to other modalities such as

speech [ACFR20], eye-tracking data [LCFK21] and graphical models [CRJ20]. Extending

Cryptϵ to support different data modalities is an interesting direction.

The notion of LDP and related ideas has been around for a while [KLN+08,EGS03,War65].

Randomized response proposed by Warner in 1960s [War65] is one of the simplest LDP tech-

niques. The recent LDP research techniques [BS15,EPK14] focus on constructing a frequency

oracle that estimates the frequency of any value in the domain. However, when the domain

size is large, it might be computationally infeasible to construct the histogram over the entire

domain. To tackle this challenge, specialized and efficient algorithms have been proposed to
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compute heavy hitters [WLJ17,FPE15], frequent itemsets [QYY+16,WLJ18], and marginal

tables [CKS18, ZWL+18]. As the LDP model does not require a trusted data curator, it

enjoyed significant industrial adoption, such as Google [EPK14,FPE15], Apple [Gre16], and

Samsung [NXY+16].

Recently, it has been showed that augmenting randomized response mechanism with an

additional layer of anonymity in the communication channel can improve the privacy guar-

antees [BEM+17,EFM+18,MCCJ21]. The first work to study this was PROCHLO [BEM+17]

implementation by Google. PROCHLO necessitates this intermediary to be trusted, this is

implemented via trusted hardware enclaves (Intel’s SGX). However, as showcased by recent

attacks [VBMW+18], it is notoriously difficult to design a truly secure hardware in practice.

Motivated by PROCHLO, the authors in [EFM+18], present a tight upper-bound on the

worst-case privacy loss. Formally, they show that any permutation invariant algorithm satis-

fying ϵ-LDP will satisfy O(ϵ

√
log( 1

δ
)

n , δ)-CDP, where n is the data size. Cheu et al. [CSU+18]

demonstrate privacy amplification by the same factor for 1-bit randomized response by using

a mixnet architecture to provide the anonymity. This work also proves another important

result that the power of the mixnet model lies strictly between those of the central and local

models.

A parallel line of work involves efficient use of cryptographic primitives for differentially

private functionalities. Agarwal et al. [AHKM18b] proposed an algorithm for computing

histogram over encrypted data. Rastogi et al. [RN10] and Shi et al. [SHCGR+11] proposed

algorithms that allow an untrusted aggregator to periodically estimate the sum of n users’

values in a privacy preserving fashion. However, both schemes are irresilient to user failures.

Chan et al. [CSS12b] tackled this issue by constructing binary interval trees over the users.

Two-Server Model. The two-server model is a popular choice for privacy preserving ma-

chine learning techniques. Researchers have proposed privacy preserving ridge regression sys-

tems with the help of a cryptographic service provider [NWI+13,GJJ+18,GSB+17a]. While

the authors in [GSB+17a] use a hybrid multi-party computation scheme with a secure inner

product technique, Nikolaenko et al. propose a hybrid approach in [NWI+13] by combin-

ing homomorphic encryptions and Yao’s garbled circuits. Gascon et al. [GSB+16] extended

the results in [NWI+13] to include vertically partitioned data and the authors in [GJJ+18]

solve the problem using just linear homomorphic encryption. Zhang et al. in [MZ17] also

propose secure machine learning protocols using a privacy-preserving stochastic gradient

descent method. Their main contribution includes developing efficient algorithms for se-

cure arithmetic operations on shared decimal numbers and proposing alternatives to non-

linear functions such as sigmoid and softmax tailored for MPC computations. In [NIW+13]

and [KKK+16] the authors solve the problem of privacy-preserving matrix factorization.
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Both the papers use a hybrid approach combining homomorphic encryptions and Yao’s gar-

bled circuits for their solutions.

Homomorphic Encryption. With improvements made in implementation efficiency and

new constructions developed in the recent past, there has been a surge in practicable pri-

vacy preserving solutions employing homomorphic encryptions. A lot of the aforementioned

two-server models employ homomorphic encryption [NWI+13,NIW+13,GJJ+18,KKK+16].

In [HTG17,GBDL+16,CdWM+17] the authors enable neural networks to be applied to ho-

momorphically encrypted data. Linear homomorphic encryption is used in [GJK+18] to

enable privacy-preserving machine learning for ensemble methods while uses fully homomor-

phic encryption to approximate the coefficients of a logistic-regression model. [BCIV17] uses

somewhat-homomorphic encryption scheme to compute the forecast prediction of consumer

usage for smart grids.

2.11 Conclusions

We have proposed a system and programming framework, Cryptϵ, for differential privacy

that achieves the constant accuracy guarantee and algorithmic expressibility of CDP without

any trusted server. This is achieved via two non-colluding servers with the assistance of

cryptographic primitives, specifically LHE and garbled circuits. Our proposed system Cryptϵ

can execute a rich class of programs that can run efficiently by virtue of four optimizations.

Recall that currently the data analyst spells out the explicit Cryptϵ program to the AS.

Thus, an interesting future work is constructing a compiler for Cryptϵ that inputs a user

specified query in a high-level-language. The compiler should next formalize a Cryptϵ pro-

gram expressed in terms of Cryptϵ operators with automated sensitivity analysis. Another

direction is to support a larger class of programs in Cryptϵ. For example, inclusion of aggre-

gation operators such as sum, median, average is easily achievable. Support for multi-table

queries like joins would require protocols for computing sensitivity [JNS17] and data trun-

cation [KTH+19]. Yet another direction is enabling learning algorithms on Cryptϵ; linear

regression can be based on [GJJ+18] which also uses LHE and a two-server model. For this,

we need to extend Cryptϵ with a new primitive for matrix multiplications. For more in-

volved models like deep learning, DP techniques of [ACG+16] could be combined with the

homomorphic encryption techniques of CryptoNet [GBDL+16].



47

Chapter 3

Strengthening Order Preserving Encryption
with Differential Privacy

Frequent mass data breaches [dat16a,dat16b,dat17a,dat17b,dat18,dat19] of sensitive infor-

mation have exposed the privacy vulnerability of data storage in practice. This has lead to a

rapid development of systems that aim to protect the data while enabling statistical analysis

on the dataset, both in academia [ABE+13,CLM13,GbF14,KGM+14,PRZB11] and indus-

try [com16c, com16a, IQr16, Sch16, com16b]. Encrypted database systems that allow query

computation over the encrypted data is a popular approach in this regard. Typically, such

systems rely on property-preserving encryption schemes [BBO07,BCLO09] to enable efficient

computation. Order-preserving encryption (OPE) [Ker15,MRS18,PLZ13a] is one such cryp-

tographic primitive that preserves the numerical order of the plaintexts even after encryption.

This allows actions like sorting, ranking, and answering range queries to be performed di-

rectly over the encrypted data [AKSX04,GZ07,HILM02,KAK10,LPL+09,LW12,LW13].

However, encrypted databases are vulnerable to inference attacks [BGC+18,DDC16,GLMP18,

GLMP19a, GSB+17b, LP15, LMP18, NKW15, KPT20, KPT21, KPT19] that can reveal the

plaintexts with good accuracy. Most of these attacks are inherent to any property-preserving

encryption scheme – they do not leverage any weakness in the cryptographic security guaran-

tee of the schemes but rather exploit just the preserved property. For example, the strongest

cryptographic guarantee for OPEs (IND-FA-OCPA, see Chapter 3.2.2) informally states that

only the order of the plaintexts will be revealed from the ciphertexts. However, inference

attacks [GLMP18,GLMP19a,GSB+17b] can be carried out by leveraging only this ordering

information. The basic principle of these attacks is to use auxiliary information to estimate

the plaintext distribution and then correlate it with the ciphertexts based on the preserved

property [FVY+17].

Differential privacy (DP) has emerged as the de-facto standard for data privacy and is an

information theoretic guarantee that provides a rigorous guarantee of privacy for individuals
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in a dataset regardless of an adversary’s auxiliary knowledge [TSD20]. An additional ap-

pealing property of DP is that any post-processing computation, such as inference attacks,

performed on the noisy output of a DP algorithm does not incur additional privacy loss.

In this work, we ask the following question:

Is it possible to leverage the properties of DP for providing a formal security

guarantee for OPEs even in the face of inference attacks?

To this end, we propose a novel differentially private order preserving encryption scheme,

OPϵ. Recall that standard OPE schemes are designed to reveal nothing but the order of the

plaintexts. Our proposed scheme, OPϵ, ensures that this leakage of order is differentially

private. In other words, the cryptographic guaratantee of OPEs is strengthened with a

layer of DP guarantee (specifically, a relaxed definition of DP as discussed in the following

paragraph). As a result, even if the cryptographic security guarantee of standard OPEs

proves to be inadequate (in the face of inference attacks), the DP guarantee would continue

to hold true. Intuitively, the reason behind is DP’s resilience to post-processing computations

as discussed above. To our best knowledge, this is the first work to combine DP with a

property-preserving encryption scheme.

3.1 Brief Overview of Key Ideas

The standard DP guarantee requires any two pairs of input data to be indistinguishable from

each other (Chapter 3.2.1) and is generally catered towards answering statistical queries over

the entire dataset. However, in our setting we require the output of the DP mechanism to

retain some of the ordinal characteristics of its input – the standard DP guarantee is not

directly applicable to this case. Hence, we opt for a natural relaxation of DP– only pairs

of data points that are “close” to each other should be indistinguishable. Specifically, the

privacy guarantee is heterogeneous and degrades linearly with the ℓ1-distance between a pair

of data points. It is denoted by ϵ-dLDP (or ϵ-dDP in the central model of DP, Chapter

3.2). This relaxation is along the lines of dχ-privacy [CABP13] and is amenable to many

practical settings. For instance, consider a dataset of annual sale figures of clothing firms.

The information whether a firm is a top selling or a mid-range one is less sensitive than its

actual sales figures. Similarly, for an age dataset, whether a person is young or middle-aged

is less sensitive than their actual age.

DP guarantee inherently requires randomization – this entails an inevitable loss of utility,

i.e., some pairs of output might not preserve the correct order of their respective inputs.

In order to reduce the instances of such pairs, OPϵ offers the flexibility of preserving only
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a partial order of the plaintexts. Specifically, a (user specified) partition is defined on the

input domain and the preserved order is expected at the granularity of this partition. The

output domain is defined by a numeric encoding over the intervals of the partition and all

the elements belonging to the same interval are mapped to the corresponding encoding for

the interval (with high probability). Due to the linear dependence of the DP guarantee (and

consequently, the ratio of output probabilities) on the distance between the pair of inputs,

lower is the number of intervals in the partition, higher is the probability of outputting the

correct encoding in general (Chapter 3.3.2 and Chapter 3.8.2). OPϵ preserves the order

over this encoding. The reason why this results in better utility for encrypted databases

is illustrated by the following example. The typical usecase for OPE encrypted databases

is retrieving a set of records from the outsourced database that belong to a queried range.

Suppose a querier asks for a range query [a, b] and let P be a partition that covers the range

with k intervals {[s1, e1], · · · , [sk, ek]} such that s1 < a < e1 and sk < b < ek. A database

system encrypted under OPϵ and instantiated with the partition P will return all the records

that are noisily mapped to the range [s1, ek] (since the order is preserved at the granularity

of P). Thus, the querier has to pay a processing overhead of fetching extra records, i.e., the

records that belong to the ranges {[s1, a − 1], [b + 1, ek]}. However, if k < b − a, then with

high probability it would receive all the correct records in [a, b] which can be decrypted and

verified (Chapter 3.6). To this end, we first propose a new primitive, OPϵc, that enables

order preserving encoding under ϵ-dLDP. The encryption scheme, OPϵ, is then constructed

using the OPϵc primitive and a OPE (Chapter 3.4). Beyond OPEs, the OPϵc primitive

can be used as a building block for other secure computation that require ordering, such

as secure sorting or order-revealing encryptions (Chapter 3.9). Additionally, OPϵc can be

of independent interest for LDP in answering a variety of queries, such as ordinal queries,

frequency and mean estimation (Chapter 3.7).

In what follows, we answer some key questions pertinent to our work that a reader might

have at this point.

Q1. What is the advantage of a OPϵ scheme over just OPϵc primitive or a OPE scheme?

A. OPϵ satisfies a new security guarantee, ϵ-IND-FA-OCPA, (see Chapter 3.4.2) that bolsters

the cryptographic guarantee of a OPE scheme (IND-FA-OCPA) with a layer of ϵ-dDP guar-

antee. As a result, OPϵ enjoys strictly stronger security than both OPϵc primitive (ϵ-dDP)

and OPE (IND-FA-OCPA).

Q2. What are the security implications of OPϵ in the face of inference attacks?

A. In the very least, OPϵ rigorously limits the accuracy of inference attacks for every record

for all adversaries (Theorem 9, Chapter 3.5). In other words, OPϵ guarantees that none
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of the attacks can infer the value of any record beyond a certain accuracy that is allowed

by the dLDP guarantee. For instance, for an age dataset and an adversary with real-world

auxiliary knowledge, no inference attack in the snapshot model can distinguish between two

age values (x, x′) such that |x− x′| ≤ 8 for ϵ = 0.1 (Chapter 3.8.2).

Q3. How is OPϵ’s utility (accuracy of range queries)?

A. We present a construction for the OPϵc primitive (and hence, OPϵ) and our experimental

results on four real-world datasets demonstrate its practicality for real-world use (Chapter

4.6). Specifically, OPϵ misses only 4 in every 10K correct records on average for a dataset

of size ∼ 732K with an attribute of domain size 18K and ϵ = 1. The overhead of processing

extra records is also low – the average number of extra records returned is just 0.3% of the

total dataset size.

Q4. When to use OPϵ?

A. As discussed above, OPϵ gives a strictly stronger guarantee than any OPE scheme (even

in the face of inference attacks) with almost no extra performance overhead (Chapter 3.6).

Additionally, it is backward compatible with any encrypted database that is already using

a OPE scheme (satisfying IND-FA-OCPA, see Chapter 3.6). Hence, OPϵ could be used for

secure data analytics in settings where (1) the ϵ-dDP guarantee is acceptable, i.e, the main

security concern is preventing the distinction between input values close to each other (such

as the examples discussed above) and (2) the application can tolerate a small loss in utility.

Specifically in such settings, replacing encrypted databases with an encryption under OPϵ

would give a strictly stronger security guarantee against all attacks with nominal change in

infrastructure or performance – a win-win situation.

3.2 Background

3.2.1 Differential Privacy

As mentioned in Chapter 2, there are two popular models of differential privacy, local and

central. The LDP guarantee is formally defined as follows.

Definition 3 (Local Differential Privacy, LDP). A randomized algorithm M : X → Y is

ϵ-LDP if for any pair of private values x, x′ ∈ X and any subset of output, T ⊆ Y

Pr
[
M(x) ∈ T

]
≤ eϵ · Pr

[
M(x′) ∈ T

]
(3.1)

ϵ-LDP guarantees the same level of protection for all pairs of private values. However, as

discussed in the preceding chapter, in this dissertation we use an extension of LDP which
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uses the ℓ1 distance between a pair of values to customize heterogeneous (different levels of)

privacy guarantees for different pairs of private values.

Definition 4 (Distance-based Local Differential Privacy, dLDP). A randomized algorithm

M : X → Y is ϵ-distance based locally differentially private (or ϵ-dLDP), if for any pair of

private values x, x′ ∈ X and any subset of output T ⊆ Y,

Pr[M(x) ∈ T ] ≤ eϵ|x−x′| · Pr[M(x′) ∈ T ] (3.2)

The above definition is equivalent to the notion of metric-based LDP [ACPP18, CABP13]

where the metric used is ℓ1-norm.

Definition 1 in Chapter 2.2.1 refers to the central differential privacy (CDP) model. We

re-iterate it here for the reader’s conveience.

Definition 5 (Central Differential Privacy, CDP). A randomized algorithm M : X n 7→ Y
satisfies ϵ-differential privacy (ϵ-DP) if for all T ⊆ Y and for all adjacent datasets X,X ′ ∈
X n it holds that

Pr[M(X) ∈ T ] ≤ eϵ · Pr[M(X ′) ∈ T ] (3.3)

The notion of adjacent inputs is application-dependent, and typically means that X and X ′

differ in a single element (corresponding to a single individual). Particularly in our setting,

the equivalent definition of the distance based relaxation of differential privacy in the CDP

model is given as follows.

Definition 6 (Distance-based Central Differential Privacy, dDP). A randomized algorithm

M : X n → Y is ϵ-distance based centrally differentially private (or ϵ-dDP), if for any pair

of datasets X and X ′ such that they differ in a single element, xi and x
′
i, and any subset of

output T ⊆ Y,

Pr
[
M(X) ∈ T

]
≤ eϵ|xi−x′

i| · Pr
[
M(X ′) ∈ T

]
(3.4)

We define X and X ′, as described above, to be t-adjacent where t ≥ |xi − x′i|, i.e., the
differing elements differ by at most t. Trivially, any pair of t-adjacent datasets are also t′-

adjacent for t′ > t.

Next, we formalize the resilience of dLDP (and dDP) to post-processing computations.

Theorem 5 (Post-Processing [DR14b]). LetM : X 7→ Y (M : X n 7→ Y) be a ϵ-dLDP (dDP)

algorithm. Let g : Y 7→ Y ′ be any randomized mapping. Then g ◦M is also ϵ-dLDP (dDP).
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3.2.2 Order Preserving Encryption

Here, we discuss the necessary definitions for OPEs.

Definition 7 (Order Preserving Encryption [MRS18]). An order preserving encryption

(OPE) scheme E = ⟨K,E,D⟩ is a tuple of probabilistic polynomial time (PPT) algorithms:

• Key Generation (K). The key generation algorithm takes as input a security parameter

κ and outputs a secret key (or state) S as S← K(1κ).

• Encryption (E). Let X = ⟨x1, · · · , xn⟩ be an input dataset. The encryption algorithm

takes as input a secret key S, a plaintext x ∈ X, and an order Γ (any permutation of

{1, · · · , n}). It outputs a new key S′ and a ciphertext y as (S′, y)← E(S, x,Γ).

• Decryption (D). Decryption recovers the plaintext x from the ciphertext y using the

secret key S, x← D(S, y) .

Additionally, we have

• Correctness Property. x← D
(
E(S, x,Γ)

)
, ∀S, ∀x,∀Γ

• Order Preserving Property. x > x′ =⇒ y > y′, ∀x, x′ where y (y′) is the ciphertext

corresponding to the plaintext x (x′)

The role of Γ in the above definition is discussed later. The strongest formal guarantee

for a OPE scheme is indistinguishability against frequency-analyzing ordered chosen plaintext

attacks (IND-FA-OCPA). We present two definitions in connection to this starting with the

notion of randomized orders as defined by Kerschbaum [Ker15].

Definition 8. (Randomized Order [Ker15]) Let X = ⟨x1, · · · , xn⟩ be a dataset. An order

Γ = ⟨γ1, · · · , γn⟩, where γi ∈ [n] and i ̸= j =⇒ γi ̸= γj, for all i, j, of dataset X, is defined

to be a randomized order if it holds that

∀i, j (xi > xj =⇒ γi > γj) ∧ (γi > γj =⇒ xi ≥ xj)

For a plaintext dataset X of size n, a randomized order, Γ, is a permutation of the plaintext

indices {1, · · · , n} such that its inverse, Γ−1, gives a sorted version of X. This is best

explained by an example: let X = ⟨9, 40, 15, 76, 15, 76⟩ be a dataset of size 6. A randomized

order for X can be either of Γ1 = ⟨1, 4, 2, 5, 3, 6⟩, Γ2 = ⟨1, 4, 3, 5, 2, 6⟩, Γ3 = ⟨1, 4, 2, 6, 3, 5⟩
and Γ4 = ⟨1, 4, 3, 6, 2, 5⟩. It is so because the order of the two instances of 76 and 15 does

not matter a sorted version of X.
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Definition 9 (IND-FA-OCPA [MRS18,Ker15]). An order-preserving encryption scheme E =

(K,E,D) has indistinguishable ciphertexts under frequency-analyzing ordered chosen plaintext

attacks if for any PPT adversary APPT:

∣∣∣Pr[GAPPT

FA-OCPA(κ, 1) = 1]− Pr[GAPPT

FA-OCPA(κ, 0) = 1]| ≤ negl(κ) (3.5)

where κ is a security parameter, negl(·) denotes a negligible function and GAPPT

FA-OCPA(κ, b) is

the random variable denoting APPT’s output for the following game:

Game GAPPT

FA-OCPA(κ, b)

1. (X0, X1) ← APPT where |X0| = |X1| = n and X0 and X1 have at least one common

randomized order

2. Select Γ∗ uniformly at random from the common randomized orders of X0, X1

3. S0 ← K(1κ)

4. For ∀i ∈ [n], run (Si, yb,i)← E(Si−1, xb,i,Γ
∗)

5. b′ ← APPT(yb,1, · · · , yb,n) where b′ is APPT’s guess for b

APPT is said to win the above game iff b = b′.

Informally, this guarantee implies that nothing other than the order of the plaintexts, not

even the frequency, is revealed from the ciphertexts. Stated otherwise, the ciphertexts only

leak a randomized order of the plaintexts (randomized orders do not contain any frequency

information since each value always occurs exactly once) which is determined by the in-

put order Γ in Definition 7. In fact, if Γ itself happens to be a randomized order of the

input X then, the randomized order leaked by the corresponding ciphertexts is guaran-

teed to be Γ. For example, for X = ⟨9, 40, 15, 76, 15, 76⟩ and Γ = ⟨1, 4, 2, 5, 3, 6⟩, we

have y1 < y3 < y5 < y2 < y4 < y6 (yi denotes the corresponding ciphertext for xi and

Γ−1 = ⟨1, 3, 5, 2, 4, 6⟩). Thus, the IND-FA-OCPA guarantee ensures that two datasets with a

common randomized order – but different plaintext frequencies – are indistinguishable. For

example, in the aforementioned game GAPPT

FA-OCPA(·), APPT would fail to distinguish between the

plaintext datasets X0 = ⟨9, 40, 15, 76, 15, 76⟩ and X1 = ⟨22, 94, 23, 94, 36, 94⟩ both of which

share the randomized order Γ∗ = ⟨1, 4, 2, 5, 3, 6⟩.

Note. Although the notion of IND-FA-OCPA was first introduced by Kerschbaum et al.

[Ker15], the proposed definition suffered from a subtle flaw which was subsequently rectified

by Maffei et al. [MRS18]. The above definition, hence, follows from the one in [MRS18]
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(denoted by in IND-FA-OCPA∗ in [MRS18]). Additionally, Definition 7 in our paper corre-

sponds to the notion of augmented order-preserving encryption scheme (denoted by OPE∗

in [MRS18]) which is crucial for the above security definition. The augmented OPE scheme is

in fact a generalization of the standard OPE scheme (the only difference being the encryption

algorithm E has an additional input, Γ). [[ARC: check note]]

3.3 ϵ-dLDP Order Preserving Encoding (OPϵc)

In this chapter, we discuss our proposed primitive – ϵ-dLDP order preserving encoding, OPϵc.

First, we define the OPϵc primitive and its construction. Next, we describe how to use the

OPϵc primitive to answer queries in the LDP setting.

Notations. Here, we introduce the necessary notations. [n], n ∈ N denotes the set {1, 2, · · · ,
n − 1, n}. If X = [s, e] is an input domain, then a k-partition P on X denotes a set

of k non-overlapping intervals Xi = (si, ei]
1 , sj+1 = ej , i ∈ [k], j ∈ [k − 1] such that

⋃k
i=1Xi = X . For example, for X = [1, 100], P = {[1, 10], (10, 20], · · · , (90, 100]} denotes

a 10-partition. Let X̂ denote the domain of partitions defined over X . Additionally, let

O = {o1, · · · , ok}, oi < oi+1, i ∈ [k − 1] represent the output domain where oi is the corre-

sponding encoding for the interval Xi and let P(x) = oi denote that x ∈ Xi. Referring back

to our example, if O = {1, 2, · · · , 10}, then P(45) = 5.

3.3.1 Definition of OPϵc

OPϵc is a randomised mechanism that encodes its input while maintaining some of its ordi-

nality.

Definition 10 (ϵ-dLDP Order Preserving Encoding, OPϵc). For a given k-partition P ∈ X̂ ,
a ϵ-dLDP order preserving encoding scheme, OPϵc : X × X̂ × R>0 7→ O is a randomized mech-

anism such that

1. k = |O|, k ≤ |X |

2. For all x ∈ X and o′ ∈ O \ Tx where Tx =





{o1, o2} if P(x) = o1

{ok−1, ok} if P(x) = ok

{oi−1, oi, oi+1} otherwise

∃o ∈ Tx such that,

Pr
[
OPϵc(x,P, ϵ) = o

]
> Pr

[
OPϵc(x,P, ϵ) = o′

]
(3.6)

1The first interval, X1 = [s1, e1], is a closed interval.
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3. For all x, x′ ∈ X , o ∈ O, we have

Pr
[
OPϵc(x,P, ϵ) = o

]
≤ eϵ|x−x′| · Pr

[
OPϵc(x′,P, ϵ) = o

]

The first property in the above definition signifies the flexibility of the OPϵc primitive to

provide only a partial ordering guarantee. For instance, in our above example k = 10 < |X | =
100. Thus, P acts as a utility parameter – it determines the granularity at which the ordering

information is maintained by the encoding (this is independent of the privacy-accuracy trade-

off arising from the choice of ϵ). For example, for the same value of ϵ and X = [1, 100],

P = {[1, 10], (10, 20], · · · , (90, 100]} gives better utility than P ′ = {[1, 33], (33, 66], (66, 100]}
since the former preserves the ordering information at a finer granularity. P = O = X
denotes the default case where effectively no partition is defined on the input domain and

P(x) = x, x ∈ X trivially. We discuss the significance of the parameter P in Chapter 3.6.

Due to randomization (required for to the dLDP guarantee), OPϵc is bound to incur some

errors in the resulting numerical ordering of its outputs. To this end, the second property

guarantees that the noisy output is most likely to be the either the correct one or the ones

immediately next to it. For instance, for the aforementioned example, OPϵc(45,P, ϵ) is most

likely to fall in {4, 5, 6}. This ensures that the noisy outputs still retain sufficient ordinal

characteristics of the corresponding inputs. Note that the actual value of the encodings in

O does not matter at all as long as the ordinal constraint oi < oi+1, i ∈ [k−1] is maintained.

For instance for P = {[1, 10], (10, 20], · · · , (90, 100]}, O = {1, 2, 3, 4, 5, 6, 7 , 8, 9, 10}, O′ =

{5, 15, 25, 35, 45, 55, 65, 75, 85, 95} and O′′ = {81, 99, 120, 150, 234, 345, 400, 432, 536, 637} are
all valid.

Finally, the third property ensures that the primitive satisfies ϵ-dLDP. Note that ϵ =∞
represents the trivial case OPϵc(X,P,∞) = P(X). %

3.3.2 Construction of OPϵc

In this chapter, we describe a construction for the OPϵc primitive (Algorithm 3). The

algorithm is divided into two stages. In Stage I (Steps 1-3), it computes the central tendency

(a typical value for a distribution) [R.B84], di, i ∈ [k], of each of the intervals of the given

k-partition P. Specifically, we use weighted median [CLRS09] as our measure for the central

tendency where the weights are determined by a prior on the input data distribution, D.
This maximizes the expected number of inputs that are mapped to the correct encoding,

i.e., x is mapped to P(x). In the context of encrypted databases, the data owner has access

to the entire dataset in the clear (Chapter 3.6). Hence, they can compute the exact input

distribution, D, and use it to instantiate the OPϵc primitive (for OPϵ). In the LDP setting,

D can be estimated from domain knowledge or auxiliary datasets. In the event such a prior

is not available, D is assumed to be the uniform distribution (di is the median).
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Algorithm 3: Construction of OPϵc

Setup Parameters: D - Prior input distribution over X , its default value is the

uniform distribution;

O - Output domain {o1, · · · , ok}
Input: x - Number to be encoded via OPϵc; ϵ - Privacy budget;

P - A k-partition {[s1, e1], · · · , (sk, ek]} over X
Output: o - Output encoding;

Stage I: Computation of central tendency for each interval

1: for i ∈ [k]

2: di = Weighted median of (si, ei] where D gives the corresponding weights

3: end for

Stage II: Computation of the output probability distributions

4: for x ∈ X :
5: for i ∈ [k]

6:

px,i =
e−|x−di|·ϵ/2

k∑
j=1

e−|x−dj |·ϵ/2
� px,i = Pr

[
OPϵc(x,P, ϵ) = oi

]

7: end for

8: px = {px,1, · · · , px,k} � Encoding (output) probability distribution for x

9: end for

10: o ∼ px � Encoding drawn at random from the distribution px

11: Return o

In Stage II (Steps 4-9), the encoding probability distributions are computed such that the

probability of x outputting the i-th encoding, oi, is inversely proportional to its distance

from the i-th central tendency, di. Specifically, we use a variant of the classic exponential

mechanism [GTT+19,DR14b] (Step 6).

Illustration of Algorithm 3. Here, we illustrate Algorithm 3 with an example. We illus-

trate the algorithm with the following example. Consider a partition P = {[1, 20], [21, 80],
[81, 100]} for the domain X = ⟨1, · · · , 100⟩ and let O = {1, 2, 3} denote the set of its corre-

sponding encodings. Let us assume the a uniform prior, D (default value), on X . Thus, in

Stage I, median is our measure from central tendency which gives d1 = 10.5, d2 = 50.5 and

d3 = 90.5.

In Stage II (Steps 4-9), the encoding probability distributions are computed using a variant

of the classic exponential mechanism [GTT+19, DR14b] (Step 6). For instance, for the
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aforementioned example we have Pr
[
OPϵc(40,P, ϵ) = 2

]
= p40,2 ∝ 1/e(40−d2)ϵ/2 = 1/e5.25ϵ.

The final encoding is then sampled from px (Steps 10-11).

Theorem 6. Algorithm 3 gives a construction for OPϵc.

Proof. Here, we need to prove that Algorithm 3 satisfies the Eq. 3.6 and 3 (ϵ-dLDP) from

Definition 10. We do this with the help of the following two lemmas.

Lemma 2. Algorithm 3 satisfies Eq. 3.6 from Definition 10.

Proof. Let x ∈ Xi, i ∈ [k].

Case I. dj , 1 ≤ j < i− 1, i ∈ [2, k] In this case, we have dj < di−1. Thus,

Pr
[
OPϵc(x,P, ϵ) = oi−1

]
> Pr

[
OPϵc(x,P, ϵ) = oj

]
(3.7)

Case II. dj s.t. i+ 1 < j ≤ k, i ∈ [k − 2]

In this case, we have di+1 < dj . Thus,

Pr
[
OPϵc(x,P, ϵ) = oi+1

]
> Pr

[
OPϵc(x,P, ϵ) = oj

]
(3.8)

Clearly, this concludes our proof.

Next, we prove that Algorithm 3 satisfies ϵ-dLDP.

Lemma 3. Algorithm 3 satisfies ϵ-dLDP.

Proof. For all x ∈ X and oi ∈ O = {o1, · · · , ok}, we have

Pr
[
OPϵc(x,P, ϵ) = oi]

Pr
[
OPϵc(x+ t,P, ϵ) = oi

] =

(
e|x+t−di|−|x−di|·ϵ/2 ·

k∑
j=1

e−|x+t−dj |·ϵ/2

k∑
j=1

e−|x−dj |·ϵ/2

)

≤ etϵ/2 · etϵ/2
[
∵ |x− dj | − t ≤ |x+ t− dj | ≤ |x− dj |+ t

]

= etϵ (3.9)
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Similarly,

Pr
[
OPϵc(x,P, ϵ) = oi]

Pr
[
OPϵc(x+ t,P, ϵ) = oi

] ≥ e−tϵ

Hence, from Lemmas 9 and 10, we conclude that Algorithm 3 gives a construction for the

OPϵc primitive.

Size of partition |P|. From Step 6, we observe that for every input x, the encoding prob-

ability distribution px is an exponential distribution centered at P(x) – its correct encoding.

Moreover, the smaller is the size of P (number of intervals in P), the larger is the probability
of outputting P(x) (or its immediate neighbors). This is demonstrated in Figure 3.1 which

plots px for x = 50 and ϵ = 0.1 under varying equi-length partitioning of the input domain

[100].
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Figure 3.1: Encoding probability distribution for different partition sizes for x = 50, ϵ = 0.1

and X = [100]
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Remark 1. The ϵ-dLDP guarantee of the OPϵc primitive (Theorem 6) does not

depend on the partition P. Thus, the partition size could range from k = |O| = |X |
(no effective partitioning at all) to k = 2. Additionally, the dLDP guarantee (and

utility) is also independent of the encoding domain, O, as long as the appropriate

ordering constraint is valid.

Note that for k = 1 is a trivial case which destroys all ordinal information.

3.4 ϵ-dDP Order Preserving Encryption (OPϵ)

In this chapter, we describe our proposed ϵ-dDP order preserving encryption scheme, OPϵ.

First, we define OPϵ followed by a new cryptographic security definition for OPϵ (Chapter

3.4.2).

3.4.1 Definition of OPϵ

The ϵ-dDP order preserving encryption (OPϵ) scheme is an encryption scheme that bolsters

the cryptographic guarantee of a OPE scheme with an additional dDP guarantee. Here, we

detail how our proposed primitive OPϵc can be used in conjunction with a OPE scheme

(Definition 7) to form a OPϵ scheme.

Definition 11 (ϵ-dDP Order Preserving Encryption, OPϵ). A ϵ-dDP order preserving en-

cryption scheme, OPϵ, is composed of a OPE scheme, E, that satisfies the IND-FA-OCPA

guarantee (Definition 12), and the OPϵc primitive and is defined by the following algorithms:

OPϵ Scheme

• Key Generation (Kϵ). Uses K from the OPE scheme to generate a secret key S.

• Encryption (Eϵ). The encryption algorithm inputs a plaintext x ∈ X , an order Γ, a

partition P ∈ X̂ , and the privacy parameter ϵ. It outputs (S′, y) ← E(S, õ,Γ) where

õ← OPϵc(x,P, ϵ/2).

• Decryption (Dϵ). The decryption algorithm uses D to get back õ← D(S, y).

Following the above definition, the encryption of a dataset X ∈ X n, X = ⟨x1, · · · , xn⟩ is
carried out as follows:

1. Set S0 ← K(1κ)

2. For ∀i ∈ [n], compute (Si, yi)← E(Si−1, õi,Γ) where õi ← OPϵc(xi,P, ϵ/2)
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Key Idea. A OPϵ scheme works as follows:

• First, obtain an (randomized) encoding for the input using the OPϵc primitive

(one possible construction is given by Algorithm 3 for any given ϵ and partition

P).
• Encrypt the above encoding under a OPE scheme.

Thus, ciphertexts encrypted under OPϵ preserve the order of the corresponding encodings as

output by the OPϵc primitive. Referring back to our example, if X = ⟨76, 9, 9, 40, 15, 76, 77⟩
and its corresponding encodings are Õ = {8, 1, 2, 4, 2, 8, 8}, then the encryption of X under

OPϵ preserves the order of Õ.

In other words, since a OPE scheme preserves the exact order of its input dataset by definition,

the utility of OPϵ (in terms of the preserved ordering information) is determined by the

underlying OPϵc primitive. This is formalized by the following theorem.

Theorem 7. [Utility Theorem] If, for a given partition P ∈ X̂ and for all x, x′ ∈ X such

that x > x′ we have

Pr
[
OPϵc(x,P, ϵ) ≥ OPϵc(x′,P, ϵ)

]
≥ α, α ∈ [0, 1] (3.10)

then for a OPϵ scheme instantiated on such a OPϵc primitive,

Pr
[
Eϵ(x,S,Γ,P, ϵ) ≥ Eϵ(x

′, S,Γ,P, ϵ)
]
≥ α (3.11)

where S← Kϵ(1
κ) and any Γ.

The proof follows directly from Definitions 7 and 11.

Lemma 4. OPϵ satisfies ϵ
2 -dLDP.

The proof of the above lemma follows trivially from the post-processing guarantee of dLDP

(Theorem 5).

3.4.2 New Security Definition for OPϵ

Here, we present a novel securdity guarantee for OPϵ, namely indistinguishable ciphertexts

under frequency-analyzing ϵ-dDP ordered chosen plaintext attacks (ϵ-IND-FA-OCPA, Defini-

tion 12).

The ϵ-IND-FA-OCPAguarantee is associated with a security game, GAPPT

IND-FA-OCPAϵ
, where the

adversary, APPT, first chooses four input dataset of equal length, X00, X01, X10 and X11,

such that P0(X00) and P1(X10) share at least one randomized order where X00, X01 ∈
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X n
0 , X10, X11 ∈ X n

1 , P0 ∈ X̂0 and P1 ∈ X̂1. Additionally, {X00, X01} and {X10, X11}
are t-adjacent (Definition 6). The challenger then selects two bits {b1, b2} uniformly at ran-

dom and returns the corresponding ciphertext for the dataset Xb1b2 . APPT then outputs their

guess for the bits and wins the game if they are able to guess either of the bits successfully.

The ϵ-IND-FA-OCPA guarantee states that APPT cannot distinguish among the four datasets.

In what follows, we first present its formal definition and then, illustrate it using an example.

Definition 12 (ϵ-IND-FA-OCPA). An encryption scheme Eϵ = (Kϵ,Eϵ,Dϵ) has indistinguish-

able ciphertexts under frequency-analyzing ϵ-dDP ordered chosen plaintext attacks if for any

PPT adversary, APPT, and security parameter, κ:

Pr[GAPPT

FA-OCPAϵ
(κ, b1, b2) = (c1, c2)] ≤ (3.12)

etϵ · Pr
[
GAPPT

FA-OCPAϵ
(κ, b′1, b

′
2) = (c1, c2)] + negl(κ) (3.13)

where b1, b2, b
′
1, b

′
2, c1, c2 ∈ {0, 1)} and GAPPT

FA-OCPAϵ
(κ, b1, b2) is the random variable indicating

the adversary APPT’s output for following security game:

Game GAPPT

FA-OCPAϵ
(κ, b1, b2)

1. (X00, X01, X10, X11)← APPT where

(a) X00, X01 ∈ X n
0 and X10, X11 ∈ X n

1

(b) P0(X00) and P1(X10) have at least one common randomized order where P0 ∈ X̂0

and P1 ∈ X̂1

(c) {X00, X01} and {X10, X11} are t-adjacent (Definition 6)

2. S← K(1κ)

3. Compute Õ0 ← OPϵc(X00,P0, ϵ2) and Õ1 ← OPϵc(X10,P1, ϵ2).

4. If Õ0 and Õ1 do not have any common randomized order, then return ⊥. Else

(a) Select two uniform bits b1 and b2 and a randomized order Γ∗ common to both Õ0

and Õ1.

(b) If b2 = 0, compute Yb1b2 ← Eϵ(Õb1 , S,Γ
∗,Ob1 ,∞)2. Else, compute Yb1b2 ← Eϵ(Xb11,

S,Γ∗,Pb1 , ϵ2).
2equivalent to running Eϵ(S, Xb10,Γ

∗,Pb1 , ϵ) := ⟨Õb1 ← OPϵc(Xb10,Pb1 , ϵ/2), E(Õb1 ,S,Γ
∗)⟩ where

Ob1 is the corresponding encoding domain for Pb1
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5. (c1, c2)← APPT(Yb1,b2) where c1(c2) is APPT’s guess for b1(b2)

APPT is said to win the above game if b1 = c1 or b2 = c2.

Example 7. We illustrate the above definition using the following example. Consider

X00 = ⟨22, 94, 23, 94, 36, 95⟩, X10 = ⟨9, 40, 11, 76, 15, 76⟩, X01 = ⟨24, 94, 23, 94, 36, 95⟩ and
X11 = ⟨9, 40, 8, 76, 15, 76⟩ where {X00, X10} share a randomized order, ⟨1, 4, 2, 5, 3, 6⟩, and
{X00, X01} and {X10, X11} are 3-adjacent. For the ease of understanding, we consider the

default case of P0 = O0 = X0 and P1 = O1 = X1. This means that P0(X00) = X00 and so

on.

OPϵc. If only OPϵc were to be used to encode the above datasets, then

only the pairs {X00, X01} and {X10, X11} would be indistinguishable to the ad-

versary (albeit an information theoretic one) because of the ϵ-dDP guarantee

(Definition 6). However, there would be no formal guarantee on the pairs

{X01, X11}, {X01, X10}, {X00, X11}, {X00, X10}.

OPE. If we were to use just the OPE scheme, then only the pair {X00, X10} would be

indistinguishable for APPT as the rest of the pairs do not share any randomized order.

OPϵ. Using OPϵ makes all 6 pairs {X00, X01}, {X00, X11}, {X00, X10}, {X01, X11},
{X01, X10}, {X11, X10} indistinguishable for APPT. This is because OPϵ essentially

preserves the order of a ϵ-dDP scheme.

Hence, OPϵ enjoys strictly stronger security than both OPϵc and OPE.

Theorem 8. The proposed encryption scheme, OPϵ satisfies ϵ-IND-FA-OCPA security guar-

antee.

Proof. Intuition. The intuition of the proof is as follows. Recall that there are four input

sequences the adversary has to distinguish among. If the adversary is able to guess bit b1

correctly (with non-trivial probability), it is akin to breaking the IND-FA-OCPA guarantee of

OPEs. Similarly, if the adversary is able to guess bit b2 correctly, (with non trivial probability)

it would imply the violation of the ϵ-dDP guarantee.

The proof is structured as follows. First, we prove that OPϵ satisfies ϵ/2-dDP (or (ϵ/2, 0)-

dDP following the notation in Definition 6). The rest of the proof follows directly from this

result and the IND-FA-OCPA guarantee of the OPE scheme.

Lemma 5. LetM be a mechanism that
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1. inputs a dataset X ∈ X n

2. outputs Õ = {õ1, · · · , õn} where for all i ∈ [n],P ∈ X̂ , õi ← OPϵc(xi,P, ϵ/2)

Then,M satisfies ϵ/2-dDP.

Proof. Let X,X ′ ∈ X n be t-adjacent. Specifically, let xi ̸= x′i, i ∈ [n]. For brevity, we drop

P and the privacy parameter ϵ/2 from the notation OPϵc(·).

Pr
[
M(X) = Õ

]

Pr
[
M(X ′) = Õ

] =
∏n

j=1 Pr
[
OPϵc(xj) = õj

]
∏n

j=1 Pr
[
OPϵc(x′j) = õj

]

=

∏n
j=1,j ̸=i Pr

[
OPϵc(xj) = õj ]∏n

j=1,j ̸=i Pr
[
OPϵc(xj) = õj ]

× Pr
[
OPϵc(xi) = õi]

Pr
[
OPϵc(x′i) = õi

]

≤ e tϵ

2 [ From Eq. 3 of Definition 10]

This concludes our proof.

Lemma 6. OPϵ satisfies ϵ/2-dDP.

This result follows directly from Lemma 5 from Theorem 5.

Now, note that Õb1 ∈ On
b1
. Thus, OPϵc(Õb1 ,Ob1 ,∞) = Õb1 (Chapter 3.3.1) . As a re-

sult, Eϵ(S, Õb1 ,Γ
∗,Ob1 ,∞) (Step 4b) is equivalent to running Eϵ(S, Xb10,Γ

∗,Pb1 , ϵ) := ⟨Õb1 ←
OPϵc(Xb10,Pb1 , ϵ/2),E(Õb1 ,S,Γ

∗)⟩. Thus, from Definition 9, if
∣∣∣Pr
[
GAPPT

FA-OCPAϵ(κ, 0, 0) = (c1, c2)
]
−

Pr
[
GAPPT

FA-OCPAϵ(κ, 1, 0) = (c1, c2)
]∣∣∣ ≥ negl(κ), then another PPT adversary, A′

PPT, can useAPPT

to win the GAPPT

IND-FA-OCPA(·) game which leads to a contradiction. Hence, we have

∣∣∣Pr
[
GAPPT

FA-OCPAϵ(κ, 0, 0) = (c1, c2)
]

−Pr
[
GAPPT

FA-OCPAϵ(κ, 1, 0) = (c1, c2)
]∣∣∣ ≤ negl(κ) (3.14)

Without loss of generality, let us assume

Pr
[
GAPPT

FA-OCPAϵ(κ, 1, 0) = (c1, c2)
]
≤

Pr
[
GAPPT

FA-OCPAϵ(κ, 0, 0) = (c1, c2)
]

(3.15)

Thus, from Eqs. (3.14) and (3.15), we have

Pr
[
GAPPT

FA-OCPAϵ(κ, 0, 0) = (c1, c2)
]
≤

Pr
[
GAPPT

FA-OCPAϵ(κ, 1, 0) = (c1, c2)
]
+ negl(κ) (3.16)
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From Theorem 5 and Lemma 6,

Pr
[
GAPPT

FA-OCPAϵ(κ, 0, 0) = (c1, c2)
]
≤

e
tϵ

2 Pr
[
GAPPT

FA-OCPAϵ(κ, 0, 1) = (c1, c2)
]

(3.17)

Pr
[
GAPPT

FA-OCPAϵ(κ, 0, 1) = (c1, c2)
]
≤

e
tϵ

2 Pr
[
GAPPT

FA-OCPAϵ(κ, 0, 0) = (c1, c2)
]

(3.18)

Pr
[
GAPPT

FA-OCPAϵ(κ, 1, 0) = (c1, c2)
]
≤

e
tϵ

2 Pr
[
GAPPT

FA-OCPAϵ(κ, 1, 1) = (c1, c2)
]

(3.19)

Pr
[
GAPPT

FA-OCPAϵ(κ, 1, 1) = (c1, c2)
]
≤

e
tϵ

2 Pr
[
GAPPT

FA-OCPAϵ(κ, 1, 0) = (c1, c2)
]

(3.20)

Now from Eqs. (3.16) and (3.19), we have,

Pr
[
GAPPT

FA-OCPAϵ(κ, 0, 0) = (c1, c2)
]
≤

e
tϵ

2 Pr
[
GAPPT

FA-OCPAϵ(κ, 1, 1) = (c1, c2)
]
+ negl(κ) (3.21)

Using Eqs. (3.15) and (3.20), we have

Pr
[
GAPPT

FA-OCPAϵ(κ, 1, 1) = (c1, c2)
]
≤

e
tϵ

2 Pr[GAPPT

FA-OCPAϵ(κ, 0, 0) = (c1, c2)
]

(3.22)

From Eqs. (3.18) and (3.16), we have

Pr
[
GAPPT

FA-OCPAϵ(κ, 0, 1) = (c1, c2)
]
≤

e
tϵ

2 Pr
[
GAPPT

FA-OCPAϵ(κ, 1, 0) = (c1, c2)
]
+ negl′(κ) (3.23)

[negl′(κ) = e
tϵ

2 · negl(κ) which is another negligible function]

Eqs. (3.18) and (3.21) give us

Pr
[
GAPPT

FA-OCPAϵ(κ, 0, 1) = (c1, c2)
]
| ≤

etϵPr[GAPPT

FA-OCPAϵ(κ, 1, 1) = (c1, c2)] + negl′(κ) (3.24)

Using Eqs. (3.15) and (3.17), we have

Pr
[
GAPPT

FA-OCPAϵ(κ, 1, 0) = (c1, c2)
]

≤ e tϵ

2 Pr
[
GAPPT

FA-OCPAϵ(κ, 0, 1) = (c1, c2)
]

(3.25)

Finally, Eqs. (3.20) and (3.25) give us

Pr
[
GAPPT

FA-OCPAϵ(κ, 1, 1) = (c1, c2)
]
| ≤

etϵPr
[
GAPPT

FA-OCPAϵ(κ, 0, 1) = (c1, c2)
]

(3.26)
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Note that the GAPPT

IND-FA-OCPAϵ
game can abort sometimes (Step 4, when Õ0 and Õ1 do not share

any randomized order). However, this does not lead to any information leakage to APPT since

this step happens before the challenger has chosen any of the bits {b1, b2}. Additionally, the
condition 1b ensures that the event that the game runs to completion happens with non-

zero probability. It is so because if P0(X00) and P1(X10) share a randomized order, then

Pr
[
Õ0 and Õ1 share a randomized order

]
> 0.

This concludes our proof.

LetNG(X) = {X ′|X ′ ∈ X n and {X,X ′} are indistinguishable toAPPT under guarantee G}.
Additionally, we assume P = X for the ease of understanding. Thus, in a nutshell, the ϵ-dDP

guarantee allows a pair of datasets {X,X ′} to be indistinguishable3 only if they are t-adjacent

(for relatively small values of t). Referring back to our example, we have X01 ∈ Nϵ-dDP(X00)

and X11 ∈ Nϵ-dDP(X10).

On the other hand, under the IND-FA-OCPA guarantee, {X,X ′} is indistinguishable4 toAPPT

only if they share a common randomized order. For instance, X10 ∈ NIND-FA-OCPA(X00).

In addition to the above cases, the ϵ-IND-FA-OCPA guarantee allows a pair of datasets

{X,X ′} to be indistinguishable5 for APPT if {X,X ′}

• do not share a randomized order

• are not adjacent,

but there exists another dataset X ′′ such that

• {X ′, X ′′} are adjacent, i.e. X ′ ∈ Nϵ-dDP(X
′′)

• {X,X ′′} share a randomized order, i.e., X ′′ ∈ NIND-FA-OCPA(X).

From our aforementioned example, we haveX11 ̸∈ NIND-FA-OCPA(X00) andX11 ̸∈ Nϵ-dDP(X00).

But still, X11 ∈ NIND-FA-OCPAϵ
(X00) since X11 ∈ Nϵ-dDP(X10) and X10 ∈ NIND-FA-OCPA(X00).

Thus, formally

NIND-FA-OCPAϵ
(X) =

⋃

X′′∈NIND-FA-OCPA(X)

Nϵ-dDP(X
′′) (3.27)

3the ratio of their output distributions are bounded by etϵ, holds against an information theoretic
adversary as well

4computational indistinguishability [Ode09]
5Formally given by Eq. 3.13 which is structurally similar to that of the IND-CDP guarantee

[MPRV09] which is a computational differential privacy guarantee.
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Since, trivially X ∈ NIND-FA-OCPA(X) and X ∈ Nϵ-dDP(X), we have NIND-FA-OCPAϵ
(X) ⊇ NIND-FA-OCPA(X)

and NIND-FA-OCPAϵ
(X) ⊇ Nϵ-dDP(X).

Key Insight. The key insight of the ϵ-IND-FA-OCPA security guarantee is that the

OPE scheme preserves the order of the outputs of a ϵ-dDP mechanism. As a result,

the adversary is now restricted to only an ϵ-dDP order leakage from the ciphertexts.

Hence, even if the security guarantee of the OPE layer is completely broken, the

outputs of OPϵ would still satisfy ϵ-dDP due to Theorem 5. Referring to Example 1,

in the very least input pairs {X00, X01} and {X10, X11} will remain indistinguishable

under all inference attacks. Thus, OPϵ is the first encryption scheme to satisfy a

formal security guarantee against all possible inference attacks and still provide some

ordering information about the inputs.

Remark 2. The ϵ-IND-FA-OCPA guarantee of the OPϵ scheme is strictly stronger than

both dDP (dLDP) and IND-FA-OCPA (the strongest possible guarantee for any OPE).

Further, it depends only on the dLDP guarantee of the underlying OPϵc primitive

which is independent of the partition P used (as discussed in Chapter 3.3.2). We

discuss the role of P in Chapter 3.6.

3.5 OPϵ and Inference Attacks

𝝐
𝟐
− 𝒅𝑳𝑫𝑷

𝝐
𝟐
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+

𝐿𝑒𝑚𝑚𝑎 11

𝑇ℎ𝑚. 6
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𝑩𝒍𝒖𝒆 − 𝑂𝑃𝜖
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− 𝒅𝑳𝑫𝑷

𝐿𝑒𝑚𝑚𝑎 5

Figure 3.2: Relationships between dLDP, dDP and IND-FA-OCPA guarantees.

In this chapter, we discuss the implications of OPϵ’s security guarantee in the face of inference

attacks. Specifically, we formalize the protection provided by OPϵ’s (relaxed) DP guarantee

– this is the worst case guarantee provided by OPϵ.

Recall that the ϵ-IND-FA-OCPA guarantee of a OPϵ bolsters the cryptographic guarantee of

a OPE (IND-FA-OCPA ) with an additional layer of a (relaxed) DP guarantee. For the rest

of the discussion, we focus on the worst case scenario where the OPE scheme provides no

protection at all and study what formal guarantee we can achieve from just the (relaxed)

DP guarantee. As discussed in Chapter 3.2.1, our proposed distance-based relaxation of DP

comes in two flavors – local (dLDP, Definition 4) and central (dDP, Definition 6). Intuitively,
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dLDP is a guarantee for each individual data point while dDP is a guarantee for a dataset. As

a refresher, Figure 3.2 showcases the relationships between them. The most salient point is

that the dLDP is a stronger guarantee than dDP– ϵ-dLDP implies ϵ-dDP. Thus, owing to the

dLDP guarantee of the underlying OPϵc primitive, OPϵ trivially satisfies both dLDP (Lemma

4) and dDP (Lemma 6) guarantees.

For our discussion in Chapter 3.4.2, we use the dDP guarantee since the IND-FA-OCPA guar-

antee of OPEs is also defined on datasets. In what follows, we show how to interpret the

protection provided by OPϵ’s dLDP guarantee since it is stronger and holds for every data

point. We do so with the help of an indistinguishability game, as is traditional for cryp-

tographic security definitions. Let the input be drawn from a discrete domain of size N ,

i.e., |X | = N . The record indistinguishability game, GAβ−RI , is characterized by a precision

parameter β ∈ [ 1N , 1]. In this game, the adversary has to distinguish among a single record

(data point) x and set of values Q(x) that differ from x by at most ⌈βN⌉. For instance,

for x = 3, N = 10 and β = 1/5, the adversary has to distinguish among the values 3 and

Q(x) = {1, 2, 4, 5} (⌈βN⌉ = 2). Let yi denote the ciphertext for xi after encryption under OPϵ.

The game is formally defined as follows:

Game GAβ−RI(p)

1. x0 ← A

2. Q(x) = {x1, · · · , xq} where xi ∈ X , i ∈ [q] s.t. |x0 − xi| ≤ ⌈βN⌉ and xi ̸= x0

3. Select p ∈ {0, 1, · · · , q} uniformly at random

4. p′ ← A
(
yp
)

A is said to win the above game if p′ = p. Let rand be a random variable indicating the

output of the baseline strategy where the adversary just performs random guessing.

Theorem 9. For a OPϵ scheme satisfying ϵ
2 -dLDP, we have

∣∣∣Pr
[
p′ = p

]
− Pr

[
rand = p

]∣∣∣ ≤ eϵ
∗

q + eϵ∗
− 1

q + 1
(3.28)

where ϵ∗ = ϵ⌈βN⌉ and q = |Q(x0)| (Step (2) of game GAβ−RI).

Proof. Let y denote the output ciphertext (Step 4) observable to the adversary A. Note that
the game itself satisfies ϵ/2-dLDP. Let d be the probability that the adversary A wins the

game, i.e., d := Pr
[
p′ = p

]
. Clearly, this cannot be greater than Pr

[
OPϵ(S, ϵ/2, xp) = y

]
(we

use this shorthand to refer to the encryption as defined in Definition 11) – the probability
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that encrypting xp under OPϵ actually outputs y. Let I = {i|i ∈ {0, · · · , q}, i ̸= p}. Since

|xi − xj | ≤ 2⌈βN⌉, i, j ∈ {0, · · · , q}, from the ϵ/2-dLDP guarantee we have

∀i ∈ I
Pr
[
OPϵ(S, ϵ/2, xp) = y

]
≤ eϵ∗Pr

[
OPϵ(S, ϵ/2, xi) = y

]

d ≤ eϵ∗Pr
[
OPϵ(S, ϵ/2, xi) = y

]

Summing the equations for all i ∈ I, we have

q · d ≤ eϵ∗
∑

i∈I
Pr
[
OPϵ(S, ϵ/2, xi) = y

]

⇒ q · d ≤ eϵ∗(1− d)

⇒ d ≤ eϵ
∗

q + eϵ∗
(3.29)

Clearly,

Pr
[
rand = p

]
=

1

q + 1
(3.30)

Hence, from Eqs. 3.29 and 3.30, we have

∣∣∣Pr
[
p′ = p

]
− Pr

[
rand = p

]∣∣∣ ≤ eϵ
∗

q + eϵ∗
− 1

q + 1
(3.31)

From the above theorem, observe that for low values of ϵ∗ (i.e., low ϵ and β) the R.H.S of the

Eq. (3.28) is low. This means that for reasonably low values of ϵ (high privacy), with very

high probability an adversary cannot distinguish among input values that are close to each

other (small β) any better than just random guessing. Now, recall that owing to the dLDP

guarantee of the underlying OPϵc primitive, every data point encrypted under OPϵ is also

protected by the dLDP guarantee (Lemma 4). This implies that, for any datasetX, the above

indistinguishability result holds for every individual data point (record) simultaneously. In

other words, the dLDP guarantee rigorously limits the accuracy of any inference attack for

every record of a dataset.

As a concrete example, let us look at the binomial attack on OPE schemes satisfying IND-

FA-OCPA proposed by Grubbs et al. [GSB+17b]. The attack uses a biased coin model to

locate the range of ciphertexts corresponding to a particular plaintext. Experimental results

on a dataset of first names show that the attack can recover records corresponding to certain

high frequency plaintexts (such as first name ‘Michael’) with high accuracy. In this context,

the implications of the above result is as follows. Consider a dataset with plaintext records
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corresponding to first names ‘Michael’ and ‘Michele’. For OPϵ, the recovery rate for either

would not be better than the random guessing baseline since both the values are close to

each other in alphabetic order.

Note that the above result is information-theoretic and holds for any adversary – active or

passive, both in the persistent (access to volume/access-pattern/search-pattern leakage) and

snapshot attack models (access to a single snapshot of the encrypted data) [FVY+17].

Remark 4. In the very least, OPϵ rigorously limits the accuracy of any inference

attack for every record of a dataset for all adversaries. (Theorem 9).

3.6 OPϵ for Encrypted Databases

In this chapter, we describe how to use a OPϵ scheme in practice in the context of encrypted

databases. Specifically, we discuss how we can leverage the partition parameter, P, of the
underlying OPϵc primitive for improved utility.

Problem Setting. For encrypted databases, typically a data owner has access to the entire

database in the clear and encrypts it before outsourcing it to an untrusted server. The

queriers of the encrypted databases are authorized entities with access to the secret keys. In

fact, in many practical settings the data owner themselves is the querier [FVY+17].

The most popular use case for databases encrypted under OPEs is retrieving the set of records

belonging to a queried range. However, due to randomization, encryption under OPϵ leads to

loss in utility. Specifically in the context of range queries, it might miss some of the correct

data records and return some incorrect ones. For the former, constraining OPϵ to maintain

only a partial order is found to be helpful. As discussed in Chapter 3.3.2, the more coarse

grained the partition is (the lesser the number of intervals), the larger is the probability for

OPϵc to output the correct encoding. Hence, if any given range [a, b] is covered by a relatively

small number of intervals in P, then with high probability the set of records corresponding

to the encodings {õ|õ ∈ O∧P(a) ≤ õ ≤ P(b)]} will contain most of the correct records. This

results in better accuracy for the subsequent OPϵ scheme since it’s accuracy is determined

by the underlying OPϵc primitive (Theorem 7).

The problem of returning incorrect records can be mitigated by piggybacking every ciphertext

encrypted under OPϵ with another ciphertext that is obtained from encrypting the corre-

sponding plaintext under a standard authenticated encryption scheme [enc], E := ⟨K,E,D⟩.
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We refer to this as the augmented OPϵ6 scheme and it works as follows:

Augmented OPϵ, E†

• Key Generation (K†
ϵ). This algorithm generates a pair of keys (S,K) where S← Kϵ(κ)

and K ← K(κ)

• Encryption (E†
ϵ). This algorithm generates (S′, y0, y1) where õ ← OPϵc(x,P, ϵ/2),

(S′, y0)← E(S, õ,Γ), y1 ← E(K,x)

• Decryption (D†
ϵ). The decryption algorithm uses S and K to decrypt both the cipher-

texts, (x, õ) as õ← Dϵ(S, y0) and x← D(K, y1).

After receiving the returned records from the server, the querier can decrypt {yi1} and discard

the irrelevant ones. The cost of this optimization for the querier is the processing overhead

for the extra records (see discussion later).

The data owner (who has access to the dataset in the clear) can decide on the partition

based on the dataset before encrypting and outsourcing it. For most input distributions, an

equi-depth partitioning strategy works well (as demonstrated by our experimental results in

Chapter 3.8.2). Nevertheless, the partition can be update dynamically as well (see Chapter

3.9).

Remark 5. The partitioning of the input domain (P) has no bearing on the formal

security guarantee. It is performed completely from an utilitarian perspective in the

context of encrypted databases – it results in an accuracy-overhead trade-off (accuracy

- number of correct records retrieved; overhead - number of extra records processed).

Range Query Protocol. The end-to-end range query protocol is described in Algorithm

4. Before detailing it, we will briefly discuss the protocol for answering range queries for a

OPE scheme, E , that satisfies the IND-FA-OCPA guarantee (see [Ker15] for details). Recall

that every ciphertext is unique for such a OPE scheme. Hence, a querier has to maintain

some state information for every plaintext. Specifically, if Y = {y1, · · · , yn} denotes the

corresponding ciphertexts for an input set X = {x1, · · · , xn}, then the querier stores the

maximum and minimum ciphertext in Y that corresponds to the plaintext xi, denoted by

maxE(xi) and minE(xi), respectively. For answering a given range query [a, b], the querier

asks for all the records in Y that belong to
[
minE(a),maxE(b)

]
. Recall that in OPϵ, the OPE

scheme is applied to the output (encodings) of the OPϵc primitive. So now for answering

[a, b], the querier has to retreive records corresponding to [P(a),P(b)] instead where P is

6The augmented OPϵ scheme still upholds the ϵ-IND-FA-OCPA guarantee owing to the semantic
security of the encryption scheme E .
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the partition for the encoding. Hence, the querier first maintains the state information for

the encodings (Steps 1-6, Algorithm 4). Note that since the size of the encoding space is

smaller than the input domain X , the amount of state information to be stored for a OPϵ

is less than that for a OPE (see Chapter 3.9). Next, the querier asks for all the encrypted

records in the set Y ′ =
{
⟨y′i0, y′i1⟩|i ∈ [n] and y′i0 ∈

[
minE†(P(a)),maxE†(P(b)

]}
from the

server (Steps 7-10). On receiving them, the querier only retains those records that fall in the

queried range (Steps 11-18).

There are two ways the utility can be further improved. The first is including records from

some of the intervals preceding P(a) and following P(b). The querier can ask for the records

in [max(o1, oa−l),min(ob+l, ok))], l ∈ Z≥0 where oa := P(a) and ob := P(b). However, the

cost is increase in extra records.

Another optimization is to answer a workload of range queries at a time. Under OPϵ, queries

can be made only at the granularity of the partition. Thus, if a queried range [a, b] is

much smaller than [P(a),P(b)], then the querier has to pay the overhead of processing extra

records. This cost can be reduced in the case of a workload of range queries where multiple

queries fall within [P(a),P(b)] (records that are irrelevant for one query might be relevant

for some other in the workload). Additionally, the number of missing records for the query

[a, b] is also reduced if records from the neighboring intervals of [P(a),P(b)] are also included

in the response (owing to the other queries in the workload).

Discussion. As described above, the server side interface for range query protocols is the

same for both OPϵ and a OPE scheme with the IND-FA-OCPA guarantee (with a nominal

change to accommodate the extra ciphertexts {yi1}). The cost is the extra storage for {yi1}.
However, in this age of cloud services, outsourced storage ceases to be a bottleneck [sto].

The querier, on the other hand, needs to decrypt all the returned records (specifically, {yi1}).
However, decryption is in general an efficient operation. For instance, the decryption of 1

million ciphertexts encrypted under AES-256 GCM requires < 3 minutes in our experimental

setup. Thus, on the overall there is no tangible overhead in adopting OPϵ.

Remark 6. OPϵ could be used for secure data analytics in settings where (1) the ϵ-

dDP guarantee is acceptable, i.e, the main security concern is preventing the distinction

between input values close to each other and, (2) the application can tolerate a small

loss in utility. Specifically in such settings, replacing encrypted databases that are

already deploying OPE schemes (satisfying IND-FA-OCPA )with a OPϵ scheme would

give a strictly stronger security guarantee against all attacks with nominal change in

infrastructure or performance - a win-win situation.
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Algorithm 4: Range Query Protocol

Notations: Z - Input dataset with n records (ri, xi) where xi ∈ X denotes the

sensitive attribute to be encrypted under OPϵ and ri denotes the

rest of associated data (other attributes could be encrypted too);

S - Secret key for the OPϵ scheme; P- Partition used for OPϵ;

K- Secret key for the authenticated encryption scheme E ;
Input: Range Query [a, b], a, b ∈ X
Output: Set of records V = {ri|(ri, xi) ∈ Z, xi ∈ [a, b]}7

Initialization: Querier

1: X = ⟨x1, · · · , xn⟩
2: Y = E†(X,S,K,Γ,P, ϵ2) � Contains encrypted attributes {(yi0, yi1)}
3: for o ∈ O
4: maxE†(o) = max{yi0|(yi0, yi1) ∈ Y and yi0 decrypts to o}
5: minE†(o) = min{yi0|(yi0, yi1) ∈ Y and yi0 decrypts to o}
6: end for � Querier maintains state information

Range Query Protocol: Querier

7: C = {minE†(P(a)),maxE†(P(b)} � Transformed range query based on state

information

8: Querier
C−→ Server

Server

9: Y ′ =
{
(yi0, yi1)|i ∈ [n] and yi0 ∈

[
minE†

(
P(a)

)
,maxE†

(
P(b)

)]}

� Server returns the set of records matching the query

10: Server
Y ′

−→ Querier

Querier

11: V = ϕ

12: for yi1 ∈ Y ′

13: x′i ← D(K, y′i1)

14: if (x′i ∈ [a, b]) � Verifying whether record falls in [a, b]

15: V = V ∪ ri
16: end if

17: end for

18: Return V

3.7 LDP Mechanisms using OPϵc

The7 OPϵc primitive can be of independent interest in the LDP setting. Depending on the

choice of the partition P over the input domain X , OPϵc can be used to answer different

7V has a small utility loss as explained before.
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types of queries with high utility. In this section, we describe how to use OPϵc to answer

two such queries.

Problem Setting. We assume the standard LDP setting with n data owners, DOi, i ∈ [n]

each with a private data xi.

3.7.1 Ordinal Queries

OPϵc can be used to answer queries in the LDP setting that require the individual noisy

outputs to retain some of the ordinal characteristics of their corresponding inputs. One class

of such queries include identifying which q-quantile does each data point belong to. This

constitutes a popular class of queries for domains such as annual employee salaries, annual

sales figures of commercial firms and student test scores. For example, suppose the dataset

consist of the annual sales figures of different clothing firms and the goal is to group them

according to their respective deciles. Here, partition P is defined by dividing the input

domain into q = 10 equi-depth intervals using an estimate of the input distribution, D. In

the case such an estimate is not available, a part of the privacy budget can be first used to

compute this directly from the data [LWLZ+20]. For another class of queries, the partition

can be defined directly on the input domain based on its semantics. Consider an example

where the goal is to group a dataset of audiences of TV shows based on their age demographic

– the domain of age can be divided into intervals {[1, 20], [21, 40], [41, 60], [61, 100]} based on

categories like “youth”, “senior citizens”. Once the partition is defined, each data owner uses

the OPϵc primitive to report their noisy encoding. Note that the dLDP privacy guarantee is

amenable to these cases, as one would want to report the intervals correctly but the adversary

should not be able to distinguish between values belonging to the same interval. The full

mechanism is outline in Algorithm 5.

Algorithm 5: Answering Ordinal Queries

Parameter P - Partition defined over the input domain as specified by the query;

ϵ - Privacy parameter

1: for i ∈ [n]

2: DOi computes oi = OPϵc(xi,P, ϵ) and sends it to the data

aggregator

3: end for

4: Return O = {o1, · · · , on}
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3.7.2 Frequency Estimation

Here, we discuss the default case of the OPϵc primitive where the partition is same as the

input domain, i.e., P = O = X . Under this assumption, we can construct a mechanism for

obtaining a frequency oracle in the LDP setting under the dLDP guarantee. The mechanism

is outlined in Algorithm 6 and described below. Given a privacy parameter, ϵ, each data

owner, DOi, i ∈ [n], reports õi = OPϵc(xi,X , ϵ) to the untrusted data aggregator (Steps 1-4).

Next, the data aggregator performs non-negative least squares (NNLS) as a post-processing

inferencing step on the noisy data to compute the final frequency estimations (Steps 5-6).

NNLS is a type of constrained least squares optimizations problem where the coefficients are

not allowed to become negative. That is, given a matrix A and a (column) vector of response

variables Y, the goal is to find X such that

argmin
X
∥A ·X−Y∥2, subject to X ≥ 0

where || · ||2 denotes Euclidean norm. The rationale behind this inferencing step (Step 5) is

discussed below.

Lemma 7. W.l.o.g let X = {1, · · · ,m} and let Y be the vector such that Y(i), i ∈ [m]

indicates the count of value i in the set {õ1, · · · , õn} where õi = OPϵc(i,X , ϵ). Given,

A(i, j) = Pr
[
OPϵc(i,X , ϵ) = j

]
, i, j ∈ [m] (3.32)

the solution X of A · X = Y gives an unbiased frequency estimator (X(i) is the unbiased

estimator for value i).

Proof. Let X′ be a vector such that X′(i) represents the true count of the value i ∈ [m].

Thus, we have

E
[
X(i)

]
= E

[ n∑

j=1

A−1(i, j) ·Y(j)
]

=

n∑

j=1

A−1(i, j) · E
[
Y(j))

]

=

n∑

j=1

A−1(i, j) ·
( n∑

k=1

X′(k) · Pr
[
OPϵc(k,X , ϵ) = j

])

=

n∑

j=1

A−1(i, j) ·
( n∑

k=1

X′(k) ·A(j, k)
)

=

n∑

j=1

X′(j) · (
n∑

k=1

A−1(i, k) ·A(k, j))

= X′(i)

This concludes the proof.
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Thus by the above lemma, X is an unbiased frequency estimator. However, it is important

to note that the solution X is not guaranteed to be non-negative. But, given our problem

setting, the count estimates are constrained to be non-negative. Hence, we opt for an NNLS

inferencing. When the exact solution X = A−1 · Y is itself non-negative, the estimator

obtained from the NNLS optimization is identical to the exact solution. Otherwise, the NNLS

optimization gives a biased non-negative estimator that results in minimal least square error.

The resulting frequency oracle can be used to answer other queries like mean estimation and

range queries8.

Algorithm 6: Frequency Estimation

Input: X - Input dataset ⟨x1, · · · , xn⟩; ϵ - Privacy parameter

Output: X - Estimated frequency

Data Owner

1: Set P = X
2: for i ∈ [n]

3: DOi computes õi = OPϵc(xi,X , ϵ) and sends it to the aggregator

4: end for

Data Aggregator

5: Data aggregator performs NNLS optimization as follows

A ·X = Y where

A(i, j) = Pr[OPϵc(i,X , ϵ) = j], i, j ∈ [m]

Y(i) = Count of value i in {õ1, · · · , õn}

6: Return X

Utility Analysis for Frequency Estimation Using OPϵc

Here, we present a formal utility analysis of the frequency oracle. Let pij , i, j ∈ X denote

the Pr
[
OPϵc(i,X , ϵ)

]
= j and let X′[i] denote the true count for i. Additionally, let Ii,j be

an indicator variable for the event OPϵc(i,X , ϵ) = j.

8In the LDP setting, this refers to statistical range query, i.e., the count of the records that belong
to a queried range.
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Theorem 10. The variance of count estimation X[i] is given by

Var(X[i]) =

n∑

j=1

n∑

k=1

(
pk,j(1− pk,j) · (X′[k] ·A−1[i, j])2

)
−

n∑

k=1

∑

1≤j1<j2≤n

(
X′[k]2 ·A−1[i, j1] ·A−1[i, j2] · pk,j1 · pk,j2

)

Proof. Variance of the indicator variable is given by,

Var(Ij,i) = pj,i · qj,i

Additionally, we so have

Cov(Ij,i, Ij,k) = −pj,ipj,k·
Cov(Ij,i, Ik,l) = 0

Using this we have,

Var(X[i]) = Var
( n∑

j=1

A−1[i, j]) ·Y[j]
)

= Var
( n∑

j=1

(
A−1[i, j] ·

n∑

k=1

X′[k] · Ik,j
))

= Var
( n∑

j=1

n∑

k=1

(
Ik,j ·X′[k] ·A−1[i, j]

))

=

n∑

j=1

n∑

k=1

(
Var(Ik,j) · (X′[k] ·A−1[i, j])2

)
+

n∑

k=1

∑

1≤j1<j2≤n

(
X′[k]2 ·A−1[i, j1] ·A−1[i, j2] · Cov(Ik,j1 , Ik,j2)

)

=

n∑

j=1

n∑

k=1

(
pk,j(1− pk,j) · (X′[k] ·A−1[i, j])2

)
−

n∑

k=1

∑

1≤j1<j2≤n

(
X′[k]2 ·A−1[i, j1] ·A−1[i, j2] · pk,j1 · pk,j2

)

3.8 Experimental Evaluation

In this chapter, we present our evaluation results for the proposed primitives, OPϵ and OPϵc.

Specifically, we answer the following three questions:
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Figure 3.3: Accuracy Analysis of OPϵ in the Context of Encrypted Databases



78

• Q1: Does OPϵ retrieve the queried records with high accuracy?

• Q2: Is the processing overhead of OPϵ reasonable?

• Q3: Can OPϵc answer statistical queries in the LDP setting with high accuracy?

Evaluation Highlights

• OPϵ retrieves almost all the records of the queried range. For instance, OPϵ only misses

around 4 in every 10K correct records on average for a dataset of size ∼ 732K with an

attribute of domain size ∼ 18K and ϵ = 1.

• The overhead of processing extra records for OPE is low. For example, for the above

dataset, the number of extra records processed is just 0.3% of the dataset size for ϵ = 1.

• We give an illustration of OPϵ’s protection against inference attacks. For an age dataset

and an adversary with real-world auxiliary knowledge, no inference attack in the snap-

shot attack model can distinguish between two age values (x, x′) such that |x−x′| ≤ 8

for ϵ = 0.1.

• OPϵc can answer several queries in the LDP setting with high utility. For instance,

OPϵc can answer ordinal queries with 94.5% accuracy for a dataset of size ∼ 38K, an

attribute of domain size ∼ 240K and ϵ = 1. Additionally, OPϵc achieves 6× lower

error than the state-of-the-art ϵ-LDP technique for frequency estimation for ϵ = 0.1.

3.8.1 Experimental Setup

Datasets. We use the following datasets:

• PUDF [PUD]. This is a hospital discharge data from Texas. We use the 2013 PUDF

data and the attribute PAT ZIP (7,31,188 records of patient’s 5-digit zipcode from the

domain [70601, 88415]).

• Statewide Planning and Research Cooperative System (SPARCS) [NYC]. This is a hos-

pital inpatient discharge dataset from the state of New York. This dataset has 25,31,896

records and we use the length of stay (domain [1, 120]) attribute for our experiments.

• Salary [sal15]. This dataset is obtained from the Kaggle repository and contains the

compensation for San Francisco city employees. We use the attribute BasePay (domain

[1000, 230000]) from the years 2011 (35, 707 records) and 2014 (38, 122 records).
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• Adult [AN10]. This dataset is obtained from the UCI repository and is derived from

the 1994 Census. The dataset has 32, 561 records and we use the attribute Age (domain

[1, 100]) for our experiments.

• Population [cen]. This is a US Census dataset of annual estimates of the resident

population by age and sex. We use the data for male Puerto Ricans for 2011 and 2019.

Datasets Adult and SPARCS have small and dense domains while PUDF and Salary have

larger and sparse domains.

Metrics. We use the following metrics for our experiments. For evaluating Q1, we use

the relative percentage of missing records, ρM =
#missing records
#correct records

%. Note that ρM es-

sentially captures false negatives which is the only type of error encountered – the querier

can remove all cases false positives as discussed in Chapter 3.6. We evaluate Q2 via the

percentage of extra records processed relative to the dataset size, ρE = #extra records
#records in dataset

%.

A key advantage of outsourcing is that the querier doesn’t have to store/process the entire

database. ρE measures this – low ρE implies that the (relative) count of extra records is low

and it is still advantageous to outsource. In other words, low ρE implies that the client’s

processing overhead is low (relative to the alternative of processing the whole dataset). We

believe this is a good metric for assessing the overhead in our setting because:

• For clients, the decryption of extra records doesn’t result in a tangible time overhead

(1 million records take < 3 minutes, see Chapter 3.6).

• OPϵ has no impact on the server since its interface (functionality) is the same as that

for OPE.

For evaluating ordinal queries (Figure 3.4a), we use σk = % of points with |P(x) − õx| = k

where P(x) and õx denote the correct and noisy encoding for x, respectively. For instance,

σ0 = 90 means that 90% of the input data points were mapped to the correct bins. For

frequency and mean estimation (Figures 3.4b and 3.4c), we measure the absolute error |c− c̃|
where c is the true answer and c̃ is the noisy output. For Figure 3.4d, we use the error metric

|c− c̃|/k where k is the size of the query. We report the mean and s.t.d of error values over

100 repetitions for every experiment.

Configuration. All experiments were conducted on a Macbook with i5, 8GB RAM and

OS X Mojave (v10.14.6). We used Python 3.7.6. The reported privacy parameter ϵ refers

to the ϵ-IND-FA-OCPA guarantee, and implies ϵ
2 -dDP and ϵ

2 -dLDP for OPϵ (Figure 3.2). We

instantiate the OPϵc primitive using Alg. 3. Due to lack of space, we present the results
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for all only two datasets, 1 dense (Adult, SPARCS) and 1 sparse (PUDF, Salary), in Figure

3.3. The default settings are ϵ = 1, equi-depth partitioning of sizes |P| = 122 for PUDF,

|P| = 8 for SPARC, |P| = 10 for Adult, and |P| = 70 for Salary. The range queries are chosen

uniformly at random. We use the data from Salary for 2011 as an auxiliary dataset for Figure

3.4a.

3.8.2 Experimental Results
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Figure 3.4: Accuracy Analysis of OPϵc in the LDP setting

Utility and Overhead of OPϵ

Here, we evaluate Q1 and Q2 by computing the efficacy of OPϵ in retrieving the queried

records of a range query. Recall, that a OPE scheme preserves the exact order of the plain-

texts. Thus, the loss in accuracy (ordering information) arises solely from OPϵ’s use of the

OPϵc primitive. Hence first, we study the effect of the parameters of OPϵc.

We start with the privacy parameter, ϵ (Figs. 3.3a and 3.3b). We observe that OPϵ achieves

high utility even at high levels of privacy. For example, OPϵ misses only about 2% of the

correct records (i.e., ρM = 2%) for PUDF (Figure 3.3a) on average even for a low value of
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ϵ = 0.01 (i.e., the ratio of the output distributions of two datasets that are 100-adjacent

is bounded by e). The associated processing overhead is also reasonable – the size of the

extra records retrieved, ρE , is around 1% of the total dataset size on average. Next, we

observe that as the value of ϵ increases, both the number of missing and extra records drop.

For instance, for ϵ = 1 we have ρM = 0.04%, i.e., only 4 in every 10K correct records are

missed on average. Additionally, the number of extra records processed is just 0.3% of the

total dataset size on average. We observe similar trends for SPARC (Figure 3.3b) as well.

However, the utility for SPARC is lower than that for PUDF. For instance, ρM = 10% and

ρE = 35% for ϵ = 0.01 for SPARC. This is so because the ratio of the domain size (120) and

partition size (8) for SPARC is smaller than that for PUDF (domain size ∼ 18K, |P| = 122).

As a result, the individual intervals for SPARC are relatively small which results in lower

utility.

Next, we study the effect of the size of the partition (number of intervals) on OPϵ’s utility.

As expected, we observe that for Adult, decreasing the partition size from 20 to 5 decreases

ρM from 5% to 0.2% (Figure 3.3c). However, this increases the number of extra records

processed – ρE increases from 0.8% to 7%. Similar trends are observed for Salary (Figure

3.3d).

Next, we study the effect of including neighboring intervals (Chapter 3.6) in Figures 3.3e

and 3.3f. For instance, for Salary, including records from 2 extra neighboring intervals drops

ρM from 1% to 0%. However, ρE increases from 0.4% to 1.7%. The increase in ρE is more

significant for Adult. The reason is that the domain size for Adult is small and the dataset is

dense. On the other hand, Salary has a larger and sparse domain.

Another way for improving utility is to answer a workload of range queries at a time (Chapter

3.6). We present the empirical results for this in Figures 3.3g and 3.3h. For SPARC, we

observe that ρM and ρE drop from 0.9% to 0.1% and 4% to 0.2%, respectively as the size of

the workload is increased from 1 to 20. Further, we note that this effect is more pronounced

for SPARC than for PUDF. This is because, the domain of PUDF is larger and hence, the

probability that the queried ranges in the workload are close to each other is reduced.

Utility of OPϵc in the LDP Setting

In what follows, we evaluate Q3 by studying the utility of the OPϵc primitive in the LDP

setting.

First, we consider ordinal queries. For Adult, we define an equi-length partition P =

{[1, 10], · · · , [91, 100]} over the domain and our query of interest is: Which age group (as

defined by P) does each data point belong to? For Salary, we define an equi-depth partition
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of size 10 over the domain and our query of interest is: Which decile does each data point

belong to? Our results are reported in Figure 3.4a. The first observation is that OPϵc re-

ports the correct encodings with good accuracy. For instance, for ϵ = 1, σ0 = 94.5% and

σ1 = 5.5% for the Salary dataset. Another interesting observation is that for low values of ϵ,

the accuracy for Salary is significantly higher than that for Adult. Specifically, for ϵ = 0.1,

σ0 = 90% and σ0 = 35% for Salary and Adult, respectively. The reason for this is two fold.

Firstly, we use an auxiliary dataset for Salary to compute the weighted medians for the cen-

tral tendencies. On the other hand, we do not use any auxiliary dataset for Adult and use

the median of each interval as our measure for central tendency. Secondly, the domain size

of Salary (230K) is relatively large compared to the number of intervals (10) which results

in higher utility (as explained in Chapter 3.3.2).

Figure 3.4b shows our results for using OPϵc for frequency estimation. Baseline1 denotes

the state-of-the art ϵ-LDP frequency oracle [WBLJ17b]. We observe that OPϵc achieves

significantly lower error than Baseline1. For instance, the error of OPϵc is 6× lower than

that of Baseline1 for ϵ = 0.1. This gain in accuracy is due to OPϵc’s relaxed ϵ-dLDP guarantee.

From Figure 3.4c, we observe that the frequency oracle designed via OPϵc can be used for

mean estimation with high utility. Here Baseline2 refers to the state-of-the-art protocol

[DKY17] for mean estimation for ϵ-LDP. We observe that for ϵ = 0.1, OPϵc achieves ∼ 40×
lower error than Baseline2.

Another interesting observation is that OPϵc’s frequency oracle gives better accuracy for a

range query of size k than k individual point queries (Figure 3.4d). For instance, a range

query of size 20 gives 5× lower error than 20 point queries. The reason behind this is that the

output distribution of OPϵc is the exponential distribution centered at the input x. Hence,

with high probability x either gets mapped to itself or some other point in its proximity.

Thus, the probability for accounting for most copies of x is higher for the case of answering

a range query x ∈ [a, b] than for answering a point estimation for x.

An Illustration of OPϵ’s Protection

Here, we give an illustration of OPϵ’s protection against inference attacks on a real-world

dataset. We use the “snapshot” attack model (the adversary obtains a onetime copy or

snapshot of the encrypted data [FVY+17]) for the ease of exposition. Our analysis is based

on a formal model that captures a generic inference attack in the snapshot model – we create

a bitwise leakage profile for the plaintexts from the revealed order and adversary’s auxiliary

knowledge as described below.
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Model Description. We assume the input domain to be discrete, and finite and w.l.o.g

denote it as X = [0, 2m−1]. Additionally, let D represent the true input distribution and

X = {x1, · · · , xn} be a dataset of size n with each data point sampled i.i.d from D. We

model our adversary, APPT, to have access to (1) auxiliary knowledge about a distribution,

D′, over the input domain, X and (2) the ciphertexts, C, corresponding to X which represent

the snapshot of the encrypted data store. The adversary’s goal is to recover as many bits of

the plaintexts as possible. Let X(i), i ∈ [n] represent the plaintext in X with rank [ran] i and

letX(i, j), j ∈ [m] represent the j-th bit forX(i). Additionally, let b(i, j) represent the adver-

sary’s guess for X(i, j). Let L be a n×m matrix where L(i, j) = Pr
[
X(i, j) = b(i, j)

∣∣D,D′
]

represent the probability that APPT correctly identifies the j-th bit of the plaintext with rank

i. Hence, L allows analysis of bitwise information leakage from C to APPT. The rationale

behind using this model is that it captures a generic inference attack in the snapshot model

allowing analysis at the granularity of bits.

Adversary’s Approach. APPT’s goal is to produce their best guess for X(i, j). Given

APPT’s auxiliary knowledge about the distribution, D′, the strategy with the least proba-

bilistic error is as follows:

b(i, j) = arg max
b∈{0,1}

{
PrD′

[
X(i, j) = b

]}
, i ∈ [n], j ∈ [m]

=

{
0 if ED′

[
X(i, j)

]
≤ 1/2

1 if ED′
[
X(i, j)

]
> 1/2

(3.33)

Next, we formalize L when X is encrypted under OPϵ.

Theorem 11. If X is encrypted under OPϵ, then for all i ∈ [n], j ∈ [m] we have

L(i, j) =
∑

s∈Sj
b(i,j)

PrD
[
x = s

](∑

v∈O
PrD∗

[
Õ(i) = v

]
·

Pr
[
OPϵc(s,P, ϵ) = v

]
/PrD∗

[
o = v

] )
+ negl(κ) (3.34)

where Õ(r) denotes the encoding with rank r, r ∈ [n], P ∈ X̂ , o ∼ D∗, and D∗ : X 7→ O
represents the distribution of the encoding OPϵc(x,P, ϵ), x ∼ D which is given as

PrD∗
[
v
]
=
∑

x∈X
PrD

[
x
]
· Pr
[
OPϵc(x,P, ϵ) = v

]
, v ∈ O

Proof. Fact 1. If D represents an input distribution and X = {x1, · · · , xn} denotes a dataset

of size n with each data point sampled i.i.d from D, then we have:

PrD
[
X(i, j) = b

]
=
∑

s∈Sj
b

PrD
[
X(i) = s

]



84

where i ∈ [n], j ∈ [m], b ∈ {0, 1}, and Sjb = {s|s ∈ X and its j-th bit sj = b}.

Let C(i) represent the ciphertext with rank i in C. Additionally, let X ′(i) represent the

corresponding plaintext for C(i). From the IND-FA-OCPA guarantee, we observe that the

rank of a ciphertext y ∈ Y is equal to the rank of its corresponding plaintext in X, i.e,

X ′(i) = X(i). Thus, we have this, we have

L(i, j) = PrD
[
X ′(i, j) = b(i, j)

]
+ negl(κ)

[The term negl(κ) accounts for the corresponding term in Eq. 3.5

for the IND-OCPA guarantee of the OPE scheme.]

= PrD
[
X(i, j) = b(i, j)

]

=
∑

s∈Sj
b(i,j)

PrD
[
X(i) = s

]
[From Fact 1] (3.35)

Eqs. 3.33 and 3.35 can be numerically computed using the following lemma.

Lemma 8. If D represents an input distribution and X = {x1, · · · , xn} denotes a dataset of

size n with each data point sampled i.i.d from D, then we have:

PrD
[
X(i) = s

]
=





n∑
j=n−i+1

(
n
j

)
· PrD

[
x < s

]n−j· PrD
[
x = s

]j

if PrD
[
x > s

]
= 0

n∑
j=i

(
n
j

)
· PrD

[
x = s

]j · PrD
[
x > s

]n−j

if PrD
[
x < s

]
= 0

n∑
j=1

(
min{i,n−j+1}∑

k=max{1,i−j+1}

((
n

k−1,j,n−k−i+1

)
·

PrD
[
x < s

]k−1 · PrD
[
x = s

]j ·

PrD
[
x > s

]n−k−j+1
))

otherwise

where x ∼ D, i ∈ [n] and s ∈ X .

Proof. Let Xsort denote the sorted version of X. Additionally, let rfs and rls denote the

positions of the first and last occurrences of the value s in Xsort, respectively. Let cnts

denote the count of data points with value s in X. Thus, clearly cnts = rls − rfs + 1

Case I: PrD
[
x > s

]
= 0

In this case, we have

X(i) = s =⇒ X(r) = s, ∀r s.t i ≤ r ≤ n
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Thus, rls = n and n− i+ 1 ≤ cnts ≤ n and

PrD
[
X(i) = s

]
=

n∑

j=n−i+1

PrD
[
X(i) = s|cnts = j

]

=

n∑

j=n−i+1

(
n

j

)
· PrD

[
x < s

]n−j · PrD
[
x = s

]j

Case II: PrD
[
x < s

]
= 0

In this case, we have

X(i) = s =⇒ X(r) = s, ∀r s.t 1 ≤ r ≤ i

Thus, rfs = 1 and therefore i ≤ cnts ≤ n and

PrD
[
X(i) = s

]
=

n∑

j=i

PrD
[
X(i) = s|cnts = j

]

=

n∑

j=i

(
n

j

)
· PrD

[
x = s

]j · PrD
[
x > s

]n−j

Case III: Otherwise

For all other cases, if cnts = j, j ∈ [n], then we must have max{1, i − j + 1} ≤ rls ≤
min{i, n− j + 1}. Thus, we have

PrD
[
X(i) = s

]
=

n∑

j=1

PrD
[
X(i) = s|cnts = j

]

=

n∑

j=1

(
min{i,n−j+1}∑

k=max{1,i−j+1}

(( n

k − 1, j, n− k − i+ 1

)
·

PrD
[
x < s

]k−1 · PrD
[
x = s

]j · PrD
[
x > s

]n−k−j+1
))

Next, we formalize L when X is encrypted under a OPE scheme.

Theorem 12. If X is encrypted under an OPE scheme that satisfies the IND-FA-OCPA guar-

antee, then for all i ∈ [n], j ∈ [m] we have

L(i, j) =
∑

s∈Sj
b(i,j)

PrD
[
X(i) = s

]
+ negl(κ) (3.36)

where x ∼ D, and Sjb = {s|s ∈ X and its j-th bit sj = b}.
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Proof. The above theorem formalizes what APPT can learn from just the order of the plain-

texts (that is leaked by C by definition). Recall that in OPϵ, the OPE scheme is applied

to the encodings obtained from the OPϵc primitive. Thus, in this case, the ciphertexts C
preserve the rank of the encodings of OPϵc(x,P, ϵ), x ∈ X. Let Õ represent this set of en-

codings. Additionally, let Õ(i) be the encoding in Õ with rank i. Let X ′′(i) represent the

corresponding plaintext for the encoding Õ(i). Thus, for s ∈ X , x ∼ D and o ∼ D∗, we have

PrD
[
X ′′(i) = s

]
=

∑

v∈O
PrD∗

[
Õ(i) = v

]
· PrD

[
X ′′(i) = s|Õ(i) = v

]

=
∑

v∈O
PrD∗

[
Õ(i) = v

]
· PrD

[
x = s|OPϵc(x,P, ϵ) = v

]

=
∑

v∈O
PrD∗

[
Õ(i) = v

]
·

PrD
[
OPϵc(x,P, ϵ) = v|x = s

]
· PrD

[
x = s

]

PrD
[
OPϵc(x,P, ϵ) = v

]

=
∑

v∈O
PrD∗

[
Õ(i) = v

]
·

PrD
[
OPϵc(x,P, ϵ) = v|x = s

]
· PrD

[
x = s

]

PrD∗
[
o = v

]

= PrD
[
x = s

]∑

v∈O
PrD∗

[
Õ(i) = v

]Pr
[
OPϵc(s,P, ϵ) = v

]

PrD∗
[
o = v

]

Thus finally,

L(i, j) = Pr
[
X ′′(i, j) = b(i, j)

]
+ negl(κ)

[The term negl(κ) accounts for the corresponding term in Eq. 3.13

for the ϵ-IND-FA-OCPA guarantee of the OPϵ scheme.]

=
∑

s∈Sj
b(i,j)

Pr
[
X ′′(i) = s

]
+ negl(κ)

=
∑

s∈Sj
b(i,j)

PrD
[
x = s

](∑

v∈O
PrD∗

[
Õ(i) = v

]
·

Pr
[
OPϵc(s,P, ϵ) = v

]
/PrD∗

[
o = v

] )
+ negl(κ)

Remark. The bitwise leakage matrix, L, captures the efficacy of a generic inference

attack in the snapshot model at the granularity of the plaintext bits. We present

this analysis to provide an intuitive insight into OPϵ’s improved protection against

inference attacks (given formally by Theorem 9).
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Figure 3.5: Numerical Analysis of the Bitwise Leakage Matrix, L

Evaluation Results. Using these theorems, we analytically compute L for a real-world

dataset. We use the age data from the Population dataset for the year 2019 as the true

input distribution, D, and the data from the year 2011 is considered to be the adversary’s

auxiliary distribution, D′. We consider the dataset size to be 200 and the number of bits

considered is 7 (domain of age is [1, 100]). Additionally, the partition P for the OPϵc primitive

is set to be P = O = X = [1, 100]. The reported privacy parameter ϵ refers to the ϵ-IND-

FA-OCPA guarantee, and implies ϵ
2 -dDP and ϵ

2 -dLDP for OPϵ (Figure 3.2). As shown in

Figure 3.59, we observe that the probability of successfully recovering the plaintext bits

is significantly lower for OPϵ as compared to that of a OPE. Moreover, the probability of

recovering the lower-order bits (bits in the right half) is lower than that of higher-order bits

– the probability of recovering bits 5-7 is ≈ 0.5 which is the random guessing baseline. Recall

that Thm. 9 implies that the adversary would not be able to distinguish between pairs of

inputs that are close to each other. Hence, the above observation is expected since values

that are close to each other are most likely to differ only in the lower-order bits. Additionally,

as expected, the probability of the adversary’s success decreases with decreasing value of ϵ.

For instance, the average probability of success for the adversary for bit 4 reduces from 0.77

in the case of OPEs (Figure 3.5a) to 0.62 and 0.51 for ϵ = 1 (Figure 3.5b) and ϵ = 0.1

9For Figure 3.5, we omit the negl(κ) term from Eqs. 3.34 and 3.36
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(Figure 3.5c), respectively, for OPϵ. Concretely, no inference attack in the snapshot model

that uses the given auxiliary knowledge can distinguish between two age values (x, x′) such

that |x− x′| ≤ 8 for ϵ = 0.1.

3.9 Discussion

OPϵ is the first step towards integrating OPEs and DP. Here, we discuss several avenues for

future research.

Extension to Other Related Cryptographic Security Guarantees. The current

scheme can be trivially extended to the IND-OCPA security guarantee [BCLO09, PLZ13b]

for OPEs by replacing Definition 11 with a OPE scheme that satisfies IND-OCPA guarantee

instead. Extension to order-revealing encryptions (ORE) [BLR+15,LW16,CLWW16] is also

straightforward – replacing the OPE by an ORE in the construction would work. The secu-

rity guarantee again follows from the post-processing resilience of DP. Exploring connections

with modular OPEs [MCO+15,BCO11] is also an interesting future direction. The property

of partial order preserving can provide protection against certain inference attacks. For ex-

ample, some attacks require access patterns for uniformly random range queries [GLMP19b]

or knowledge about the volume of every range query [GLMP18]. This is clearly not possible

with OPϵ as only queries at the granularity of the chosen partition are permitted. Hence, an-

other future direction could be formalizing this security gain parameterized on the choice of

the partition. A related path to explore here could be studying connections with the existing

notion of partially order preserving encoding POPE proposed by Roche et. al [RACY16]. A

recent line of work has focused on providing formal guarantees against some specific types of

attacks in the context of encrypted databases [GKL+20,LP18,KT19,AHKM18b]. Our model

is distinct from all the above mentioned approaches. Additionally, since the dDP guarantee

holds regardless of the type of inference attacks, it would be interesting to see if it can be

combined with the above approaches for a stronger formal guarantee or better efficiency.

Beyond OPEs, secure ordering could be required in a distributed setting where n mutually

untrusting parties, each holding a data point, want to compute a sorted order over their data

(generalization of the classic Yao’s millionaires’ problem [Yao86,JKU11]). OPEs are ill-suited

for this setting because (1) currently OPEs are defined only in private key cryptography which

means that a single malicious agent posing as a data owner can compromise the protocol (2)

OPEs (satisfying ϵ-IND-FA-OCPAand IND-OCPA) are stateful and mutable [KT19,PLZ13b]

which is not feasible in a distributed setting. This requires the use of multi party compu-

tation (MPC) techniques. A straightforward way to extend is to compute over the outputs

of the OPϵc primitive. Proposing techniques for improved utility is an important future work.
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Compromised Querier. In the context of a database encrypted under a OPE scheme,

a querier has access only to the records that precisely belong to the queried range. However,

in our setting the querier might know the values of some records that fall outside the queried

range (Chapter 3.6). This might lead to additional leakage, when compared to the case of

a OPE encrypted database, in the event the querier is compromised. One way to prevent

this is to use an attribute-based encryption scheme [BSW07] for E where the decryption is

possible only if the record belongs to the queried range.

Support for Non-ordinal Data. Currently, ϵ-dLDP (equivalently dDP) provides a se-

mantically useful privacy guarantee only for data domains that have a naturally defined

order. A possible future direction can be exploring how to extend this guarantee for non-

ordinal domains (like categorical data). One such way could be associating the categories of

the non-ordinal domain with some ordinal features like popularity [GTT+19] and defining

the guarantee w.r.t to these ordinal features instead.

Extension of LDP Mechanisms. The performance of the algorithms presented in Chap-

ter 3.7 could be improved by borrowing techniques from the existing literature in LDP. For

example, the partition for OPϵc could be learnt from the workload factorization mechanism

from [MMMM20]. In another example, a B-ary tree could be constructed over the input

domain using OPϵc for answering range queries [Kul19].

Less State Information for Clients. For OPϵ, in fact the clients need to store less

state information than for OPEs satisfying IND-FA-OCPA as discussed below. Clients for

any OPE scheme, E , (satisfying the IND-FA-OCPA guarantee) need to store two pieces of

state information for each unique value of X that appears in the dataset X to be en-

crypted (see [MRS18]). For example, for input domain X = [100] and a dataset X =

{42, 45, 45, 50, 88, 67, 67, 77, 90, 98, 98, 98, 98} drawn from this domain, the client needs to

store two information {maxE(x),minE(x)} for x ∈ {42, 45, 50, 88, 67, 77, 90, 98}. Recall that

OPϵ applies OPE to the output of the OPϵc primitive. This implies that for OPϵ, E†,
the client needs to store the state information only for each encoding in O of the un-

derlying OPϵc primitive. For the above mentioned example, consider a partition P =

{[1, 20], [21, 40], [41, 60], [61, 80], [81, 100]} with corresponding encodings O = {10, 30, 50, 70, 90}.
Here, the client needs to store {maxE†(o),minE†(o)} only for o ∈ O = {10, 30, 50, 70, 90}.
This means that clients now need to store less state information for OPϵ than for OPE.

Encrypting Multiple Columns. For encrypting records with multiple columns, we can

encrypt each column individually under the OPϵ scheme (satisfying ϵ-dLDP). Then, from
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the composition theorem of dLDP, we would still enjoy c · ϵ-dLDP guarantee over the entire

dataset where c is the total number of columns.

Extension of OPϵc. The OPϵc primitive can be extended to generic metric space along

the lines of previous literature [ACPP18,CABP13]. This would support arbitrary partition

instead of just non-overlapping intervals. For this, first sort the input domain X according

to the metric d(·). Then divide the sorted domain, XS , into non-overlapping intervals which

determines the partition, P, for the OPϵc primitive. Algorithm 3 can now be defined on P
with metric d(·).

Recent work in database theory community has explored efficient k-top query answering

mechanisms [DK18, DHK20, DHK21a, DHK21b, DK21]. OPϵc can be used in conjunction

with these mechanisms for guaranteeing data privacy.

Choice of Partition. as long as the encoding domain O of the underlying OPϵc prim-

itive has enough wiggle room. For instance, for input domain X = [100], let the initial

partition be P = {[1, 20], [21, 40],
[41, 60], [61, 80], [81, 100]} over a input domain [100]. Let the corresponding encodings be

O = {1, 21, 41, 61, 81}. Now, if in the future the interval [1, 40] needs to be further parti-

tioned into {[1, 10], [11, 20], [21, 30], [31, 40]}, it can be performed as follows:

1. retrieve and delete all records from the database in the range [1, 40] (this step might

incur some loss in accuracy)

2. assign the encodings {1, 11, 21, 31} for the aforementioned sub-partition

3. insert back the records encrypted under the new encoding

However, the cost here is that every update consumes an additional ϵ-dLDP privacy budget

for the updated records.

3.10 Related Work

The dLDP guarantee is equivalent to the notion of metric-based LDP [ACPP18] where the

metric used is ℓ1-norm. Further, metric-LDP is a generic form of Blowfish [HMD14] and

dχ-privacy [CABP13] adapted to LDP. Other works [BCSZ18, XDHZ19, ABCP13, CEP17,

GTT+19,WNW+17] have also modelled the data domain as a metric space and scaled the

privacy parameter between pairs of elements by their distance. A recent work [ABK+19]

propose context-aware framework of LDP that allows a privacy designer to incorporate the

application’s context into the privacy definition.
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A growing number of work has been exploring the association between differential privacy

and cryptography [WHMM20]. Mironov et al. [MPRV09] introduced the notion of compu-

tational differential privacy where the privacy guarantee holds against a PPT adversary. A

line of work [BEM+17,CSU+19] has used cryptographic primitives for achieving anonymity

for privacy amplification in the LDP setting. Mazroom et al. [MG18b] have proposed tech-

niques for secure computation with DP access pattern leakage. Bater et al. [BHT+18] com-

bine differential privacy with secure computation for query performance optimization in

private data federations. Groce et al. [GRR19b] show that allowing differentially private

leakage can significantly improve the performance of private set intersection protocols. Vu-

vuzela [vdHLZZ15] is an anonymous communication system that uses differential privacy to

enable scalability and privacy of the messages. Differential privacy has also been used in

the context of ORAMs [CCMS19b,WCM18]. A parallel line of work involves efficient use of

cryptographic primitives for differentially private functionalities. Agarwal et al. [AHKM18a]

design encrypted databases that support differentially-private statistical queries, specifically

private histogram queries. Rastogi et al. [RN10] and Shi et al. [SHCGR+11] proposed al-

gorithms that allow an untrusted aggregator to periodically estimate the sum of n users’

values in a privacy preserving fashion. However, both schemes are irresilient to user failures.

Chan et al. [CSS12b] tackled this issue by constructing binary interval trees over the users.

Böhler et al. [WLJ17] solves the problem of differentially private heavy hitter estimation

in the distributed setting using secure computation. Recently, Humphries at al. [HMVK21]

have proposed a solution for computing differentially private statistics over key-value data

using secure computation. in the combined Additionally, recent works have combined DP

and cryptography in the setting of distributed learning [KLS21a,ASY+18,CCDD+21].

3.11 Conclusion

We have proposed a novel ϵ-dDP order preserving encryption scheme, OPϵ. OPϵ enjoys a

formal guarantee of ϵ-dDP, in the least, even in the face of inference attacks. To the best of

our knowledge, this is the first work to combine DP with a property-preserving encryption

scheme. Additionally, OPϵ is based on a novel ϵ-dLDP order preserving encoding scheme,

OPϵc, that can be of independent interest in the LDP setting. Our experimental results show

that OPϵc and OPϵ achieve high utility on real-world datasets.
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Chapter 4

EIFFeL: Ensuring Integrity for Federated Le-
arning

Federated learning (FL; [MMR+17]) is a learning paradigm for decentralized data in which

multiple clients collaborate with a server to train a machine-learning (ML) model. Each

client computes an update on its local training data and shares it with the server; the server

aggregates the local updates into a global model update. This allows clients to contribute to

model training without sharing their private data. However, the local updates can still reveal

information about a client’s private data [MSDCS19, BDF+18, ZLH19, YMV+21, NSH19].

FL addresses this by using secure aggregation: clients mask the updates they share, and

the server can only recover the final aggregate in the clear. A major challenge in FL is
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Security Goal Cryptographic Primitive

Input Privacy Shamir’s Threshold Secret Sharing Scheme [Sha79]

Input Integrity
Secret-Shared Non-Interactive Proof [CGB17]

Verifiable Secret Shares [Fel87]

Figure 4.1: OPϵc performs secure aggregation of verified inputs in FL. The table lists its

security goals and the cryptographic primitives we adopt to achieve them.

that it is vulnerable to Byzantine errors. In particular, malicious clients can inject poisoned

updates into the learner with the goal of reducing the global model accuracy [BNL12,MZ15,
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FCJG20,BCMC19,KMA+19] or implanting back doors in the model that can be exploited

later [CLL+17,BVH+18,XHCL20]. Even a single malformed update can significantly alter

the trained model [BMGS17b]. Thus, ensuring the well-formedness of the updates, i.e.,

upholding their integrity, is essential for ensuring robustness in FL. This problem is especially

challenging in the context of secure aggregation as the individual updates are masked from

the server, which prevents audits on them.

These challenges in FL lead to the research question: How can a federated learner efficiently

verify the integrity of clients’ updates without violating their privacy?

We formalize this problem by proposing secure aggregation of verified inputs (SAVI) protocols

that: (1) securely verify the integrity of each local update, (2) aggregate only well-formed

updates, and (3) release only the final aggregate in the clear. A SAVI protocol allows for

checking the well-formedness of updates without observing them, thereby ensuring both the

privacy and integrity of updates.

In order to demonstrate the feasibility of SAVI, we propose OPϵc: a system that instantiates

a SAVI protocol that can perform any integrity check that can be expressed as an arithmetic

circuit with public parameters. This provides OPϵc the flexibility to implement a plethora of

modern ML approaches that ensure robustness to Byzantine errors by checking the integrity

of per-client updates before aggregating them [SKSM19b,SKL17,XKG20,XKG19,LCW+20,

DMG+18,BVH+18,SH21]. OPϵc is a general framework that empowers a federated learner

to deploy (multiple) arbitrary integrity checks of their choosing on the “masked” updates.

OPϵc uses secret-shared non-interactive proofs (SNIP; [CGB17]) which are a type of zero-

knowledge proofs that are optimized for the client-server setting. SNIP, however, requires

multiple honest verifiers to check the proof. OPϵc extends SNIP to a malicious threat

model by carefully co-designing its architectural and cryptographic components. Moreover,

we develop a suite of optimizations that improve OPϵc’s performance by at least 2.3×. Our

empirical evaluation of OPϵc demonstrates its practicality for real-world usage. For instance,

with 100 clients and a poisoning rate of 10%, OPϵc can train an MNIST classification model

to the same accuracy as that of a non-poisoned federated learner in just 2.4 seconds per

iteration.

4.1 Problem Overview

In this chapter, we introduce the problem setting, followed by its threat analysis and an

overview of our solution.
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(a) EIFFeL consists

of multiple clients C
and a server S with

a public validation

predicate Valid(·)
that defines the

integrity check. A

client Ci needs to

provide a proof πi for

Valid(ui) = 1 (Round

1).

(b) For checking the

proof πi, all other

clients C\i act as

the verifiers under

the supervision of S.
Ci splits its update

ui and proof πi us-

ing Shamir’s scheme

with threshold m+ 1

and shares it with C\i
(Round 2).

(c) Conceptually,

any set of m + 1

clients in C\i can

emulate the SNIP

verification protocol.

The server uses

this redundancy to

robustly verify the

proof (Round 3).

(d) The clients

only aggregate the

shares of well-formed

updates and the

resulting aggregate

is revealed to the

server (Round 4).

Figure 4.2: High-level overview of EIFFeL. See Chapter 4.1.4 for key ideas, and Chapter 4.3.3

for a detailed description of the system.

4.1.1 Problem Setting

In FL, multiple parties with distributed data jointly train a global model, M, without ex-

plicitly disclosing their data to each other. FL has two types of actors:

• Clients. There are n clients where each client, Ci, i ∈ [n], owns a private dataset, Di.

The raw data is never shared, instead, every client computes a local update for M,

such as the average gradient, over the private dataset Di.

• Server. There is a single untrusted server, S, who coordinates the updates from

different clients to trainM.

A single training iteration in FL consists of the following steps:

• Broadcast. The server broadcasts the current parameters of the modelM to all the

clients.

• Local computation. Each client Ci locally computes an update, ui, on its dataset

Di.
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• Aggregation. The server S collects the client updates and aggregates them, U =
∑

i∈[n] ui.

• Global model update. The server S updates the global model M based on the

aggregated update U .

In settings where there is a large number of clients, it is typical to subsample a small subset

of clients to participate in a given iteration. We denote by n the number of clients that

participate in each iteration and C denotes this subset of n clients, which the server announces

at the beginning of the iteration.

4.1.2 Security Goals

• Input Privacy (Client’s Goal). The first goal is to ensure privacy for all honest

clients. That is, no party should be able learn anything about the raw input (update)

ui of an honest client Ci, other than what can be learned from the final aggregate U .

• Input Integrity (Server’s Goal). The server S is motivated to ensure that the

individual updates from each client are well-formed. Specifically, the server has a public

validation predicate, Valid(·), that defines a syntax for the inputs (updates). An input

(update) u is considered valid and, hence, passes the integrity check iff Valid(u) = 1.

For instance, any per-client update check, such as Zeno++ [XKG20], can be a good

candidate for Valid(·) (we evaluate four such validation predicates in Chapter 4.6.2).

We assume that the honest clients, denoted by CH : (1) follow the protocol correctly, and (2)

have well-formed inputs. We require the second condition because, in case the input of an

honest client does not pass the integrity check (which can be verified locally since Valid(·) is
public), the client has no incentive to participate in the training iteration.

4.1.3 Threat Model

We consider a malicious adversary threat model:

• Malicious Server. We consider a malicious server that can deviate from the protocol

arbitrarily with the aim of recovering the raw updates ui for i ∈ [n].

• Malicious Clients. We also consider a set of m malicious clients, CM . Malicious

clients can arbitrarily deviate from the protocol with the goals of: (1) sending mal-

formed inputs to the server and compromising the final aggregate; (2) failing the in-

tegrity check of an honest client that submits well-formed updates; (3) violating the

privacy of an honest client, potentially in collusion with the server.
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4.1.4 Solution Overview

Prior work on FL has mostly focused on ensuring input privacy via secure aggregation, i.e.,

securely computing the aggregate U =
∑

Ci∈C ui. Motivated by the above problem setting and

threat analysis, we introduce a new type of FL protocol, called secure aggregation with verified

inputs (SAVI), that ensures both input privacy and integrity. The goal of a SAVI protocol is

to securely aggregate only well-informed inputs.

In order to demonstrate the feasibility of SAVI, we propose EIFFeL: a system that instantiates

a SAVI protocol for any Valid(·) that can be expressed as an arithmetic circuit with public

parameters (Figure 4.1). EIFFeL ensures input privacy by using Shamir’s threshold secret

sharing scheme [Sha79] (Chapter 4.3.1). Input integrity is guaranteed via SNIP and verifiable

secret shares (VSS) which validates the correctness of the secret shares (Chapter 4.3.1). The

key ideas are:

• SNIP requires multiple honest verifiers. EIFFeL enables this in a single-server setting

by having the clients act as the verifiers for each other under the supervision of the

server (in Figure 4.2b, verifiers are marked by ).

• EIFFeL extends SNIP to the malicious threat model to account for the malicious clients.

Our key observation is that using a threshold secret sharing scheme creates multiple

subsets of clients that can emulate the SNIP verification protocol. The server uses this

redundancy to robustly verify the proofs and aggregate updates with verified proofs

only (Figure 4.2c and 4.2d).

4.2 Secure Aggregation with Verified Inputs

Below, we provide the formal definition of a secure aggregation with verified inputs (SAVI)

protocol.

Definition 13. Given a public validation predicate Valid(·) and security parameter κ, a pro-

tocol Π(u1, · · · , un) is a secure aggregation with verified inputs (SAVI) protocol if:

• Integrity. The output of the protocol, out, returns the aggregate of a subset of clients,

CValid, such that all clients in CValid have well-formed inputs.

Pr
[
out = UValid

]
≥ 1− negl(κ) where UValid =

∑

Ci∈CValid

ui

for all Ci ∈ CValid we have Valid(ui) = 1, CH ⊆ CValid ⊆ C (4.1)
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• Privacy. For a set of malicious clients CM and a malicious server S, there exists a

probabilistic polynomial-time (P.P.T.) simulator Sim(·) such that:

RealΠ
(
{uCH

},ΩCM∪S
)
≡C Sim

(
ΩCM∪S ,UH , CH

)
where UH =

∑

Ci∈CH

ui. (4.2)

{uCH
} denotes the input of all the honest clients, RealΠ denotes a random variable

representing the joint view of all the parties in Π’s execution, ΩCM∪S indicates a

polynomial-time algorithm implementing the “next-message” function of the parties

in CM ∪ S (see Chapter 4.4), and ≡C denotes computational indistinguishability.

From Definition 13, the output of a SAVI protocol is of the form:

Uv = UH︸︷︷︸
well-formed updates of
all honest clients CH

+
∑

Ci∈CValid\CH

ui

︸ ︷︷ ︸
well-formed updates of
some malicious clients

(4.3)

The clients in CValid \ CH are clients who have submitted well-formed inputs but can behave

maliciously otherwise (e.g., by violating input privacy/integrity of honest clients).

The privacy constraint of the SAVI protocol means that a simulator Sim can generate the

views of all parties with just access to the list of the honest clients CH and their aggregate

UH . Note that Sim takes UH as an input instead of the protocol output UValid. This is because
the clients in CValid \ CH , by virtue of being malicious, can behave arbitrarily and announce

their updates to reveal UH = UValid −
∑

Ci∈CValid\CH
ui. Thus, SAVI ensures that nothing can

be learned about the input ui of an honest client Ci ∈ CH except:

• that ui is well-formed, i.e., Valid(ui) = 1,

• anything that can be learned from the aggregate UH .

Remark 1. The integrity constraint of SAVI requires the protocol to detect and re-

move all malformed inputs before computing the final aggregate. Note that there is

a fundamental difference between the design choice of just detection of a malformed

input versus detection and removal. In the former, the server can only abort the cur-

rent round even when a single malformed input is detected. This allows an adversary

to stage a denial-of-service attack that renders the server unable to train the model.

When the protocol can both detect and remove malformed inputs, such denial-of-

service attacks are impossible as the server can train the model using just the valid

updates.
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4.3 EIFFeL System Description

This section introduces EIFFeL: the system we propose to perform secure aggregation of

verified inputs.

4.3.1 Cryptographic Building Blocks

Arithmetic Circuit. An arithmetic circuit, C : Fk 7→ F, represents a computation over a

finite field F. It can be represented by a directed acyclic graph (DAG) consisting of three

types of nodes: (1) inputs, (2) gates and (3) outputs. Input nodes have in-degree zero and

out-degree one: the k input nodes return input variables {x1, · · · , xk} with xi ∈ F. Gate

nodes have in-degree two and out-degree one; they perform either the + operation (addition

gate) or the × operation (multiplication gate). Every circuit has a single output node with

out-degree zero. A circuit is evaluated by traversing the DAG, starting from the inputs, and

assigning a value in F to every wire until the output node is evaluated.

Shamir’s t-out-of-n Secret Sharing Scheme [Sha79] allows distributing a secret s

among n parties such that: (1) the complete secret can be reconstructed from any com-

bination of t shares; and (2) any set of t− 1 or fewer shares reveals no information about s.

Herein, t is the threshold of the secret sharing scheme. The scheme is parameterized over a

finite field F and consists of a tuple of two algorithms:

• Construct shares (SS.share). Given a secret s ∈ F, a set of n unique field elements

P ∈ Fn and a threshold t with t ≤ n, this algorithm constructs n shares, {(i, si)}i∈P $←−
SS.share(s, P, t). The algorithm chooses a random polynomial c ∈ F[X] such that

c(0) = s and generates the shares as (i, c(i)), i ∈ P .

• Reconstruct secret (SS.recon). Given the shares corresponding to a subset Q ⊆ P, |Q| ≥
t, the reconstruction algorithm recovers the secret, s← SS.recon({(i, si)i∈Q}).

Shamir’s secret sharing scheme is linear, which means a party can locally perform: (1)

addition of two shares, (2) addition of a constant, and (3) multiplication by a constant.

Shamir’s secret sharing scheme is closely related to Reed-Solomon error correcting codes

[LC04], which is a group of polynomial-based error correcting codes. The share generation

is similar to (non-systemic) message encoding in these codes which can successfully recover

a message even in the presence of errors and erasures (message dropouts). Consequently, we

can leverage Reed-Solomon decoding algorithms for robust reconstruction of Shamir’s secret

shares:

• Robust Reconstruction (SS.robustRecon). Shamir’s secret sharing scheme results in

a [n, t, n− t+ 1] Reed-Solomon code that can tolerate up to q errors and e erasures
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(a) Prover sends secret

shares of its input and

the SNIP proof to multi-

ple verifiers.

(b) The verifiers gos-

sip among themselves and

check the proof.

(c) The check passes suc-

cessfully if all parties are

honest.

Figure 4.3: High-level overview of a secret-shared non-interactive proof (SNIP; [CGB17]).

(message dropouts) such that 2q + e < n− t+ 1. Given any subset of n− e shares

Q ⊆ P, |Q| ≥ n− e with up to q errors, any standard Reed Solomon decoding algo-

rithm [Bla83] can robustly reconstruct s← SS.robustRecon({(i, si)}i∈Q). EIFFeL uses

Gao’s decoding algorithm [Gao03].

Verifiable secret sharing scheme is a related concept where the scheme has an additional

property of verifiability. Given a share of the secret, a party must be able to check whether

it is indeed a valid share. If a share is valid, then there exists a unique secret which will be

the output of the reconstruction algorithm when run on any t distinct valid shares. Formally:

• Verify shares (SS.verify). The verification algorithm inputs a share and a check string

Ψs such that

∃s ∈ F, ∀V ⊂ F× F where |V | = t, s.t.

(∀(i, v) ∈ V,SS.verify((i, v),Ψs) = 1) =⇒ SS.recon(V ) = s

The share construction algorithm is augmented to output the check string, ({(i, si)i∈P },Ψs)

← SS.share(s, P, t).

For EIFFeL, we use the non-interactive verification scheme by Feldman [Fel87]. Let c(x) =

c0 + c1x+ · · · ct−1x
t−1 denote the polynomial used in generating the shares where c0 = s is

the secret. The check string are the commitments to the coefficients given by

ψi = gci , i ∈ {0, · · · , t− 1} (4.4)

where g denotes a generator of F. All arithmetic is taken modulo q such that (p|q − 1)

where p is the prime of F. For verifiying a share (j, sj), a party needs to check whether

gsj =
∏t−1

i=0 ψ
ji

i . The privacy of the secret s = c0 is implied by the the intractability of

computing discrete logarithms [Fel87].
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Key Agreement Protocol. A key agreement protocol consists of a tuple of the following

three algorithms:

• Parameter Generation (KA.param). The parameter generation algorithm samples a set

of public parameters pp that have security parameter κ, (pp)
$←− KA.param(1κ).

• Key Generation (KA.Gen). The key generation algorithm samples a public/secret key

pair from the public parameters, (pk, sk)
$←− KA.gen(pp).

• Key Agreement (KA.agree). The key agreement protocol receives a public key pki and

a secret key skj as input and generates the shared key, skij ← KA.agree(pki, skj).

Authenticated Encryption combines confidentiality and integrity guarantees for messages

exchanged between two parties. It consists of a tuple of three algorithms as follows:

• Key Generation (AE.gen). The key generation algorithm that outputs a private key k

where κ is the security parameter, k
$←− AE.gen(1κ).

• Encryption (AE.enc). The encryption algorithm takes as input a key k and a message

x, and outputs a ciphertext, x
$←− AE.enc(k, x).

• Decryption (AE.dec). The decryption algorithm takes as input a ciphertext and a

key and outputs either the original plaintext, or a special error symbol ⊥ on failure,

x← AE.dec(k, x).

Security relies on indistinguishability under a chosen ciphertext attack (IND-CCA) [KL14b].

Secret-shared Non-interactive Proofs. The secret-shared non-interactive proof (SNIP)

[CGB17] is an information-theoretic zero-knowledge proof for distributed data (Figure 4.3).

SNIP is designed for a multi-verifier setting where the private data is distributed or secret-

shared among the verifiers. Specifically, SNIP relies on an additive secret sharing scheme

over a field F as described below. A secret s ∈ F is split into k random shares ([s]1, · · · , [s]k)
such that

∑k
i=1[s]i = s. A subset of up to k − 1 shares reveals no information about the

secret s. The additive secret-sharing scheme is linear as well.

SNIP Setting. SNIP considers a setting with k > 2 verifiers {Vi}, i ∈ [k] and a prover

P with a private vector x ∈ Fd. Additionally, all parties hold a public arithmetic circuit

representing a validation predicate Valid : Fd 7→ F . Let M be the number of multiplication

gates in Valid(·). F is chosen such that 2M ≪ |F|. The prover P splits x into k shares

{[x1], · · · , [xk]}. Next, they generate k proof strings πi, i ∈ [k] based on Valid(·) and shares

([xi], πi) with every verifier Vi.
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The prover’s goal is to convince the verifiers that, indeed, Valid(x) = 1. The prover does so

via proof strings πi, i ∈ [k], that do not reveal anything else about x. After receiving the

proof, the verifiers gossip with each other to conclude either that Valid(x) = 1 (the verifiers

“Accept x”) or not (“Reject x”). Formally, SNIP satisfies the following properties:

• Completeness. If all parties are honest and Valid(x) = 1, then the verifiers will accept

x.

∀x ∈ F s.t. Valid(x) = 1 : Prπ[Accept x] = 1.

• Soundness. If all verifiers are honest, and if Valid(x) = 0, then for all malicious provers,

the verifiers will reject x with overwhelming probability.

∀x ∈ F s.t. Valid(x) = 0 : Prπ
[
Reject x

]
≥ 1− 2|M |−2/|F|.

• Zero knowledge. If the prover and at least one verifier are honest, then the verifiers

learn nothing about x, except that Valid(x) = 1. Formally, when Valid(x) = 1, there

exists a simulator Sim(·) that can simulate the view of the protocol execution for every

proper subset of verifiers:

∀x s.t. Valid(x) = 1 and ∀V̄ ⊂
k⋃

i=1

Vi we have

Simπ

(
Valid(·), {([x]i, πi)}Vi∈V̄

)
≡ Viewπ,V̄(Valid(·), x)

SNIP works in two stages as follows:

(1) Generation of Proof. For generating the proof, the prover P first evaluates the circuit

Valid(·) on its input x to obtain the value of every wire in the arithmetic circuit corresponding

to the computation of Valid(x). Using these wire values, P constructs three polynomials f ,

g, and h such that h = f · g and f(i), g(i) and h(i), i ∈
[
|M|
]
encode the values of the two

input wires and one output wire of the i-th multiplication gate, respectively. P also samples

a single set of Beaver’s multiplication triples [Bea92]: (a, b, c) ∈ F3 such that a · b = c ∈ F.
Finally, it generates the shares of the proof, [π]i =

(
[h]i, ([a]i, [b]i, [c]i)

)
, which consists of:

• shares of the coefficients of the polynomial h, denoted by [h]i, and

• shares of the Beaver’s triples, ([a]i, [b]i, [c]i) ∈ F3.

The prover then sends the respective shares of the input and the proof ([x]i, [π]i) to each of

the verifiers Vi.

(2) Verification of Proof. To verify that Valid(x) = 1 and hence, accept the input x, the

verifiers need to check two things:
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• check that the value of final output wire of the computation, Valid(x), denoted by wout

is indeed 1, and

• check the consistency of P’s computation of Valid(x).

To this end, each verifier Vi locally constructs the shares of every wire in Valid(x). This can

be done via affine operations on the shares of the private input [x]i and [h]i (see [CGB17] for

details). Next, Vi broadcasts a summary σi = ([wout]i, [λ]i), where [w
out]i is Vi’s share of the

output wire and [λ]i is a share of a random digest that the verifier computes from the shares

of the other wire values and the proof πi. Using these broadcasted summaries, the verifiers

check the proof as follows:

• For checking the output wire, the verifiers can reconstruct its exact value from all the

broadcasted shares wout =
∑k

i=1[w
out]i and check whether wout = 1.

• The circuit consistency check is more involved and is performed using the random

digest λ. First, Vi locally computes the shares of the polynomials f and g (denoted

as [f ]i and [g]i) (see [CGB17]). To verify the circuit consistency, the verifiers need

to check that the shares [h]i sent by the prover P are of the correct polynomial, i.e.,

confirm that f · g = h. For this, SNIP uses the Schwartz-Zippel polynomial identity

test [Sch80, Zip79]. Specifically, verifiers test whether λ = f(r) · g(r)− h(r) = 0 on a

randomly selected r ∈ F. The computation of the random digest λ uses the shares of the

Beaver’s triples ([a]i, [b]i, [c]i). This multiplication requires one round of communication

between the verifiers.

4.3.2 System Building Blocks

Public Validation Predicate. EIFFeL requires a public validation predicate Valid(·), ex-
pressed by an arithmetic circuit, that captures the notion of update well-formedness. In prin-

ciple, any per-client update robustness test [SKSM19b,SKL17,XKG20,LCW+20,DMG+18,

BVH+18, SH21] from the ML literature can be a suitable candidate. The parameters of

the test (for instance, the threshold ρ for some bound ψ(u) ≤ ρ) can be computed from

a clean, public dataset DP that is available to the server S. This assumption of a clean,

public dataset is common in both ML [XKG20, CFLG21,KMA+19] as well as privacy lit-

erature [LVS+21, BCM+20, BKN+20]. The dataset can be small and obtained by manual

labeling [MR17].

Public Bulletin Board. EIFFeL assumes the availability of a public bulletin board B that

is accessible to all the parties. This is similar to prior work [RNFH19,BIK+17,KMA+19].

In practice, the bulletin B can be implemented as an append-only log hosted at a public web
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address where every message and its sender is visible. Every party in EIFFeL has read/write

access to it. We use the bulletin B as a tool for broadcasting [BT85,CW09].

4.3.3 EIFFeL Workflow

The goal of EIFFeL is to instantiate a secure aggregation with verified inputs (SAVI) pro-

tocol in FL. For a given public validation predicate Valid(·), EIFFeL checks the integrity of

every client update using SNIP and outputs the aggregate of only well-formed updates, i.e.,

Valid(u) = 1. To implement the SNIP for our setting, EIFFeL introduces two key ideas:

Key Ideas.

• In EIFFeL, the clients act as verifiers for each other. Specifically, for every client

Ci, i ∈ C, all of the other n−1 clients, C\i, and the server S jointly acts as the ver-

ifiers. This is different from systems like Prio [CGB17] (the original deployment

setting for SNIP) that use multiple honest servers to perform verification.

• In EIFFeL, verification can be performed even in the presence of malicious ver-

ifiers. This is essential in our setting since we have m malicious clients (i.e.,

verifiers). For this, EIFFeL uses Shamir’s t-out-of-n secret scheme. This allows

any cohort of t verifiers to reconstruct a secret and, hence, instantiate a SNIP.

If t < n, we have multiple such instantiations and can use the redundancy to

perform the integrity check even in the presence of malicious verifiers.

EIFFeL is carefully designed such that (1) it can efficiently distribute the computational

burden of verifying the integrity checks between the clients and the server, and (2) all

protocol interactions can integrate seamlessly with the FL architecture.

The full protocol is presented in Figure 4.4. The protocol involves a setup phase followed by

four rounds.

Setup Phase. In the setup phase, all parties are initialized with the system-wide parame-

ters, namely the security parameter κ, the number of clients n out of which only m < ⌊n−1
3 ⌋

can be malicious, public parameters for the key agreement protocol pp
$←− KA.param(κ), and

a field F where |F| ≥ 2κ. EIFFeL works in a synchronous protocol between the server S and

the n clients in four rounds. To prevent the server from simulating an arbitrary number of

clients, the clients register themselves with a specific user ID on the public bulletin board B
and are authenticated with the help of standard public key infrastructure (PKI). The bulletin

board B allows parties to register IDs only for themselves, preventing impersonation. More

concretely, the PKI enables the clients to register identities (public keys), and sign messages

using their identity (associated secret keys), such that others can verify this signature, but
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cannot impersonate them [KL14b]. We omit this detail for the ease of exposition. For no-

tational simplicity, we assume that each client Ci is assigned a unique logical ID in the form

of an integer i in [n]. Each client holds as input a d-dimensional vector ui ∈ Fd representing

its local update. All clients have a private, authenticated communication channel with the

server S. Additionally, every party (clients and server) has read and write access to the

public bulletin B via authenticated channels. For every client Ci, the server S maintains a

list, Flag[i], of all clients that have flagged Ci as malicious. All Flag[i] lists are initialized to

be empty lists.

Round 1 (Announcing Public Information). In the first round, all the parties announce

their public information relevant to the protocol on the public bulletin B. Specifically, each
client Ci generates its key pair (pki, ski)

$←− KA.gen(pp) and advertises the public key pki on

the public bulletin B. The server S publishes the validation predicate Valid(·) on B.

Round 2 (Generate and Distribute Proofs). Every client generates shares of its pri-

vate update ui and the proof πi, and distributes these shares to the other clients C\i. First,
client Ci generates a common pairwise encryption key skij for every other client Cj ∈ C\i
using the key agreement protocol, skij ← KA.agree(ski, pkj). Next, the client generates

the secret shares of its private update {(1, ui1), · · · , (n, uin),Ψu
i }

$←− SS.share(u, [n],m+ 1).

The sharing of ui is performed dimension-wise; we abuse notations and denote the j-th

such share by (j, uij), j ∈ [n]. Note that the client Ci generates a share (i, uii) for it-

self as well which will be used later in the protocol. Next, the client Ci generates the

proof for the computation Valid(ui)=1. Specifically, it computes the polynomials fi, gi, and

hi = fi ·gi and samples a set of Beaver’s multiplication triples (ai, bi, ci) ∈ F3, ai · bi = ci ∈ F.
Since the other clients will verify the proof, client Ci then splits the proof to generate

shares πij =
(
(j, hij), (j, aij), (j, bij), (j, cij)

)
for every other client Cj ∈ C\i. Herein, the shares

themselves are generated via {(1, hi1), · · · , (i− 1, hi(i−1)), (i+ 1, hi(i+1)), · · · , (n, hin),Ψh
i }

$←−
SS.share(hi, [n] \ i,m+ 1), and so on. Finally, the client encrypts the proof strings (shares of

the update ui and the proof πi) using the corresponding pairwise secret key, (j, uij)||(j, πij) $←−
AE.enc

(
skij , (j, uij)||(j, πij)

)
, and publishes the encrypted proof strings on the public bulletin

B. The client also publishes check strings Ψu
i and Ψπi = (Ψh

i ,Ψ
a
i ,Ψ

b
i ,Ψ

c
i ) for verifying the

validity of the shares of ui and πi, respectively.

Round 3 (Verify Proof). In this round, every client Ci partakes in the verification of the

proofs πj of all other clients Cj ∈ C\i, under the supervision of the server S. The goal of the

server is to identify the malicious clients, CM . To this end, the server maintains a (partial)

list, C∗ (initialized as an empty list), of clients it has so far identified as malicious. The

proof-verification round consists of three phases as follows:
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(i) Verifying the validity of the secret shares. First, every client Ci downloads and decrypts

their shares (i, uji)||(i, πji)← AE.dec
(
skij , (i, uji)||(i, πji)

)
,∀Cj ∈ C\i from the bulletin B. Ad-

ditionally, Ci downloads the check strings (Ψu
i ,Ψ

π
i ) and verifies the validity of the shares. If

the shares from any client Cj :

• fail to be decrypted, i.e., AE.dec(·) outputs ⊥, OR

• fail to pass the verification, i.e., SS.verify(·) returns 0,

Ci flags Cj on the bulletin B. Every time a client Ci flags another client Cj , the server updates
the corresponding list Flag[j]← Flag[j] ∪ Ci. If |Flag[j]| ≥ m+ 1, the server S marks Cj as

malicious: C∗ ← C∗ ∪ Cj . The server can do so because the pigeon hole principle implies that

Cj must have sent an invalid share to at least one honest client; hence, the correctness of the

value recovered from that client’s shares cannot be guaranteed. In case 1 ≤ |Flag[j]| ≤ m,

the server supervises the following actions. Suppose client Ci has flagged client Cj . Client Cj
then reveals the shares for Ci,

(
(i, uji), (i, πji)

)
in the clear (on bulletin B) for the server S

(or anyone else) to verify using SS.Verify(·). If that verification passes, Ci is instructed by the

server to use the released shares for its computations. Otherwise, Cj is marked as malicious

by the server S. Note that this does not lead to privacy violation for an honest client since

at most m shares corresponding to the m malicious clients would be revealed (see Chapter

4.4). If a client Ci flags ≥ m+ 1 other clients, S marks Ci as malicious. Thus, at this point

every client on the list C∗ has either:

• provided invalid shares to at least one honest client, OR

• flagged an honest client.

In other words, every client who is not in C∗, Ci ∈ C \ C∗, is guaranteed to have submitted

at least n−m−1 valid shares for the honest clients in CH \ Ci (see Chapter 4.4 for details).

Additionally, the server cannot be tricked into marking an honest client as malicious, i.e.,

EIFFeL ensures C∗ ∩ CH = ∅ (see Chapter 4.4). The server S publishes C∗ on the bulletin B.

(ii) Computation of proof summaries by clients. For this phase, the server S advertises a

random value r ∈ F on the bulletin B. Next, a client Ci proceeds to distill the proof strings

of all clients not in C∗ to generate summaries for the server S. Specifically, client Ci prepares
a proof summary σji =

(
(i, wout

ji ), (i, λji)
)
for ∀Cj ∈ C \ (C∗ ∪ Ci) as per the description in the

previous section, and publishes it on B.

(iii) Verification of proof summaries by the server. Next, the server moves to the last step

of verifying the proof summaries σi = (wout
i , λi) for all clients not in C∗. Recall from the

discussion in Chapter 4.3.1 that this involves recovering the values wout
i and λi from the



106

shares of σi and checking whether wout
i = 1 and λi = 0. However, we cannot simply use

the naive share reconstruction algorithm from Chapter 4.3.1 since some of the shares might

be incorrect (submitted by the malicious clients). To address this issue, EIFFeL performs a

robust reconstruction of the shares as follows. A naive strategy would be sampling multiple

subsets of m+ 1 shares (each subset can emulate a SNIP setting), reconstructing the secret

for each subset, and taking the majority vote. However, we can do much better by ex-

ploiting the connections between Shamir’s secret shares and Reed-Solomon error correcting

codes (Chapter 4.3.1). Specifically, the Shamir’s secret sharing scheme used by EIFFeL is a

[n−1,m+ 1, n−m] Reed-Solomon code that can correct up to q errors and e erasures (mes-

sage dropouts) where 2q + e < n−m−1. The server S can, therefore, use SS.robustRecon(·)
to reconstruct the secret when m < ⌊n−1

3 ⌋.

After the robust reconstruction of the proof summaries, the server S verifies them and

updates the list C∗ with all malicious clients with malformed updates. Specifically:

∀Ci ∈ C \ C∗,(
SS.robustRecon({(j, wout

ij )}Cj∈C\{C∗∪Ci}) ̸= 1 ∨ SS.robustRecon({(j, λij)}Cj∈C\{C∗∪Ci}) ̸= 0
)

=⇒ C∗ ← C∗ ∪ Ci.

Additionally, if a client Ci withholds some of the shares of the proof summaries for other

clients, Ci is marked as malicious as well by the server. Thus, in addition to the malicious

clients listed above, the list C∗ now has all clients that have either:

• failed the proof verification, i.e., provided malformed updates, OR

• withheld shares of proof summaries of other clients (malicious message dropout).

To conclude the round, the server publishes the updated list C∗ on the public bulletin B.

Round 4 (Compute Aggregate). This is the final round of EIFFeL where the aggregate

of the well-formed updates is computed. If a client Ci is on C∗ wrongfully, it can dispute its

malicious status by showing the other clients the transcript of the robust reconstruction from

all the shares of σi (publicly available on bulletin B). If any client Ci ∈ C successfully raises

a dispute, all clients abort the protocol because they conclude that the server S has acted

maliciously by trying to withhold a verified well-formed update from the aggregation. If no

client raises a successful dispute, every client Ci ∈ C \ C∗ generates its share of the aggregate,

(i,Ui) with Ui =
∑

Cj∈C\C∗ uji, and sends that share to the server S. Note that, herein, Ci
uses its own share of the update, (i, uii), as well.

The server recovers the aggregate U =
∑

Ci∈C\C∗ Uj using robust reconstruction: U ←
SS.robustRecon({(i,Ui)}Ci∈C\C∗).
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Remark 2. The protocol described above corresponds to a single iteration of model

training in FL. The server S can choose a different Valid(·) for every iteration. Ad-

ditionally, S can hold multiple Valid1(·), · · · ,Validk(·) and want to check whether the

client’s update passes them all. For this, we have Validi(·) return zero (instead of one)

on success. If wout,i is the value on the output wire of the circuit Validi(·), the server

chooses random values (l1, · · · , lk) ∈ Fk and recovers the sum
∑k

i=1 li · wout,i in Round

3. If any wout,i = 0, then the sum will be non-zero with high probability and S will

reject.

4.3.4 Complexity Analysis

We present the complexity analysis of EIFFeL in terms of the number of clients n, number

of malicious clients m and data dimension d (Table 4.1).

Computation Cost. Each client Ci’s computation cost can be broken into six compo-

nents: (1) performing n−1 key agreements – O(n); (2) generating proof πi for Valid(ui) = 1

– O(|Valid|+ |M| log |M|)1; (3) creating secret shares of the update ui and the proof πi –

O(mn(d+ |M|))2; (4) verifying the validity of the received shares – O(mn(d+ |M|); (5) gen-
erating proof digest for all other clients – O(n|Valid|); and (6) generating shares of the final

aggregate – O(nd). Assuming |Valid| is of the order of O(d), the overall computation com-

plexity of each client Ci is O(mnd).

The server S’s computation costs can be divided into three parts: (1) verifying the va-

lidity of the flagged shares – O(mdmin(n,m2)); (2) verifying the proof digest for all clients

– O(n2 log2 n log logn); and (3) computing the final aggregate – O(dn log2 n log log n). There-

fore, the total computation complexity of the server is O
(
(n+ d)n log2 n log log n+ mdmin(n,m2)

)
.

Communication Cost. The communication cost of each client Ci has seven components:

(1) exchanging keys with all other clients – O(n); (2) receiving Valid(·) – O(|Valid|); (3) send-
ing encrypted secret shares and check strings for all other clients – O(n(d+ |M|) +md); (4)

receiving encrypted secret shares and check strings from all other clients – O(n(d+ |M|) +mnd);

(5) sending proof digests for every other client – O(n); (6) receiving the list of corrupt clients

C – O(m); and (7) sending the final aggregate – O(d). Thus, the communication complexity

for every client is O(mnd).

The servers communication costs include: (1) sending the validation predicate – O(|Valid|);
(2) receiving check strings and secret shares from flagged clients – O(mdmin(n,m2)); (3)

receiving proof digests – O(n2); (4) sending the list of malicious clients – O(m); and (5)

1We use standard discrete FFT for all polynomial operations [GG13].
2This uses the fact that the Lagrange coefficients can be pre-computed [Mat].
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• Setup Phase.

– All parties are given the security parameter κ, the number of clients n out of which at most m < ⌊n−1
3 ⌋ are malicious,

honestly generated pp
$←− KA.gen(κ) and a field F to be used for secret sharing. Server initializes lists Flag[i] = ∅, i ∈ [n] and C∗ = ∅.

• Round 1 (Announcing Public Information).

Client : Each client Ci
– Generates its key pair and announces the public key. (pki, ski)

$←− KA.gen(pp), Ci pki−−→ B.
Server :

– Publishes the validation predicate Valid(·). S Valid(·)−−−−→ B

• Round 2 (Generate and Distribute Proof).

Client : Each client Ci

– Computes n− 1 pairwise keys. ∀Cj ∈ C\i, skij ← KA.agree(pkj , ski)

– Generates proof πi =
(
hi, (ai, bi, ci)

)
, hi ∈ F[X], (ai, bi, ci) ∈ F3, ai · bi = ci for the statement Valid(ui) = 1.

– Generates shares of the input ui ∈ Fd. {(1, ui1), · · · , (n, uin),Ψu
i }

$←− SS.share(ui, [n],m+ 1)

– Generates shares of the proof πi.

{(1, hi1), · · · , (n, hin),Ψh
i }

$←− SS.share(hi, [n] \ i,m+ 1), {(1, ai1), · · · , (n, ain),Ψa
i }

$←− SS.share(ai, [n] \ i,m+ 1),

{(1, bi1), · · · , (n, bin),Ψb
i}

$←− SS.share(bi, [n] \ i,m+ 1), {(1, ci1), · · · , (n, cin),Ψc
i}

$←− SS.share(ci, [n] \ i,m+ 1)

– Encrypts proof strings for all other clients. ∀Cj ∈ C\i, (j, uij)||(j, πij) $←− AE.enc
(
skij , (j, uij)||(j, πij)

)
, πij = hij ||aij ||bij ||cij .

– Publishes check strings and the encrypted proof strings on the bulletin. ∀Cj ∈ C\i, Ci
(j,uij)||(j,πij)−−−−−−−−→ B; Ci

Ψu
i ,Ψ

π
i−−−−→ B

• Round 3 (Verify Proof).

(i) Verifying validity of secret shares:

Client : Each client Ci
– Downloads and decrypts proof strings for all other clients from the public bulletin. Flags a client in case their decryption fails.

∀Cj ∈ C\i, Ci
(i,uji)||(i,πji),Ψu

j ,Ψ
π
j←−−−−−−−−−−−−− B, (i, uji)||(i, πji)← AE.dec

(
skij , (i, uji)||(i, πji)

)

⊥ ← AE.dec
(
skij , (i, uji)||(i, πji)

)
=⇒ Ci

Flag Cj−−−−→ B

– Verifies the shares uji(πji) using checkstrings Ψu
j (Ψ

π
j ) and flags all clients with invalid shares.

∀Cj ∈ C\i, 0←
(
SS.verify((i, uji),Ψ

u
j ) ∧ SS.verify((i, πji),Ψ

π
j )
)

=⇒ Ci
Flag Cj−−−−→ B

Server :

– If client Ci flags client Cj , the server updates Flag[j] = Flag[j] ∪ Ci
– Updates the list of malicious client C∗ as follows:

▶ Adds all clients who have flagged ≥ m+ 1 other clients. ∀Ci s. t. Z = {j|Ci ∈ Flag[j]}, |Z| ≥ m+ 1 =⇒ C∗ ← C∗ ∪ Ci
▶ Adds all clients with more than m+ 1 flag reports. |Flag[i]| ≥ m+ 1 =⇒ C∗ ← C∗ ∪ Ci
▶ For clients with less flag reports, the server obtains the corresponding shares in the clear, verifies them and updates C∗ accordingly.

∀Cj s.t 1 ≤ |Flag[j]| ≤ m,∀Ci s.t. Ci has flagged Cj

− Cj
(i,uji),(i,πji)−−−−−−−−→ B

− if
(
SS.verify((i, uji),Ψ

u
j ) ∧ SS.verify((i, πji),Ψ

π
j )
)
= 0 =⇒ C∗ ← C∗ ∪ Cj , otherwise, Ci uses the verified shares to compute its proof summary σji

– Publishes C∗ on the bulletin. S C∗

−→ B
(ii) Generation of proof summaries by the clients.

Server :

– Server announces a random number r ∈ F. S r−→ B
Client : Each client Ci ∈ C \ C∗

– Generates a summary σji of the proof string πji based on r, ∀Cj ∈ C \ (C∗ ∪ Ci), Ci r←− B, σji =
(
(i, wout

ji ), (i, λji)
)
, Ci

σji−−→ B
(iii) Verification of proof summaries by the server.

Server :

– Downloads and verifies the proof for all clients not on C∗ via robust reconstruction of the digests and updates C∗ accordingly.

∀Ci ∈ C \ C∗,S
σij←−− B,

(
SS.robustRecon({(j, wout

ij )}Cj∈C\(C∗∪Ci)) ̸= 1 ∨ SS.robustRecon({(j, λij)}Cj∈C\(C∗∪Ci)) ̸= 0
)

=⇒ C∗ ← C∗ ∪ Ci

– Publishes the updated list C∗ on the bulletin. S C∗

−→ B

• Round 4 (Compute Aggregate).

Client : Each client Ci
– If Ci is on C∗, Ci raises a dispute by sending the transcript of the reconstruction of σi that shows λi = 0 ∧ wout

j = 1 and aborts, OR

∀Cj ∈ C\i, Ci
σij←−− B, Ci

Transcript of SS.robustRecon({(j,σij)}Cj∈C\(C∗∪Ci)
)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ B
– Aborts protocol if it sees any other client on C∗ successfully raise a dispute, OR

– If no client has raised a dispute and Ci is not on C∗, sends the aggregate of the shares of clients in C \ C∗ to the server. Ui =
∑
uji

Cj∈C\C∗

, Ci Ui−→ S

Server :

– Reconstructs the final aggregate. U ← SS.robustRecon({(i,Ui)}Ci∈C\C∗)

Figure 4.4: EIFFeL: Description of the secure aggregation with verified inputs protocol.



109

Computation Communication

Client O(mnd) O(mnd)

Server O
(
(n+ d)n log2 n log logn+mdmin(n,m2)

)
O
(
n2 +mdmin(n,m2)

)

Table 4.1: Computational and communication complexity of EIFFeL for the server and an

individual client.

receiving the shares of the final aggregate – O(nd). Hence, the overall communication com-

plexity of the server is O(n2 +mdmin(n,m2)).

4.4 Security Analysis

In this chapter, we formally analyze the security of EIFFeL.

Theorem 13. For any public validation predicate Valid(·) that can be expressed by an arith-

metic circuit, EIFFeL is a SAVI protocol (Definition 13) for |CM | < ⌊n−1
3 ⌋ and CValid = C \ C∗.

Proof. The proof relies on the following two facts.

Fact 1. Any set of m or less shares in EIFFeL reveals nothing about the secret.

Fact 2. A (n,m+ 1, n−m) Reed-Solomon error correcting code can correctly construct the

message with up to q errors and e erasures (message dropout), where 2q+ e < n−m+1. In

EIFFeL, we have q+e=m where q is the number of malicious clients that provide erroneous

shares and e is the number of clients that withhold a message or are barred from participation

( i.e., are in C∗).

Integrity. We prove that EIFFeL satisfies the integrity constraint of the SAVI protocol using

the following three lemmas.

Lemma 9. EIFFeL accepts the update of every honest client.

∀Ci ∈ CH , Pr
EIFFeL

[Accept ui] = 1. (4.5)

Proof. By definition, client Ci ∈ CH has well-formed inputs, that is, Valid(ui)=1. Addition-

ally, Ci, by virtue of being honest, submits valid shares. Hence, at least n − m − 1 other

honest clients CH \Ci will produce correct shares of the proof summary σi = (wout
i , λi). Using

Fact 2, the server S is able to correctly reconstruct the value of σi. Eq. 4.5 is now implied

by the completeness property of SNIP.

Lemma 10. All updates accepted by EIFFeL are well-formed with probability 1− negl(κ).

∀Ci ∈ C, Pr
EIFFeL

[
Valid(ui) = 1

∣∣Accept ui
]
= 1− negl(κ). (4.6)
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Proof. In Round 3, the proof corresponding to a client Ci is verified iff it has submitted valid

shares for the n−m−1 honest clients CH \ Ci. This is clearly true if Ci is honest. If Ci is
malicious, i.e., it submitted at least one invalid share:

• Case 1: |Flag[i]| ≥ m+ 1. It is clear that Ci has submitted an invalid share to at least

one honest client and, hence, is removed from the rest of the protocol.

• Case 2: |Flag[i]| ≤ m. All honest clients in CH will be flagging Ci. Hence, Ci either has
to submit the corresponding valid shares or be removed from the protocol.

Given n−m−1 valid shares, using Fact 2, we know that EIFFeL reconstructs the proof

summary for Ci correctly. Eq. 4.6 then follows from the soundness property of SNIP.

Corollary 2. EIFFeL rejects all malformed updates with probability 1− negl(κ).

Based on the above lemmas, at the end of Round 3, C \C∗ (set of clients whose updates have

been accepted) must contain all honest clients CH . Additionally, it may contain some clients

Ci who have submitted well-formed updates with at least n − m − 1 valid shares for CH ,

but may act maliciously for other steps of the protocol (for instance, give incorrect shares

of proof summary for other clients or give incorrect shares of the final aggregate). This is

acceptable provided that EIFFeL is able to reconstruct the final aggregate containing only

well-formed updates which is guaranteed by the following lemma.

Lemma 11. The aggregate U must contain the updates of all honest clients or the protocol

is aborted.

U = UH +
∑

Ci∈C̄
ui where UH =

∑

Ci∈CH

ui

C̄ ⊆ C \ {C∗ ∪ CH} (4.7)

Proof. If the server S acts maliciously and publishes a list C∗ such that C∗ ∩ CH ̸= ∅, an

honest client Ci ∈ C∗ ∩ CH publicly raises a dispute. This is possible since all the shares

of σi are publicly logged on B. If the dispute is successful, all honest clients will abort the

protocol. Note that a malicious client with malformed updates cannot force the protocol

to abort in this way since it will not be able to produce a successful transcript with high

probability (Lemma 10). If no clients raise a successful dispute, Eq. 4.7 follows directly

from Fact 2. Here C̄ represents a set of malicious clients with well-formed updates which

corresponds to CValid \ CH in Eq. 4.3.
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Privacy. First, we outline a proof sketch for intuition. Proof Sketch.Recall, the privacy

constraint of SAVI requires that nothing should be revealed about a private update ui for an

honest client Ci, except:

• ui passes the integrity check, i.e., Valid(ui) = 1

• anything that can be learned from the aggregate of honest clients, UH .

We prove that EIFFeL satisfies this privacy constraint with the help of the following two

helper lemmas.

Lemma 12. In Rounds 1-3, for an honest client Ci ∈ CH , EIFFeL reveals nothing about ui

except Valid(ui) = 1.

Proof. In Round 2, observe that the shares (j, uij), (j, πij) for each client Cj ∈ C\i are en-

crypted with the pairwise secret key and distributed. Hence, a collusion of m malicious

clients (and the server S)3 can access at most m shares of any honest client Ci ∈ CH . This

is true even in Round 3 where:

• A malicious client might falsely flag Ci.

• No honest client in CH \ Ci will flag Ci since they would be receiving valid shares (and

their encryptions) from Ci.

• S cannot lie about who flagged who, since everything is logged publicly on the bulletin

B.

Thus, only m shares of Ci can be revealed which correspond to the m malicious clients.

Since at least m+ 1 shares are required to recover the secret, any instantiation of the SNIP

verification protocol (i.e., reconstruction of the values of σi = (wout
i , λi)) requires at least

one honest client to act as the verifier. Hence, at the end of Round 3, from Fact 1 and the

zero-knowledge property of SNIP, the only information revealed is that Valid(ui) = 1.

Lemma 13. In Round 4, for an honest client Ci ∈ CH , EIFFeL reveals nothing about ui

except whatever can be learned from the aggregate.

Proof. In Round 4, from Lemma 11 and Fact 2, the information revealed is either the aggre-

gate or ⊥.
3The server does not have access to any share of its own in EIFFeL.
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Formal Proof. We prove the theorem by a standard hybrid argument. Let ΩCM∪S indicate

the polynomial-time algorithm that denotes the “next-message” function of parties in CM∪S.
That is, given a party identifier c ∈ CM ∪ S, a round index i, a transcript T of all messages

sent and received so far by all parties in CM ∪ S, joint randomness rCM∪S for the corrupt

parties’ execution, and access to random oracle O, ΩCM∪S(c, i, T, rCM∪S) outputs the message

for party c in round i (possibly making several queries to O along the way). We note that

ΩCM∪S is thus effectively choosing the inputs for all corrupt users.

We will define a simulator Sim through a series of (polynomially many) subsequent modifi-

cations to the real execution RealEIFFeL, so that the views of ΩCM∪S in any two subsequent

executions are computationally indistinguishable.

1. Hyb0. This random variable is distributed exactly as the view of ΩCM∪S in RealEIFFeL,

the joint view of the parties CM ∪ S in a real execution of the protocol.

2. Hyb1. In this hybrid, for any pair of honest clients Ci, Cj ∈ CH , the simulator changes

the key from KA.agree(pkj , ski) to a uniformly random key. We use Diffie-Hellman key

exchange protocol in EIFFeL. The DDH assumption [DH76] guarantees that this hybrid

is indistinguishable from the previous one. also be able to break the DDH.

3. Hyb2. This hybrid is identical to Hyb1 , except additionally, Sim will abort if ΩCM∪S

succeeds to deliver, in round 2, a message to an honest client Ci on behalf of another

honest client Cj , such that (1) the message is different from that of Sim, and (2) the

message does not cause the decryption to fail. Such a message would directly violate

the IND-CCA security of the encryption scheme.

4. Hyb3. In this round, for every honest party in CH , Sim samples si ∈ F such that

Valid(si) = 1 and replaces all the shares and the check strings accordingly. This

allows the server to compute the σi = (wout
i , λi) such that wout

i = 1 ∧ λi = 0 for all

honest clients in the same way as in the previous hybrid. An adversary noticing any

difference would break (1) the computational discrete logarithm assumption used by

the VSS [Fel87], OR (2) the IND-CCA guarantee of the encryption scheme, OR (3) the

information theoretic perfect secrecy of Shamir’s secret sharing scheme with threshold

m+ 1, OR (4) zero-knowledge property of SNIP.

5. Hyb4. In this hybrid, Sim uses UH to compute the following polynomial. Let (j, Sj)

represent the share of
∑

i∈CH
si for a malicious client Cj ∈ C \ CH where si denotes

the random input Sim had sampled for Ci ∈ CH in Hyb3. Sim performs polynomial

interpolation to find the m + 1-degree polynomial p∗ that satisfies p ∗ (0) = UH and

p(j) = Sj . Next, for all honest client, Sim computes the share for U = UH +
∑

Cj∈C̄ uj
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(Eq. 4.7) by using the polynomial p∗ and the relevant messages from ΩCM∪S . Clearly,

this hybrid is indistinguishable from the previous one by the perfect secrecy of Shamir’s

secret shares. This concludes our proof.

4.5 EIFFeL Optimizations

We propose several optimizations to improve the performance of EIFFeL.

4.5.1 Probabilistic Reconstruction

The Gao’s decoding algorithm alongside the use of verifiable secret sharing guarantees that

the correct secret will be recovered (with probability one). However, we can improve perfor-

mance at the cost of a small probability of failure.

Verifying Secret Shares. As discussed in Chapter 4.3.4, verifying the validity of the secret

shares is the dominating cost for client-side computation. To reduce this cost, we propose an

optimization where the validation of the shares corresponding to the proof πi =
(
hi, (ai, bi, ci)

)

can be eliminated. Specifically, we propose the following changes to Round 3:

• Each client Ci skips verifying the validity of the shares (i, πji) for Cj ∈ C\i.

• Let e = |C∗|. The server S samples two sets of clients P1, P2 from C \ {Ci ∪ C∗} of size at

least 3m− 2e+ 1 (P1, P2 can be overlapping) and performs Gao’s decoding on both the

sets to obtain polynomials p1 and p2. The server accepts the wout
i (λi) only iff p1=p2 and

p1(0) = p1(0) = 1(p1(0) = p1(0) = 0). The cost of this step is O(n2 log2 n log logn) which is

less than verifying the shares of πi when m < n≪ d (improves runtime by 2.3×, see
Table 4.2).

Note that a [n, k, n−k + 1] Reed-Solomon error correcting code can correct up to ⌊n−k−l
2 ⌋ errors

with l erasures. Thus, with m−e malicious clients, only 3m−2e+1 shares are sufficient to

correctly reconstruct the secret for honest clients. Since, the random sets P1 and P2 are not

known, a malicious client with more than m−e invalid shares can cheat only with probability

at most 1/( n−e

3m−2e+2). We cannot extend this technique for the secret shares of the update u,

because, unlike the value of the digests (wout=1, λ=0), the value of the final aggregate is

unknown and needs to be reconstructed from the shares.

Robust Reconstruction. In case m ≤ √n− 2, the robust reconstruction mechanism can

be optimized as follows. Let q = m− |C∗| be the number of malicious clients that remain

undetected. The server S partitions the set of clients in C \ C∗ into at least q + 2 disjoint

partitions, P = {P1, · · · , Pq+2} each of size m + 1. Let pj(x) = cj,0 + cj,1x + cj,2x
2 + · · · +
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cj,mx
m represent the polynomial corresponding to the m + 1 shares of partition Pj . Recall

that recovering just pj(0) = cj,0 suffices for a typical Shamir secret share reconstruction.

However, now, the server S recovers the entire polynomial pj , i.e., all of its coefficients

{cj,0, cj,1, · · · , cj,q} for all q + 2 partitions. Based on the pigeon hole principle, it can be

argued that at least two of the partitions (Pl, Pk ∈ P ) will consist of honest clients only.

Hence, we must have at least two polynomials pl and pk that match and the value of the

secret is their constant coefficient pl(0). Note that the above mentioned optimization of

skipping verifying the shares of the proof can be applied here as well. A malicious client can

cheat (i.e., make the server S accept even when wout
i ̸= 1 ∨ λi ̸= 0 or reject the proof for an

honest client) only if they can manipulate the shares of at least two partitions which must

contain at least 2(m+ 1)− q honest clients. Since the random partition P is not known to

the clients, this can happen only with probability 1/( n−m−1

2(m+1)−q).

4.5.2 Crypto-Engineering Optimizations

We propose the following crypto-engineering optimizations.

Equality Checks. The equality operator = is relatively complicated to implement in an

arithmetic circuit. To circumvent this issue, we replace any validation check of the form

Φ(u) = c1 ∨ Φ(u) = c2 ∨ · · · ∨ Φ(u) = ck in the output nodes of Valid(·), where Φ(·) is some arith-

metic function, by an output of the form (Φ(u)− c1)× · · · × (Φ(u)− ck). Recall that in EIFFeL,

the honest clients have well-formed inputs that satisfy Valid(·) by definition. Hence, this op-

timization does not violate the privacy of honest, which is our security goal.

Proof Summary Computation. In addition to being a linear secret sharing scheme,

Shamir’s scheme is also multiplicative: given the shares of two secrets (i, zi) and (i, vi), a

party can locally compute (i, si) with s= z · v. However, if the original shares correspond

to a polynomial of degree t, the new shares represent a polynomial of degree 2t. Hence, we

do not rely on this property for the multiplication gates of Valid(·) as it would support only

limited number of multiplications. However, ifm< n−1
4 , we can still leverage the multiplicative

property to generate shares of the random digest λi = fi(r) · gi(r) = hi(r) locally (instead of

using Beaver’s triples). Specifically, each client can locally multiply the shares (j, fij) and

(j, gij) to generate (i, (fj · gj)i). In order to make the shares consistent, Ci multiplies the

share of (i, hji) with (i, zi) where z = 1 (these can be generated and shared by the server S in

the clear). In this way, Cj can locally generate a share of the digest (j, dij) that correspond

to a polynomial of degree 2m. Since m < n−1
4 , this optimization is still compatible with

robust reconstruction. This saves a round of communication and reduces the number of

robust reconstructions for λi from three to just one (see Chapter 4.3.1).
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Random Projection. As shown in Table 4.1, both communication and computation grows

linearly with the data dimension d. Hence, we rely on the random projection [Nel] technique

for reducing the dimension of the updates. Specifically, we use the fast random projection

using Walsh-Hadamard transforms [AC06].

50 100 150 200 250
Number of Clients

200

2200

4200

6200

8200

10200

Ti
m

e 
(m

s)

Client
5% malicious clients
10%       "
15%       "
20%       "

1,000 5,000 10,000
Data Dimension

200

4200

8200

12200

16200

20200

Ti
m

e 
(m

s)

Client

50 100 150 200 250
Number of Clients

200

2200

4200

6200

8200

Ti
m

e 
(m

s)

Server

1,000 5,000 10,000
Data Dimension

2000

7000

12000

17000

Ti
m

e 
(m

s)

Server

Figure 4.5: Computation cost analysis of EIFFeL. The left two plots show the runtime of a

single client client in milliseconds as a function of: (left) the number of clients n and (right)

dimensionality of the updates d. The right two plots show the runtime of the server as a

function of the same variables. The results demonstrate that performance decays quadrati-

cally in n, and linearly in d.

4.6 Experimental Evaluation

We perform experiments to evaluate the practical performance of EIFFeL.

4.6.1 Performance Evaluation.

In this section, we analyze the performance of EIFFeL.
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Figure 4.6: Communication cost analysis of EIFFeL. The left two plots show the amount

of communication (in MB) for each client as a function of: (left) the number of clients n

and (right) dimensionality of the updates d. The right two plots show the the amount of

communication (in MB) for the server as a function of the same variables. The results show

communication increases quadratically in n, and linearly in d.

Configuration. We run experiments on two Amazon EC2 c5.9large instances with Intel

Xeon Platinum 8000 processors. To emulate server-client communication, we use two in-

stances in the US East (Ohio) and US West (Oregon) regions, with a round trip time of 21

ms. We implemented EIFFeL in Python and C++ using NTL library [NTL]. We use AES-

GCM for encryption and a 44-bit prime field F. For key agreement, we use elliptic curve

Diffie-Hellman [DH76] over the NIST P-256 curve. Unless otherwise specified, the default

settings are d=1000, n=100, m=10% and |Valid(·)| ≈ 4d. We report the mean of 10 runs

for each experiment.
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Computation Costs. Figure 4.5 presents EIFFeL’s runtime. We vary the number of mali-

cious clients between 5%-20% of the number of clients. We observe that per-client runtime

of EIFFeL is low: it is 1.3 seconds if m = 10%, d = 1000, and n = 100. The runtime scales

quadratically in n because a client has O(mnd) computation complexity (see Table 4.1) and

m is a linear function of n. As expected, the runtime increases linearly with d. A client

takes around 11 seconds when d = 10, 000, n = 100, and m = 10%. The runtime for the

server is also low: the server completes its computation in about 1 second for n = 100,

d = 1K, and m = 10%. The server’s runtime also scales quadratically in n due to the

O(mnd) computation complexity (Table 4.1). The runtime increases linearly with d.

In Figure 4.7, we break down the runtime per round. We observe that: Round 1 (announcing

public information) incurs negligible cost for both clients and the server; and Round 3 (verify

proof) is the costliest round for both clients and the server where the dominating cost is

verifying the validity of the shares (Chapter 4.3.4). Note that the server has no runtime cost

for Round 2 since the proof generation only involves clients.

Table 4.2 presents our end-to-end performance which contains the runtimes of a client, the

server and the communication latencies. For instance, the end-to-end runtime for n =

100, d = 1, 000 and m = 10% is ∼ 2.4s. We also present the impact of one of our key

optimizations – eliminating the verification of the secrets shares of the proof – which cuts

down the costliest step in EIFFeL and improves the performance by 2.3×. Additionally,

we compare EIFFeL’s performance with BREA [SGA20], which is a Byzantine-robust secure

aggregator. EIFFeL differs from BREA in two key ways: (1) EIFFeL is a general framework for

per-client update integrity checks whereas BREA implements the multi-Krum aggregation

algorithm [BMGS17b] that considers the entire dataset to determine the malicious updates

(computes all the pairwise distances between the clients and then, detects the outliers),

and (2) BREA has an additional privacy leakage as it reveals the values of all the pairwise

distances between clients. Nevertheless, we choose BREA as our baseline because, to the

best of our knowledge, this is the only prior work that: (1) detects and removes malformed

updates, and (2) works in the malicious threat model for the general FL setting (see Chapter

4.9). We observe that EIFFeL outperforms BREA and that the improvement increases with

n. For instance, for n=250, EIFFeL is 18.5× more performant than BREA. This is due to

BREA’s complexity of O(n3 log2 n log log n +mnd), where the O(n3) factor is due to each

client partaking in the computation of the O(n2) pairwise distances.

Communication Cost. Figure 4.6 depicts the total data transferred by a client and the

server in EIFFeL. The communication complexity is O(mnd) for a single client and for the

server. Hence, the total communication increases quadratically with n and linearly with

d, respectively. We observe that EIFFeL has acceptable communication cost. For instance,
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Improvement over

# Clients (n) Time (ms) Unoptimized EIFFeL BREA [SGA20]

50 1,072 2.3× 2.5×
100 2,367 2.3× 5.2×
150 4,326 2.3× 7.8×
200 6,996 2.3× 12.8×
250 10,389 2.3× 18.5×

Table 4.2: End-to-end time for a single iteration of EIFFeL with d = 1000 and m = 10%

malicious clients, as a function of the number of clients, n. We also compare it with a

variant of EIFFeL without optimizations, and with BREA [SGA20].
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Figure 4.7: Computation cost per round in EIFFeL.

the total data consumed by a client is 94MB for the configuration n = 100, d = 10K,m = 10%.

This is equivalent to streaming a full-HD video for 20s [dat]. Since most clients partake in

FL training iterations infrequently, this amount of communication is acceptable.

4.6.2 Integrity Guarantee Evaluation

In this section, we evaluate EIFFeL’s efficacy in ensuring update integrity on real-world

datasets.

Datasets. We evaluate EIFFeL on three image datasets:

• MNIST [LCB] is a handwritten digit dataset of 60,000 training images and 10,000 test

images with ten classes (each digit is its own class).

• FMNIST [Zal] is a dataset of display clothing items that is identical to MNIST in

terms number of classes, and number of training and test images.

• CIFAR-10 [Kri] contains RGB images with ten object classes. It has 50,000 training

and 10,000 test images.

Models. We test EIFFeL with three classification models:
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(c) FMNIST: Additive noise attack with

Zeno++ validation predicate.
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(d) CIFAR-10: Scaling attack with norm

bound validation predicate.

Figure 4.8: Accuracy analysis of EIFFeL. Test accuracy is shown as a function of the FL

iteration for different datasets and attacks.

• LeNet-5 [LBBH98] is one of the first successful convolutional network architectures. It

has five layers and 60, 000 parameters. We use LeNet-5 to experiment on MNIST.

• For FMNIST, we use a five-layer convolutional network with 70, 000 parameters and a

similar architecture as LeNet-5.

• ResNet-20 [HZRS16] is a more modern convolutional network with 20 layers and

273, 000 parameters. We use it for our experiments on the CIFAR-10 dataset.

Validation Predicates. To demonstrate the flexibility of EIFFeL, we evaluate four valida-

tions predicates as follows:
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• Norm Bound [SKSM19a]. This method checks whether the ℓ2-norm of a client update

is bounded: Valid(u) = I[∥u∥2 < ρ] where I[·] is the indicator function and the threshold

ρ is computed from the public dataset DP .

• Norm Ball [SKL17]. This method checks whether a client update is within a spherical

radius from v which is the gradient update computed from the clean public dataset

DP : Valid(u) = I
[
∥u− v∥2 ≤ ρ

]
where radius ρ is also computed from DP .

• Zeno++ [Xie19] compares the client update u with a loss gradient v that is computed

on public dataset DP : Valid(u) = I[γ⟨v, u⟩ − ρ||u||2 ≥ −γϵ] where γ, ρ and ϵ are threshold

parameters also computed from DP and u is ℓ2-normalized to have the same norm as

v.

• Cosine Similarity [CFLG21, BVH+18]. This method compares the cosine similarity

between the client update u and the global model update of the last iteration u′:

Valid(u) = I
[ ⟨u,u′⟩
∥u∥2∥u′∥2

< ρ
]
where ρ is computed from DP and u is ℓ2-normalized to have

the same norm as u′.

Poisoning Attacks. To test the efficacy of EIFFeL’s implementations of the four validation

predicates introduced above, we test it against three poisoning attacks:

• Sign Flip Attack [DMG+18]. In this attack, the malicious clients flip the sign of their

local update: û = −c · u, c ∈ R+.

• Scaling Attack [BCMC19] scales a local update to increase its influence on the global

update: û = c · u, c ∈ R+.

• Additive Noise Attack [LXC+19] adds Gaussian noise to the local update: û = u+η, η ∼
N (σ, µ).

Configuration. We use the same configuration as before. We implement the image-

classification models in PyTorch. We randomly select 10,000 samples from each training

set as the public dataset DP and train on the remaining samples. The training set is divided

into 5,000 subsets to create the local dataset for each client. For each training iteration, we

sample the required number of data subsets out of these 5,000 subsets.

Results. Figure 4.8 reports the accuracy of training different image-classification models in

EIFFeL. We set n = 100 and m = 10%, and use random projection to project the updates

to a dimension d of 1,000 (MNIST), 5,000 (FMNIST), or 10,000 (CIFAR-10). Our exper-

iment assesses how the random projection affects the efficacy of the integrity checks. We

observe that for MNIST (Figures 4.8a and 4.8b) and FMNIST (Figure 4.8c), EIFFeL achieves

performance comparable to a baseline that applies the defense (validation predicate) on the
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plaintext. In most cases, the defenses retain their efficacy even after random projection. This

is because they rely on computing inner products and norms of the update; these operations

preserve their relative values after the projection with high probability [Nel]. We do observe

a drop in accuracy (∼ 7%) on CIFAR-10 as updates for ResNet-20 with 273,000 parame-

ters are projected to 10,000. The end-to-end per-iteration time for MNIST, FMNIST, and

CIFAR-10 is 2.4s (Table 4.2), 10.7s, and 20.5s, respectively. The associated communication

costs for the client are 9.5MB, 47MB, and 94MB (Figure 4.6).

4.7 Extension to Differential Privacy

EIFFeL is the first step toward designing aggregation protocols for federated learning that

ensures both input privacy and integrity. In this chapter, we discuss how to extend EIFFeL to

support differential privacy.

Recall that the goal of secure aggregation is to protect the individual client updates and

reveal only the final aggregate. However, privacy violations can arise even from this ag-

gregate [ASY+18]. The common approach to tackle this is to add noise to the revealed

aggregate to ensure DP. EIFFeL outputs an aggregate with an additional property – all the

aggregated updates are well-formed. EIFFeL can be used as a building block and easily

extended to support DP along the lines of prior work [ASY+18,KLS21b]. Specifically, we

need to introduce the following two changes to the protocol. First, DP requires the client

updates to be clipped in order to bound the sensitivity. This can be enforced by introduc-

ing an additional check in the validation predicate Valid(·). Next, in Round 4, the clients

add shares of discretized Gaussian noise to the shares of the aggregate. The privacy budget

(ϵ) across multiple training iterations can be controlled using standard privacy accounting

techniques [BS16,DR16,WBK19,Mir17b].

Prior work has shown that DP provides robustness guarantees as well [SKSM19b,NHC21].

Hence, DP can enhance both goals of EIFFeL – ensuring privacy for clients and Byzantine

robustness for the federated learner.

4.8 Discussion

In this chapter, we discuss several possible avenues for future research.

Handling Higher Fraction of Malicious Clients. For ⌊n−1
3 ⌋ < m < ⌊n−1

2 ⌋ (honest ma-

jority), the current implementation of EIFFeL can detect but not remove malformed inputs

(Gao’s decoding algorithm returns ⊥ if m > ⌊n−1
3 ⌋). To robustly reconstruct in this case as
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well, we could use techniques such as Guruswami-Sudan list decoder [McE03]. We do not do

so in EIFFeL because the reconstruction might fail sometimes.

Handling Client Dropouts. In practice, clients might have only sporadic access to con-

nectivity and so, the protocol must be robust to clients dropping out. EIFFeL can already

accommodate malicious client dropping out – it is straightforward to extend this for the case

of honest clients as well.

Reducing Client’s Computation. Currently, verifying the validity of the secret shares is

the dominant cost for clients. This task can be offloaded to the server S by using a publicly

verifiable secret sharing scheme (PVSS) [Sch99, Sta96, TPH] where the validity of a secret

share can be verified by any party. However, typically PVSS employs public key cryptography

(which is costlier than symmetric cryptography) which might increase the end-to-end running

time.

Private Validation Predicate. If Valid(·) contains some secrets of the server S, we can

employ multiple servers where the computation of Valid(u) is done at the servers [CGB17].

We leave a single-server solution of this problem for future work.

Identifying All Malicious Clients. Currently, EIFFeL identifies a partial list of malicious

clients. To detect all malicious clients, one can use: (1) PVSS to identify all clients who

have submitted at least one invalid share, and (2) decoding algorithms such as Berlekamp-

Welch [Bla83] that can detect the location of the errors from the reconstruction. We do not

use them in EIFFeL as they have higher computation cost.

Byzantine-Robust Aggregation. In EIFFeL, the integrity check is done individually on

each client update, independent of all other clients. An alternative approach to compare the

local model updates of all the clients (via pairwise distance/ cosine similarity) [BMGS17a,

BMGS17b, CFLG21, FCJG20] and remove statistical outliers before using them to update

the global model. A general framework to support secure Byzantine-robust aggregations

rules, such as above, is an interesting future direction.

Valid(·) Structure. If Valid(·) contains repeated structures, theG-gate technique [BBCG+19]

can improve efficiency.

Scaling EIFFeL. Our experimental results in Chapter 4.6 show that EIFFeL has reasonable

performance for clients sizes up to 250. One way of scaling EIFFeL for larger client sizes can

be by dividing the clients into smaller subsets of size ∼ 250 and then running EIFFeL for

each of these subsets [BEG+19].
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Revealing Malicious Clients. In our current implementation, EIFFeL publishes the (par-

tial) list of malicious clients C∗. To hide the identity of malicious clients, we could include an

equal number of honest clients in the list before publishing it, thereby providing those clients

plausible deniability. We leave more advanced cryptographic solutions as a future direction.

Complex Aggregation Rules. EIFFeL can be used for more complex aggregation rules,

such as mode, by extending SNIP with affine-aggregatable encodings (AFE) [CGB17].

4.9 Related Work

In this chapter, we discuss the relevant prior literature on FL.

Secure Aggregation. Prior work has addressed the problem of (non-Byzantine) secure

aggregation in FL [BIK+17,BBG+20,AC11,SGA21]. A popular approach is to use pairwise

random masking to protect the local updates [BIK+17, AC11]. Recent approaches have

improved the communication overhead, by training in a smaller parameter space [KMY+16],

autotuning the parameters [BSK+19], or via coding techniques [SGA21].

Robust Machine Learning. A large number of studies have explored methods to make

machine learners robust to Byzantine failures [BVH+18,BCMC19,KMA+19]. Many of these

robust machine-learning methods require the learned to have full access to the training data

or to fully control the training process [CSL+08,GDGG17,LDGG18,SS19,SKL17,WYS+19]

which is infeasible in FL. Another line of work has focused on the development of estimators

that are inherently robust to Byzantine errors [BMGS17b, CWCP18, PZW+20, RWCP19,

YCKB19]. In our work, we target a set of methods that provides robustness by checking

per-client updates [BMGS17b,FYB18,STS16].

Verifying Data Integrity in Secure Aggregation. There is limited prior work that

seeks to develop cryptographic protocols for data-integrity verification in secure aggregation.

Most similar to our work is RoFL [BLV+21], which uses range proofs to check update in-

tegrity. There are three key differences between RoFL and EIFFeL: (1) RoFL supports only

range checks with ℓ2 or ℓ∞ norms. By contrast, EIFFeL is a general framework that supports

arbitrary validation predicates. (2) RoFL is susceptible to DoS attacks because it only de-

tects malformed updates and aborts if it finds one. By contrast, EIFFeL is a SAVI protocol

that detects and removes malformed updates in every round. (3) RoFL assumes an honest-

but-curious server, whereas EIFFeL considers a malicious threat model. BREA [SGA20] also

removes outlying updates but, unlike EIFFeL, it leaks pairwise distances between inputs. Al-

ternative solutions [NRY+21,HKJ20] for distance-based Byzantine-robust aggregation uses
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two non-colluding servers in the semi-honest threat model, which is incompatible with cen-

tralized FL. Other work [VXK21] randomly clusters clients, reveals inputs from the clusters

and then robustly aggregates them; but doing this requires small clusters, which affects input

privacy.

4.10 Conclusion

Practical federated learning settings need to ensure both the privacy and integrity of model

updates provided by clients. In this paper, we have formalized these goals in a new protocol,

SAVI, that securely aggregates only well-formed inputs (i.e., updates). To demonstrate

the feasibility of SAVI, we have proposed EIFFeL: a system that efficiently instantiates a

SAVI protocol. OPϵc works under a malicious threat model and ensures both privacy for

honest clients and Byzantine robustness for the federated learner. Our empirical evaluation

has shown that EIFFeL is practical for real-world usage.
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Chapter 5

Conclusion

Be it online shopping on Instagram, streaming the newest Netflix series or doomscrolling

our Twitter feed, today we spend more than quarter of our lives online – and our every

movement is documented. Private corporations hold large swathes of personal data about

every individual. Without proper regulation, this could be easily harnessed to manipulate

our online lives and lead to violation of personal autonomy. Hence, data privacy can no

longer be limited to just an academic pursuit – privacy has to be concomitant with every

click we make.

In this dissertation, we have provided a way forward. We have shown that it is possible to

build large scale privacy-first systems by combining techniques from differential privacy and

cryptography. In fact, this synergy is multi-faceted: (1) cryptography can push the frontiers

of deployment of DP, as demonstrated by Cryptϵ, (2) DP can aid in making cryptographic

systems robust to inference attacks, as demonstrated by OPϵ, and (3) privacy-preserving

decentralized learning requires co-designing both DP and cryptography, as demonstrated by

EIFFeL.

Modern technology must do a better job of upholding the privacy of our personal data. I

am hopeful of a future where we as individuals are entitled to and empowered with our data

sovereignty.
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Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies

for improving communication efficiency. ArXiv, abs/1610.05492, 2016.

[KPT19] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto

Tamassia. Data recovery on encrypted databases with k-nearest neighbor

query leakage. In 2019 IEEE Symposium on Security and Privacy (SP), pages

1033–1050, 2019.

[KPT20] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto

Tamassia. The state of the uniform: Attacks on encrypted databases be-

yond the uniform query distribution. In 2020 IEEE Symposium on Security

and Privacy (SP), pages 1223–1240, 2020.

[KPT21] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto

Tamassia. Response-hiding encrypted ranges: Revisiting security via

parametrized leakage-abuse attacks. Cryptology ePrint Archive, Report

2021/093, 2021. https://eprint.iacr.org/2021/093.

[Kri] Alex Krizhevsky. The cifar-10 dataset.

[KT19] F. Kerschbaum and A. Tueno. An efficiently searchable encrypted data struc-

ture for range queries. In In: Sako K., Schneider S., Ryan P. (eds) Computer

Security – ESORICS 2019 ESORICS 2019. Lecture Notes in Computer Sci-

ence, vol 11736. Springer, Cham, 2019.

[KTH+19] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin

Machanavajjhala, Michael Hay, and Gerome Miklau. Privatesql: A differen-

tially private sql query engine. Proc. VLDB Endow., 12(11):1371–1384, July

2019.

[Kul19] Tejas Kulkarni. Answering range queries under local differential privacy. In

Proceedings of the 2019 International Conference on Management of Data,

SIGMOD ’19, page 1832–1834, New York, NY, USA, 2019. Association for

Computing Machinery.

[LBBH98] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,

1998.

[LC04] Shu Lin and Daniel J. Costello. Error control coding: fundamentals and ap-

plications. Pearson/Prentice Hall, Upper Saddle River, NJ, 2004.

[LC11] Jaewoo Lee and Chris Clifton. How much is enough? choosing ϵ for differential

privacy. In Proceedings of the 14th International Conference on Information

Security, ISC’11, pages 325–340, Berlin, Heidelberg, 2011. Springer-Verlag.

https://eprint.iacr.org/2021/093


142

[LCB] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The mnist

database of handwritten digits.

[LCFK21] Jingjie Li, Amrita Roy Chowdhury, Kassem Fawaz, and Younghyun Kim.

Kalϵido: Real-Time privacy control for Eye-Tracking systems. In 30th

USENIX Security Symposium (USENIX Security 21), pages 1793–1810.

USENIX Association, August 2021.

[LCW+20] Suyi Li, Yong Cheng, Wei Wang, Yang Liu, and Tianjian Chen. Learning to

detect malicious clients for robust federated learning. CoRR, abs/2002.00211,

2020.

[LDGG18] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: De-

fending against backdooring attacks on deep neural networks. pages 273–294,

2018.

[LLSY16] N. Li, M. Lyu, D. Su, and W. Yang. Differential Privacy: From Theory to

Practice. Morgan and Claypool, 2016.
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