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Professor A. Căldăraru, Professor, Mathematics

Professor D. Arinkin, Professor, Mathematics

Professor L. Maxim, Professor, Mathematics

Professor M. Kemeny, Assistant Professor, Mathematics



i

Abstract

For a closed embeddingX ↪→ S of smooth schemes with a first order splitting, the derived

self-intersection X×RS X and the shifted normal bundle NX/S[−1] carry Lie structures, a

fact which we review. A fundamental construction due to Arinkin-Căldăraru, Arinkin-

Căldăraru-Hablicsek, and Grivaux is that of an analogue of the exponential map in this

context, the HKR isomorphisms from the shifted normal bundle to the self-intersection.

We study functoriality property of the HKR isomorphism defined by Arinkin-Căldă-

raru for a sequence of closed embeddings X ↪→ Y ↪→ S. We show that the HKR

isomorphism is functorial when a certain cohomology class, which we call the Bass-

Quillen class, vanishes. We obtain Lie theoretic interpretations as well.

We apply this functoriality result to study the multiplicative structure of orbifold

Hochschild cohomology in an attempt to generalize the results of Kontsevich and Cala-

que-Van den Bergh relating the Hochschild and polyvector field cohomology rings of a

smooth variety. We define a product on the cohomology of polyvector fields of a global

quotient orbifold and we prove that the product is associative when certain Bass-Quillen

classes vanish.

In the case of the diagonal embedding X ↪→ X ×X, the study of the Lie structure

on the shifted tangent bundle TX [−1] is applied to obtain a result in deformation theory

and Hochschild cohomology, which solves a question of Eyal Markman.
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Chapter 1

Introduction

1.1 Lie structures in algebraic geometry

The study of Lie algebra objects in derived categories started with the work of Kapranov

and Kontsevich [25]. Consider the shifted tangent bundle TX [−1] of a smooth algebraic

variety X. It can be thought as a chain complex which has the tangent bundle of X

in degree one, and is zero in all other degrees. Kapranov [25] showed that it carries

an anti-symmetric bracket satisfying the Jacobi identity in the derived category of X.

Therefore TX [−1] has a Lie algebra structure. Since then this structure has proven useful

in a wide variety of fields of mathematics. To mention a few examples, Roberts-Willerton

[30] proved that the category of representations of the Lie algebra TX [−1] is the derived

category of X, Calaque-Rossi-Van den Bergh [9] related it with formal geometry and de-

formation quantization, and Arinkin-Căldăraru-Hablicsek [3] used a generalized version

of the Lie algebra interpretation above to study the orbifold Hochschild cohomology.

The study of TX [−1] originated from the study of Hochschild cohomology. Let

X be an algebraic variety. The Hochschild cohomology HH∗(X) of X is defined as

Ext∗(∆∗OX ,∆∗OX), where ∆ : X ↪→ X ×X is the diagonal embedding. If X is smooth

over a field of characteristic zero, Swan [31] gave an explicit formula computing the
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Hochschild cohomology in more familiar terms:

HH∗(X) ∼= HT∗(X)
def
=
⊕
p+q=∗

Hp(X,∧qTX).

The isomorphism above is called the HKR isomorphism, and the right hand side is called

the polyvector field cohomology of X. Kapranov and Kontsevich observed that there

is a Lie theoretic interpretation of the HKR isomorphism. The derived self-intersection

X ×RX×X X has a natural group structure in the derived category of differential graded

(dg) schemes, arising from its interpretation as the derived loop space of X. Its structure

complex as an OX-module is ∆∗∆∗OX . The Lie algebra corresponding to this group is

the shifted tangent bundle TX [−1]. One can consider the total space TX [−1] of the

shifted tangent bundle as a dg scheme. Its structure complex as an OX-module is

Sym(ΩX [1]). There is an analogue of the exponential map, which is an isomorphism of

derived schemes

exp : TX [−1] ∼= X ×RX×X X.

One can restate the isomorphism above in terms of structure complexes as ∆∗∆∗OX
∼=

Sym(ΩX [1]). Applying the functor Hom(−,OX) on both sides and taking cohomology

of the chain complexes, we get the original HKR isomorphism constructed by Swan.

1.2 Generalized HKR isomorphism

In [2] Arinkin and Căldăraru replaced the diagonal embedding ∆ : X ↪→ X ×X by an

arbitrary closed embedding i : X ↪→ S of smooth schemes. One can still get a generalized

HKR isomorphism

NX/S[−1] ∼= X ×RS X
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from the choice of a fixed first order splitting (when one exists). Here NX/S[−1] is the

total space of the shifted normal bundle. Calaque-Căldăraru-Tu and Calaque-Grivaux

[5, 7] established the existence of a Lie structure on NX/S[−1] later, in the presence of

additional conditions. In particular, they showed that the shifted normal bundle has a

natural Lie algebra structure if a certain condition which they call tameness is satisfied.

When the embedding splits to infinite order, the derived self-intersection X ×RS X has a

group structure. Therefore in this case the generalized HKR isomorphism can be viewed

as the exponential map from the Lie algebra NX/S[−1] to the group X ×RS X.

In Chapter 2 we study the functoriality of the generalized HKR isomorphisms and the

corresponding Lie theoretic interpretation. Consider a sequence of closed embeddings

X ↪→ Y ↪→ S with first order splittings. There are natural maps

X ×RY X → X ×RS X → Y ×RS Y |X

between derived schemes and natural maps

NX/Y [−1]→ NX/S[−1]→ NY/S|X [−1]

between vector bundles. We want to understand whether the maps are compatible with

the HKR isomorphisms induced by the first order splittings. Theorems 2.2 and 2.3

provide an answer to this question; the answer depends on the vanishing of a certain

cohomology class which we call the Bass-Quillen class (see Definition 2.1).

1.3 Applications to orbifold Hochschild cohomology

In Chapter 3 we apply the functoriality of HKR isomorphisms to obtain a result on

the product structure of orbifold Hochschild cohomology. The motivation comes from
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Kontsevich’s work on deformation quantization of Poisson manifolds.

Deformation Quantization. Consider the HKR isomorphism

IHKR : HT∗(X) =
⊕
p+q=∗

Hp(X,∧qTX)
∼= // HH∗(X) = Ext∗(∆∗O,∆∗O)

for diagonal embeddings. There are natural algebra structures on both sides above.

We have the wedge product on HT∗(X) and the Yoneda product on the Ext algebra.

However, the HKR isomorphism is not an isomorphism of algebras in general. Kontsevich

[27] claimed that the HKR isomorphism with a correction term

HT∗(X)
y td−

1
2−→ HT∗(X)

IHKR−→ HH∗(X)

is an isomorphism of algebras. This result was proved by Calaque and Van den Bergh

[6]. We hope to generalize the isomorphism above to orbifolds.

Orbifold Hochschild cohomology. Consider an orbifold [S/G], where S is a

smooth scheme with the action of a finite group G. There is an orbifold version of the

HKR isomorphism [3]

HT∗([S/G])
def
= (HT∗(S;G))G =

(⊕
g∈G

⊕
p+q=∗

Hp−cg(Sg,∧qTSg ⊗ ωg)

)G

'−→ HH∗([S/G]),

where Sg is the fixed locus of g ∈ G, cg is the codimension of Sg in S, and ωg is the

dualizing sheaf of the embedding Sg ↪→ S.

One may hope to generalize the isomorphism of algebras for smooth schemes to

orbifolds. However, it is not even clear what the correct product structure on HT∗(S;G)

should be. This product structure should generalize the wedge product on HT∗(X) for

a scheme X. In Chapter 3 we define a product on HT∗(S;G) when G is abelian. We

prove its associativity in some special cases. In particular, our product is associative

when S is affine or when S is an abelian variety with Z/2Z action.
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Our results have further possible applications in the following topics.

Homological mirror symmetry. Chen and Ruan [11] defined orbifold singular

cohomology for orbifolds. In homological mirror symmetry, the orbifold Hochschild

cohomology of an orbifold should match with the orbifold singular cohomology of its

mirror as algebras.

Cohomological hyperkähler resolution conjecture. Let [S/G] be a global holo-

morphic symplectic quotient. If Z is a hyperkähler resolution of the singular space S/G,

then the conjecture predicts that the singular cohomology of Z should be isomorphic

to the orbifold singular cohomology of [S/G] as rings. If all the work in the items list-

ed above is done, then it would give a line of attack on a proof of the cohomological

hyperkähler resolution conjecture.

1.4 Applications in deformation theory and hyper-

kähler manifolds

In Chapter 4 we discuss further applications to deformation theory and especially to the

study of hyperkähler manifolds.

Let X be a smooth complex scheme. Consider the first order deformation X̃ of X

associated to a class α̃ ∈ H1(X,TX). In general, a vector bundle F on X may not

deform to a bundle F̃ on X̃. The obstruction αF ∈ Ext2(F ,F ) to the existence of a

vector bundle F̃ on X̃ such that F̃ |X ∼= F was described in [4, 32] as the contraction

αF = α̃y atF ∈ Ext2(F ,F ).

Here atF ∈ Ext1(F ,F⊗ΩX) is the Atiyah class of F . Moreover, if F does deform, then
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its Chern classes, and hence its Mukai vector, all stay of Hodge type on the deformed

space X̃. This implies that the class

α̃y v(F ) ∈ HΩ∗(X)
def
=
⊕
q−p=∗

Hp(X,∧qΩX)

vanishes, where v(F ) is the Mukai vector of F .

Thus, in the simple case where α̃ ∈ H1(X,TX) we conclude that if α̃y atF is zero,

then α̃y v(F ) is zero.

In email correspondence Eyal Markman asked if the above statement can be gen-

eralized to the case where α̃ is an arbitrary polyvector field in HT∗(X). According

to Markman, this question is central to his study of the deformations of hyperkähler

manifolds.

We argue in Theorem 4.1 that there is a commutative diagram

HH∗(X) // Ext∗(F ,F )

HT∗(X)

IHKR

OO

(−)y exp(atF )

77

for any smooth variety X and any coherent sheaf F on X. More details are in Chapter

4.

Let α̃ be a class in HT∗(X). The commutativity of the diagram above implies

Theorem 4.5 which shows

D(α̃)y v(F ) = 0

if α̃y exp(atF ) = 0. Here D is the Duflo operator,

D(α̃) = td
1
2y α̃,

where td is the Todd class of X. The original statement for a class α̃ ∈ H1(X,TX)

follows easily from the one above as shown in Chapter 4.
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The inspiration of the commutative diagram above comes from a similar statement

in Lie theory. Let V be a finite dimensional representation of a finite dimensional Lie

algebra g. Rewrite the representation map g⊗ V → V as a map Λ : V → V ⊗ g∗. One

can draw a similar commutative diagram

(Ug)g // Hom(V, V )

(Sg)g.

PBW

OO

(−)y exp(Λ)

88

As we explained above, the shifted tangent bundle TX [−1] is a Lie algebra in the derived

category of X. The category of representations of TX [−1] is the derived category of

X and the universal enveloping algebra of TX [−1] is the Hochschild cochain complex

Hom(∆∗OX ,∆∗OX) [30]. The functor (−)g is the 0-th Lie algebra cohomology which

is similar to H∗(X,−). Setting g to be equal to TX [−1], we see that the diagram in

Theorem 4.1 is a complete analogue of the Lie algebraic statement. The Hochschild

cohomology HH∗(X) plays the role of (Ug)g, HT∗(X) plays the role of (Sg)g, and the

HKR map is precisely the PBW map.

The results in this thesis have been divided into three papers [15, 21, 22] for publi-

cation.

1.5 Conventions

Throughout this work all the schemes are smooth over a field of characteristic zero. The

schemes are over the field of complex numbers in the last chapter.
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Chapter 2

Functoriality of HKR isomorphisms

In this chapter we study functoriality of HKR isomorphisms and its Lie theoretic inter-

pretations.

2.1 Background

We recall results known about HKR isomorphisms in this section.

2.1.1 The diagonal embedding

The HKR isomorphism

HH∗(X) ∼=
⊕
p+q=∗

Hp(X,∧qTX)

identifies Hochschild cohomology of a smooth scheme X with polyvector fields as vector

spaces. More precisely, we have an HKR isomorphism at the level of sheaves in the

derived category of X

∆∗∆∗OX
∼= SymOX

(ΩX [1]),

where ∆ : X ↪→ X × X is the diagonal embedding. The sheaf version of the HKR

isomorphism can be rewritten as an isomorphism of derived schemes over X

TX [−1]
∼= // LX = X ×RX×X X.
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We get the original isomorphism on cohomology by applying Hom(−,OX) to the iso-

morphism of sheaves.

2.1.2 General embeddings

There exist generalized HKR isomorphisms if we replace the diagonal embedding by an

arbitrary closed embedding i : X ↪→ S of smooth schemes.

The embedding i factors as

X �
� µ // X

(1)
S
� � ν // S,

where X
(1)
S is the first order neighborhood of X in S. We say i splits to first order if and

only if the map µ is split, i.e., there exists a map of schemes ϕ : X
(1)
S → X such that

ϕ ◦ µ = id. There is a bijection between first order splittings of i and splittings of the

short exact sequence below [20, 20.5.12 (iv)]

0 // TX // TS|X //
xx

NX/S
// 0.

Arinkin and Căldăraru [2] provided a necessary and sufficient condition for i∗i∗OX

to be isomorphic to Sym(N∨X/S[1]). In [3] Arinkin, Căldăraru, and Hablicsek proved that

the derived intersection X ×RS X is isomorphic to NX/S[−1] over X × X if and only if

the embedding i splits to first order. Grivaux independently proved a similar result for

complex manifolds in [19].
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2.1.3 The first definition of the general HKR isomorphism

Let us briefly recall how the HKR isomorphism i∗i∗OX
∼= Sym(N∨X/S[1]) was constructed

in [2]. It is defined as the composite map

µ∗ν∗ν∗µ∗OX
// µ∗µ∗OX

∼= // Tc(N∨X/S[1])
exp // T(N∨X/S[1]) // Sym(N∨X/S[1]).

The left most map is given by the counit of the adjunction ν∗ a ν∗. The map exp is

multiplying by 1/k! on the degree k piece, and the last one is the natural projection

map. The Tc(N∨X/S[1]) is the free coalgebra on N∨X/S with the shuffle product structure,

and T(N∨X/S[1]) is the tensor algebra on N∨X/S. The isomorphism µ∗µ∗OX
∼= Tc(N∨X/S[1])

in the middle is non-trivial and needs more explanation. With the splitting ϕ one can

build an explicit resolution of µ∗OX as an O
X

(1)
S

-algebra

(Tc(ϕ∗N∨X/S[1]), d) // µ∗OX ,

where (Tc(ϕ∗N∨X/S[1]), d) is the free coalgebra on ϕ∗N∨X/S with the shuffle product struc-

ture and a differential d. The differential is defined as follows. There is a short exact

sequence on X
(1)
S

0→ µ∗N
∨
X/S → O

X
(1)
S
→ µ∗OX → 0.

Consider the composite map

ϕ∗N∨X/S → µ∗µ
∗ϕ∗N∨X/S = µ∗N

∨
X/S → O

X
(1)
S
,

whose cokernel is µ∗OX . Tensor the morphism above with (ϕ∗N∨X/S)⊗(k−1). We get the

degree k-th piece of the differential dk : (ϕ∗N∨X/S)⊗k → (ϕ∗N∨X/S)⊗(k−1). The differential

vanishes once we pull this resolution back on X via µ, so we get the desired isomorphism.
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For any vector bundle E on X, we tensor the resolution above by ϕ∗E . Using the

projection formula and ϕ ◦ µ = id, one can show that we get a resolution of µ∗E

(Tc(ϕ∗N∨X/S[1])⊗ ϕ∗E , d)→ µ∗E .

The same argument shows that i∗i∗(E ) ∼= E ⊗ Sym(N∨X/S[1]), i.e., that i∗i∗(−) ∼= (−)⊗

Sym(N∨X/S[1]) as dg functors. This shows that X ×RS X ∼= NX/S[−1] over X ×X.

2.1.4 The second definition of the general HKR isomorphism

Let us recall how IHKR : NX/S[−1] ∼= X ×RS X was constructed in [3] and [19]. It is

defined as the composite map

NX/S[−1] // TS|X [−1]
∼= // S ×RS×S S|X

=
rr

S ×RS×S X idS×∆
// S ×RS×S (X ×X)

∼= // X ×RS X.

The dotted arrow is the splitting we fixed. The isomorphism in the middle TS[−1] ∼=

S×RS×SS is the HKR isomorphism of diagonal embeddings S ↪→ S×S discussed in (2.1.3).

There are two splittings to define HKR for the diagonal embeddings. We always choose

p1, i.e., the projection onto the left factor

∆S : S // S × S.
p2

hh
p1vv

We do not know whether the constructions in (2.1.3) and (2.1.4) define the same

isomorphism or not. We only consider the one in (2.1.3) in this chapter.
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2.1.5 Lie theoretic interpretations for self-intersections

It was observed by Kapranov and Kontsevich that there is a Lie theoretic interpretation

of the HKR isomorphism. The derived loop space LX = X ×RX×X X has the structure

of a derived group scheme over X and the shifted tangent bundle TX [−1] is its Lie

algebra [25]. The HKR isomorphism TX [−1] → LX can be thought of as a version of

the exponential map [8].

Consider a closed embedding i : X ↪→ S of smooth schemes. The derived self-

intersection X ×RS X has an ∞-groupoid structure in the (∞, 1)-category of dg schemes

over X. The associated L∞ algebroid is NX/S[−1]. Passing to the derived category, we

get a groupoid in the derived category of dg schemes having X as the space of objects.

The target and source maps are the two projections π1 and π2 : X ×RS X → X. See [5]

for more details. When S = X ×X and i is the diagonal embedding ∆ : X → X ×X,

there are two projections p1 and p2 : X×X → X such that pi◦∆ = id. This implies that

the source map π1 and the target map π2 are equal in the derived category in this case,

so X ×RX×X X becomes a group over X [3]. A similar argument works if the inclusion

from X to its formal neighborhood in S splits.

Generally speaking, NX/S[−1] has an L∞ algebroid structure in the (∞, 1)-category

of dg quasi-coherent sheaves on X. However, the Lie bracket may not be OX-linear,

and it may not satisfy the Jacobi identity when we pass to the derived category of X.

Calaque, Căldăraru, and Tu proved that the induced bracket in the derived category is

OX-linear if i splits to first order, and it satisfies the Jacobi identity if i splits to second

order [5]. As a consequence NX/S[−1] admits a natural Lie algebra structure in the

derived category if i splits to second order. Later, Calaque and Grivaux showed that
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NX/S[−1] has a natural Lie algebra structure if X ↪→ S is a tame quantized cycle [7],

a weaker condition than splitting to second order. More precisely, for an embedding

i : X ↪→ S with a chosen first order splitting, they described the OX-linear bracket

NX/S ⊗ NX/S → Sym2NX/S → NX/S[1] explicitly as the extension class of the short

exact sequence of vector bundles on X

0→ Sym2N∨X/S
∼=
I2
X

I3
X

→ ϕ∗
IX
I3
X

→ IX
I2
X

∼= N∨X/S → 0,

where IX is the ideal sheaf of X in S. This bracket satisfies the Jacobi identity under the

tameness assumption. In the rest of the proofs and theorems, we only use embeddings

which split to first order without requiring the Jacobi identity to hold for this specific

bracket. We will call this type of bracket to be a pre-Lie bracket.

In the case of classical Lie groups we have a commutative diagram

G
f // H

g

exp

OO

df // h.

exp

OO

A map of schemes X → Y induces a map of derived group schemes LX → LY |X over

X. The analogous statement for derived schemes to the above Lie theoretic statement

is that the diagram

LX // LY |X

TX [−1] //

IHKR

OO

TY |X [−1]

IHKR

OO

commutes. One can prove the commutativity of the diagram above easily using the

methods in this chapter.

We would like to consider the commutativity of this diagram in a more general

setting. We will be in the following setting from now on. Let X ↪→ Y ↪→ S be a
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sequence of closed embeddings of smooth schemes. Assume that X is split to first order

in Y , and similarly for X in Y and Y in S. We want to understand if the two diagrams

X ×RY X // X ×RS X // Y ×RS X = Y ×RS Y |X

NX/Y [−1] //

∼=

OO

NX/S[−1] //

∼=

OO

NY/S|X [−1]

∼=

OO

are commutative.

2.2 The proof of the functoriality

Before we study the commutativity of the diagram at the end of the previous section,

we need to consider the following question and define an important cohomology class.

The restriction of the conormal bundle N∨Y/S to the first order neighborhood X
(1)
Y is

a vector bundle on X
(1)
Y . One can ask whether this bundle is isomorphic to s∗(N∨Y/S|X),

where s is the chosen first order splitting of X in Y . If the answer to this question is

positive, i.e., there is an isomorphism of vector bundles on X
(1)
Y

N∨Y/S|X(1)
Y

∼= s∗(N∨Y/S|X), (∗)

we will say condition (∗) is satisfied.

The condition (∗) is equivalent to the vanishing of a certain cohomology class in

Ext1(NX/Y ⊗ NY/S|X , NY/S|X) associated to N∨Y/S|X(1)
Y

. One can construct a similar

cohomology class αs,M ∈ Ext1(NX/Y ⊗M ∨|X ,M ∨|X) for any vector bundle M on X
(1)
Y

and the fixed splitting s.

Definition 2.1 Consider the short exact sequence of O
X

(1)
Y

-modules

0→ t∗N
∨
X/Y → O

X
(1)
Y
→ t∗OX → 0,
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where t is the inclusion X ↪→ X
(1)
Y .

For any vector bundle M on X
(1)
Y , tensor it with this short exact sequence. Then

push-forward the sequence onto X via s. Using the fact that s◦ t = id and the projection

formula, we get a short exact sequence of vector bundles on X

0→ N∨X/Y ⊗M |X → s∗M →M |X → 0.

Dualizing, we get an extension class αs,M : NX/Y ⊗M ∨|X → M ∨|X [1]. We call αs,M

the Bass-Quillen class for the pair (s,M ).

The class αs,M vanishes if and only if M is isomorphic to s∗M |X [7]. We call this class

the Bass-Quillen class since it is related to the Bass-Quillen conjecture as we explain

below. Suppose Y is the total space of a vector bundle G on a smooth scheme X. Let

F be a vector bundle on Y . Then one can ask if F is isomorphic to the pull back of

some vector bundle on X. When X is affine this is known as the Bass-Quillen problem

and was answered affirmatively in [28]. However, in the global case the answer to this

question is negative. In particular, there can be no vector bundle on X whose pull back

is F if the Bass-Quillen class in Ext1(NX/Y ⊗F∨|X ,F∨|X) associated to F |
X

(1)
Y

is not

zero.

We are ready to state the result about functoriality of HKR isomorphisms.

Theorem 2.2 Let X ↪→ Y ↪→ S be a sequence of closed embeddings of smooth schemes.

Further assume that there are compatible splittings on the tangent bundles

TX // TY |X //

p
xx

TS|X .
q|X
vv

ρ

ii

Compatibility means that p ◦ q|X = ρ.
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The left square below is commutative. If condition (∗) is satisfied, i.e., the Bass-

Quillen class of N∨Y/S|X(1)
Y

is zero, then the right square below is also commutative.

X ×RY X // X ×RS X // Y ×RS X = Y ×RS Y |X

NX/Y [−1] //

∼=

OO

NX/S[−1] //

∼=

OO

NY/S|X [−1].

∼=

OO

The vertical maps are the HKR isomorphisms defined in [2]. The horizontal maps be-

tween normal bundles are the linear ones, i.e., they are vector bundle maps.

Proof. We have a commutative diagram

X

t

��

f

##µ

��

X
(1)
Y

a //

g
��

s

oo

Y

b
��

X
(1)
S

f (1) //

ϕ

KK

σ

^^

Y
(1)
S

//

π

bb

S

under the assumptions in Theorem 2.2. The solid arrows are the obvious ones. The

dotted arrows π, s, and ϕ are the first order splittings of the closed embeddings j : Y →

S, f : X → Y , and i : X → S respectively. Notice that X
(1)
Y is the fiber product of

X
(1)
S and Y over Y

(1)
S , so we can pull π back along the morphism f (1) to define σ. The

compatibility condition on the splittings means that s ◦ σ = ϕ.

The HKR isomorphism i∗i∗OX
∼= Sym(N∨X/S[1]) in[2] is defined as the composite map

µ∗ν∗ν∗µ∗OX
// µ∗µ∗OX

∼= // Tc(N∨X/S[1])
exp // T(N∨X/S[1]) // Sym(N∨X/S[1]).

It is easy to see that all the constructions are canonical except for the isomorphism

µ∗µ∗OX
∼= Tc(N∨X/S[1]) which depends on the choice of the splitting ϕ.
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To check the commutativity of the left square in Theorem 2.2, it suffices to show

that the diagram

µ∗µ∗OX

∼= //

��

Tc(N∨X/S[1])

��
t∗t∗OX

∼= // Tc(N∨X/Y [1])

is commutative since all the other constructions are canonical. The right vertical map

is obtained from the natural vector bundle map N∨X/S → N∨X/Y . The horizontal isomor-

phisms are constructed using the splittings, from explicit resolutions of µ∗OX and t∗OX

on X
(1)
S and X

(1)
Y respectively. These resolutions are of the form (Tc(ϕ∗N∨X/S[1]), d) and

(Tc(s∗N∨X/Y [1]), d) as explained in (2.1.3).

We have g∗ϕ∗N∨X/S = s∗N∨X/S using the fact that ϕ = s ◦ σ and σ ◦ g = id. There is

a natural map of vector bundles g∗ϕ∗N∨X/S = s∗N∨X/S → s∗N∨X/Y which induces a map

of complexes g∗(Tc(ϕ∗N∨X/S[1]), d) → (Tc(s∗N∨X/Y [1]), d). One can check carefully the

induced map is indeed a map of complexes, i.e., the differentials are preserved. This

proves that the diagram

g∗(Tc(ϕ∗N∨X/S[1]), d) //

��

g∗µ∗OX
//

��

0

(Tc(s∗N∨X/Y [1]), d) // t∗OX
// 0

which relates the two explicit resolutions of OX as an O
X

(1)
S

-algebra and as an O
X

(1)
Y

-

algebra is commutative. If we pull the natural map g∗ϕ∗N∨X/S = s∗N∨X/S → s∗N∨X/Y

back to X, we get the natural vector bundle map N∨X/S → N∨X/Y . This proves that we

get our desired commutative diagram at the beginning of the proof of Theorem 2.2 once

we pull the commutative diagram above back to X.

Similarly, to prove the commutativity of the right square of Theorem 2.2, it suffices
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to show that the diagram

µ∗µ∗OX

∼= // Tc(N∨X/S[1])

f ∗b∗b∗OY

∼= //

OO

f ∗Tc(N∨Y/S[1])

OO

is commutative. The right vertical map is induced by the natural map of vector bundles

N∨Y/S|X → N∨X/S.

If the Bass-Quillen class αs,N∨
Y/S
|
X

(1)
Y

vanishes, then we have an isomorphism between

a∗N∨Y/S and s∗(N∨Y/S|X). The latter maps to s∗N∨X/S naturally. Therefore, we get a map

σ∗a∗N∨Y/S
∼= σ∗s∗N∨Y/S|X → σ∗s∗N∨X/S = ϕ∗N∨X/S. Notice that a ◦ σ = π ◦ f (1) by the

definition of σ, so we get a map f (1)∗π∗N∨Y/S = σ∗a∗N∨Y/S → σ∗s∗N∨X/S = ϕ∗N∨X/S. This

map induces a map of complexes f (1)∗(Tc(π∗N∨Y/S[1]), d) → (Tc(ϕ∗N∨X/S[1]), d). As a

consequence the diagram of resolutions of µ∗OX and b∗OY

(Tc(ϕ∗N∨X/S[1]), d) // µ∗OX
// 0

f (1)∗(Tc(π∗N∨Y/S[1]), d) //

OO

f (1)∗b∗OY
//

OO

0

is commutative. We recover the map of vector bundles N∨Y/S|X → N∨X/S if we pull the

natural map σ∗a∗N∨Y/S = f (1)∗π∗N∨Y/S → ϕ∗N∨X/S = σ∗s∗N∨X/S back to X. This proves

that we get our desired commutative diagram once we pull the commutative diagram

above back to X. �

We apply this theorem in Chapter 3 to study the Hochschild cohomology of an

orbifold. The main example we consider is the setting where S admits an action of a

finite group G and X is the fixed locus of G and Y is the fixed locus of a subgroup

H ≤ G. It is easy to see that the splittings obtained from the averaging maps are

compatible in this case.
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2.3 Lie theoretic interpretations

All normal bundles in Theorem 2.2 carry pre-Lie brackets as explain before. The map

NX/Y [−1] → NY/S|X [−1] respects the brackets in general. However, NX/S[−1] →

NY/S|X [−1] may not preserve the brackets. The Bass-Quillen class αs,N∨
Y/S
|
X

(1)
Y

is precisely

the obstruction to this map preserving the brackets.

Theorem 2.3 In the same setting as Theorem 2.2, the vector bundle map NX/S[−1]→

NY/S|X [−1] preserves the pre-Lie brackets if and only if the Bass-Quillen class

αs,N∨
Y/S
|
X

(1)
Y

: NX/Y ⊗NY/S|X → NY/S|X [1]

is zero.

We prove Theorem 2.3 in Section 2.6.

Lie theoretic interpretations for Theorem 2.3 Under certain extra assumptions,

all derived self-intersections in Theorem 2.2 are groups in the derived category of dg

schemes. The shifted normal bundles are their Lie algebras.

To make our Lie theoretic interpretation clearer, let us assume that all the three

derived self-intersections X ×RY X, X ×RS X, and Y ×RS Y are groups in this subsection.

However, we will state and explain theorems and propositions later in Sections 2.5 and

2.6 which only assume the existence of first order splittings. One can check that the

natural maps

X ×RY X −→ X ×RS X −→ X ×RS Y = Y ×RS Y |X

are maps of groups. All the shifted normal bundles are Lie algebras under this assump-

tion. In this section we denote NX/Y [−1], NX/S[−1], and NY/S|X [−1] by h, g, and n
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respectively. The functoriality of HKR isomorphisms can be viewed as the functoriality

of the exponential maps from Lie algebras to Lie groups.

The map h = NX/Y [−1] ↪→ g = NX/S[−1] preserves the Lie brackets, so we are able to

prove the commutativity of the left square in Theorem 2.2 with no difficulty. Moreover,

the compatibility of the Lie brackets implies that g is an h-module, and h ↪→ g is a map

of h-modules. Therefore, n = g/h = NY/S|X [−1] has a natural h-module structure. We

get a short exact sequence of h-modules

0 // h = NX/Y [−1] // g = NX/S[−1] // n = g/h = NY/S|X [−1] // 0.

The h-module structure on g/h: NX/Y ⊗NY/S|X → NY/S|X [1] is exactly the Bass-Quillen

class αs,N∨
Y/S
|
X

(1)
Y

. We prove this statement in Section 2.5.

On the other hand, the map g = NX/S[−1] → n = NY/S|X [−1] may not in general

preserve the Lie brackets even if we assume that all the derived self-intersections are

groups. This explains the difficulty for proving the functoriality of the exponential maps

in the right square of Theorem 2.2. In Section 2.6 we will show that h = NX/Y [−1] acts

on its module g/h = NY/S|X [−1] trivially if and only if the Lie brackets are preserved,

i.e., g → g/h = n is a map of Lie algebras. This is Theorem 2.3. As a consequence

the right square in Theorem 2.2 commutes when the Lie brackets are preserved. Thus

Theorems 2.2 and 2.3 provide a generalization of the original result for Lie groups to the

setting of groups obtained as self-intersections.

2.4 Theorem 2.3 in classical Lie theory

As a warm-up to proving Theorem 2.3, we present here an analogous result in Lie theory.

We give a proof of this result using techniques that can be adapted to the derived setting
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of Theorem 2.3.

Consider an injective map of Lie algebras in vector spaces α : h ↪→ g. There is a

short exact sequence of h-modules

0 // h
α // g

β // n = g/h // 0.

Given a vector space map γ : n 99K g splitting β we define a pre-Lie bracket on n by the

formula [x, y]n = β([γ(x), γ(y)]g) for any x, y ∈ n. This bracket becomes a Lie bracket

under the tameness assumption [7], but we do not need this pre-Lie bracket to be a Lie

bracket throughout our discussion. In general, the map β may not respect the pre-Lie

brackets.

We define a map g⊗ n→ n

∑
i

xi ⊗ yi →
∑
i

β([xi, γ(yi)]),

for xi ∈ g and yi ∈ n. This map may not define a g-module structure on n if β is not a

morphism of Lie algebras. We state a proposition the analogous statement of which is

important in Sections 2.4 and 2.6. Its proof is left to the reader.

Proposition 2.4 In general, we do not expect

g⊗ g //

id⊗β
��

g

β

��
g⊗ n // n

to be commutative. However, the diagram

∧2g = ∧2h⊕ ∧2n⊕ (h⊗ n) //

��

g

β

��
(h⊗ n)⊕ ∧2n // n
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is commutative if we identify g with h⊕ n as a direct sum of vector spaces via γ.

Therefore the right hand side square of the diagram

g⊗ g //

id⊗β
��

∧2g = ∧2h⊕ ∧2n⊕ (h⊗ n) //

��

g

β

��
g⊗ n // (h⊗ n)⊕ ∧2n // n

is commutative, but the square on the left is not.

Here is the analogous theorem to Theorem 2.3.

Theorem 2.5 The map β preserves the pre-Lie brackets of g and n if and only if h acts

trivially on n. This is also equivalent to saying that β is a morphism of Lie algebras.

Proof. It is easy to see that the map g⊗ n→ n has the following properties.

(I) It is compatible with the h-module structure on n. Equivalently, the diagram

h⊗ n //

α⊗id
��

n

id

��
g⊗ n // n

is commutative. This follows from the observation that the h-module structure on n can

be defined as

x⊗ y → β([α(x), γ(y)]),

for any x ∈ h and y ∈ n.

(II) It defines a g-module structure on n if β is a morphism of Lie algebras. Equiv-

alently, the diagram

g⊗ n //

β⊗id
��

n

id

��
n⊗ n // n
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is commutative if β is a morphism of Lie algebras.

(III) The diagram

n⊗ n //

γ⊗id
��

∧2n //

��

n

g⊗ n // (h⊗ n)⊕ ∧2n // n

OO

is commutative.

We first prove that h acts on n trivially if β preserves the pre-Lie brackets. Compose

the two commutative diagrams in (I) and (II) together

h⊗ n //

α⊗id
��

n

id

��
g⊗ n //

β⊗id
��

n

id

��
n⊗ n // n.

The map h⊗ n→ n is zero because β ◦ α = 0.

Let us turn to prove that β preserves the pre-Lie brackets if the Lie module structure

map h⊗n→ n is zero. Identify g with h⊕n via γ. With property (I) and (III) one can

conclude that the map g⊗ n = (h⊗ n)⊕ (n⊗ n)→ n that we defined at the beginning

of this section is the Lie module structure map h⊗ n→ n plus the pre-Lie bracket on n:

n⊗ n→ n.

If h⊗ n→ n is zero, then the diagram

g⊗ n //

��

(h⊗ n)⊕ ∧2n //

��

n

��
n⊗ n // ∧2n // n

is commutative. Put the commutative diagram in Proposition 2.4 and the diagram above



24

together

∧2g //

��

g

��
(h⊗ n)⊕ ∧2n //

��

n

��
∧2n // n.

We conclude that β is a map of Lie algebras. �

2.5 The Bass-Quillen class as a Lie module structure

map

In this section we prove the Bass-Quillen class can be viewed as a Lie module structure

map as explained in Section 2.3. We begin by stating the result under the assumption

that closed embeddings split to first order only. Then we provide explanations in Lie

theoretic terms. We turn to the proof at last.

Lemma 2.6 The following short exact sequence splits

0 // NX/Y
// NX/S

// NY/S|X //

Ψ
vv

0.

Proof. We have a map Ψ : NY/S|X 99K TS|X → NX/S which splits the short exact

sequence because Y splits to first order in S. �

The short exact sequence above shifted by negative one is analogous to the sequence

0 // h
α // g

β // n = g/h // 0.

in Section 2.4.
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Most of this section will be devoted to constructing a map κ : NX/Y ⊗ NX/S →

NX/S[1]. This map will be given by the extension class of an explicit short exact sequence.

Using this map we will prove the following proposition.

Proposition 2.7 In the same setting as Theorem 2.2, the vector bundle map NX/Y [−1]→

NX/S[−1] preserves the pre-Lie brackets constructed by Calaque and Grivaux [7]. There

exists a map κ : NX/Y ⊗ NX/S → NX/S[1] defined explicitly by the extension class of a

short exact sequence. The diagram

NX/Y ⊗NY/S|X // NY/S|X [1]

NX/Y ⊗NX/S
κ //

OO

��

NX/S[1]

OO

��
NX/S ⊗NX/S

// NX/S[1]

is commutative. Here all the vertical maps are the obvious maps of vector bundles. The

top horizontal map is the Bass-Quillen class αs,N∨
Y/S
|
X

(1)
Y

, and the bottom horizontal map

is the pre-Lie bracket.

To explain in Lie theoretic terms the meaning of Proposition 2.7, assume for sim-

plicity that the embedding X ↪→ S satisfies the additional conditions that make g =

NX/S[−1] a Lie algebra. Then denote by h = NX/Y [−1]. It is a subalgebra of g because

the map h ↪→ g preserves the brackets by Proposition 2.7. The bundle NY/S|X [−1] can

be identified with g/h. Then the diagram in Proposition 2.7 becomes

h⊗ g/h // g/h

h⊗ g
κ //

OO

��

g

OO

��
g⊗ g // g.



26

The commutativity of

NX/Y ⊗NX/S
κ //

��

NX/S[1]

��

h⊗ g

��

κ // g

��
NX/S ⊗NX/S

// NX/S[1] g⊗ g // g

says that the morphism κ is the structure map of the natural h-module structure on

g = NX/S[−1], where h = NX/Y [−1] is the Lie algebra.

The commutativity of the diagram

NX/Y ⊗NY/S|X // NY/S|X [1] h⊗ g/h // g/h

NX/Y ⊗NX/S
κ //

OO

NX/S[1]

OO

h⊗ g
κ //

OO

g

OO

says that the Bass-Quillen class αs,N∨
Y/S
|
X

(1)
Y

at the top of the diagram is the structure

map of the h-module structure on g/h = NY/S|X [−1].

Before we prove Proposition 2.7, we have to define the morphism κ : NX/Y ⊗NX/S →

NX/S[1] that appears in the middle of the diagram in Proposition 2.7. We hope to

describe the morphism κ explicitly as the extension class of a short exact sequence. There

is a technical detail we need to deal with. As we can see, the pre-Lie bracket is defined as

Sym2NX/S → NX/S[1] instead of NX/S⊗NX/S → NX/S[1]. It is easy to describe the short

exact sequence corresponding to Sym2NX/S → NX/S[1]. However, it is hard to describe

explicitly what short exact sequence the morphism NX/S⊗NX/S → NX/S[1] corresponds

to. The same phenomenon appears when we try to define NX/Y ⊗ NX/S → NX/S[1].

There is an anti-symmetric part ∧2NX/Y ↪→ NX/Y ⊗ NX/S. We can only define our

desired Lie module structure map κ via the extension class of a short exact sequence

after we kill this anti-symmetric part. Lemma 2.8 below describes how to kill the anti-

symmetric part of NX/Y ⊗NX/S
∼= (NX/Y ⊗NX/Y )⊕ (NX/Y ⊗NY/S|X) canonically.
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Lemma 2.8 The vector bundle
I2X

I3X+I2Y
on X is isomorphic to Sym2N∨X/Y ⊕ (N∨X/Y ⊗

N∨Y/S|X), where IX and IY are the ideal sheaves of X and Y in S.

Proof. The cokernel of Sym2N∨Y/S|X ↪→ Sym2N∨X/S is isomorphic to Sym2N∨X/Y ⊕

(N∨X/Y ⊗N∨Y/S|X) using the splitting in Lemma 2.6.

There is a commutative diagram on X

0 // I
2
Y

I2
Y IX

//

∼=
��

I2
X

I3
X

//

∼=
��

I2
X

I3
X + I2

Y

// 0

0 // Sym2N∨Y/S|X // Sym2N∨X/S
// Sym2N∨X/Y ⊕ (N∨X/Y ⊗N∨Y/S|X) // 0.

The two vertical maps above are isomorphisms, so we can complete the diagram above

as an isomorphism of short exact sequences. This implies our desired isomorphism. �

Definition 2.9 Define the morphism κ : NX/Y ⊗NX/S → NX/S[1] as follows

NX/Y ⊗NX/S → Sym2NX/Y ⊕ (NX/Y ⊗NY/S|X) ∼= (
I2
X

I3
X + I2

Y

)∨ → NX/S[1],

where the map on the left is the obvious map under the identification NX/S
∼= NX/Y ⊕

NY/S|X in Lemma 2.6, and the map on the right is given by the extension class of the

short exact sequence

0→ I2
X

I3
X + I2

Y

→ ϕ∗
IX

I3
X + I2

Y

→ IX
I2
X

→ 0.

We will focus on the proof of Proposition 2.7. The result will follow from Lemma

2.11 and Propositions 2.12 and 2.13 below.

Lemma 2.10 Sym2N∨X/Y is isomorphic to
I2X

I3X+IXIY
.
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Proof. The ideal sheaf of X in Y is IX
IY
⊂ OY = OS/IY . Note that

InX
InY
6= ( IX

IY
)n ⊂

OS/IY . It is easy to show that ( IX
IY

)n ∼= InX+IY
IY
⊂ OY = OS/IY . Therefore,

Sym2N∨X/Y
∼=

( IX
IY

)2

( IX
IY

)3
∼=
I2
X + IY
I3
X + IY

∼=
I2
X

I2
X ∩ (I3

X + IY )
.

We have I2
X ∩ (I3

X + IY ) = (I2
X ∩ I3

X) + (I2
X ∩ IY ) because I3

X ⊂ I2
X . The equality

I2
X ∩ IY = IXIY is due to the injective map below

N∨Y/S|X =
IY
IY IX

↪→ N∨X/S =
IX
I2
X

. �

Lemma 2.11 The map of vector bundles NX/Y [−1] → NX/S[−1] preserves the pre-Lie

brackets.

Proof. One can check that the two short exact sequences

0 // I
2
X

I3
X

//

��

ϕ∗
IX
I3
X

//

��

IX
I2
X

//

��

0

0 // I2
X

I3
X + IXIY

// s∗
IX

I3
X + IY

// IX
I2
X + IY

// 0

are compatible. �

On the other hand, the map NX/S[−1] → NY/S|X [−1] may not preserve the pre-Lie

brackets because there is no map (π∗
IY
I3Y

)|X → ϕ∗
IX
I3X

generally.

We prove the commutativity of the two diagrams in Proposition 2.7. It is divided

into two propositions below.

Proposition 2.12 The map in Definition 2.9 is compatible with the pre-Lie bracket of

NX/S[−1]. It is equivalent to saying that the diagram

NX/Y ⊗NX/S

��

// NX/S[1]

��
NX/S ⊗NX/S

// NX/S[1]
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is commutative.

Proof. We need to show that the three small diagrams

NX/Y ⊗NX/S

��

// Sym2NX/Y ⊕ (NX/Y ⊗NY/S|X)

��

∼= // (
I2
X

I3
X + I2

Y

)∨

��

// NX/S[1]

��
NX/S ⊗NX/S

// Sym2NX/S

∼= // (
I2
X

I3
X

)∨ // NX/S[1]

are commutative. Clearly the one on the left is commutative. The commutativity of

the isomorphism in the middle follows from the compatibility of the two short exact

sequences in Lemma 2.8. The diagram on the right commutes because the two short

exact sequences

0 // I2
X

I3
X + I2

Y

// ϕ∗
IX

I3
X + I2

Y

// IX
I2
X

// 0

0 // I
2
X

I3
X

OO

// ϕ∗
IX
I3
X

OO

// IX
I2
X

//

OO

0

are compatible. �

Proposition 2.13 There is a commutative diagram

NX/Y ⊗NX/S
//

��

NX/Y ⊗NY/S|X

��
NX/S[1] // NY/S[1],

where the left vertical map is in Definition 2.9, and the right vertical map is the Bass-

Quillen class αs,N∨
Y/S
|
X

(1)
Y

.
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Proof. We need to prove that the three small diagrams in the diagram (1)

NX/Y ⊗NX/S

��

// NX/Y ⊗NY/S|X

��
Sym2NX/Y ⊕ (NX/Y ⊗NY/S|X)

∼=��

// NX/Y ⊗NY/S|X

∼=
��

(1)

(
I2
X

I3
X + I2

Y

)∨

��

// (
IX

I2
X + IY

)∨ ⊗ (
IY
IY IX

)∨

��
NX/S[1] // NY/S[1]

are commutative. Obviously the one on the top is commutative.

To prove the isomorphism in the middle is compatible, we construct a commutative

diagram

N∨X/Y ⊗N∨Y/S|X //

∼=
��

N∨X/S ⊗N∨X/S //

∼=
��

Sym2N∨X/S
//

∼=
��

Sym2N∨X/Y ⊕ (N∨X/Y ⊗N∨Y/S|X)

∼=
��

IX
I2
X + IY

⊗ IY
IY IX

// IX
I2
X

⊗ IX
I2
X

// I
2
X

I3
X

// I2
X

I3
X + I2

Y

,

where the dotted arrows are defined by the splitting in Lemma 2.6, and the right square

commutes as mentioned in the proof of Proposition 2.12. Clearly, the left and middle

squares are commutative. We hope to prove that this big commutative diagram is exactly

dual to the one in the middle of (1). It suffices to show that the map

IX
I2
X + IY

⊗ IY
IY IX

// IX
I2
X

⊗ IX
I2
X

// I
2
X

I3
X

// I2
X

I3
X + I2

Y

defined using the splitting is equal to the natural map

IX
I2
X + IY

⊗ IY
IY IX

→ I2
X

I3
X + I2

Y

,
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(a⊗ b)→ ab, for a ∈ IX
I2
X + IY

, and b ∈ IY
IY IX

.

One can check this easily.

Let us focus on the commutativity of the bottom square in (1)

(
I2
X

I3
X + I2

Y

)∨ //

��

NX/S[1]

��
(

IX
I2
X + IY

)∨ ⊗ (
IY
IY IX

)∨ // NY/S[1].

The bottom horizontal map is defined by a short exact sequence

0→ N∨X/Y ⊗N∨Y/S|X → s∗a
∗N∨Y/S → N∨Y/S → 0.

Moreover, we have a morphism of short exact sequences

0 // N∨X/Y ⊗N∨Y/S|X //

��

s∗a
∗N∨Y/S

//

∼=
��

N∨Y/S|X //

∼=
��

0

0 // IXIY
IY (I2

X + IY )
// s∗

IY
IY (I2

X + IY )
// IY
IY IX

// 0.

This implies that N∨X/Y ⊗ N∨Y/S
∼= IXIY

IY (I2X+IY )
. It suffices to show that the short exact

sequence 0 → IXIY
IY (I2X+IY )

→ s∗
IY

IY (I2X+IY )
→ IY

IY IX
→ 0 is compatible with the short exact

sequence 0→ I2X
I3X+I2Y

→ ϕ∗
IX

I3X+I2Y
→ IX

I2X
→ 0.

There is a natural map of sheaves g∗
IY

IY (I2X+IY )
→ IX

I3X+I2Y
. We get s∗

IY
IY (I2X+IY )

→

ϕ∗
IX

I3X+I2Y
by applying ϕ∗ on both sides, so the two short exact sequences

0 // IXIY
IY (I2

X + IY )
//

��

s∗
IY

IY (I2
X + IY )

//

��

IY
IY IX

//

��

0.

0 // I2
X

I3
X + I2

Y

// ϕ∗
IX

I3
X + I2

Y

// IX
I2
X

// 0

are compatible. �
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2.6 The proof of Theorem 2.3

We generalize the proof in Section 2.4 to prove Theorem 2.3. We first define a morphism

NX/S ⊗ NY/S|X → NY/S|X [1] which is analogous to the map g ⊗ n → n in Section 2.4.

Then we prove similar statements to properties (I) and (II), and Proposition 2.4 in

Section 2.4. We prove Theorem 2.3 at last.

The first thing that we need is the map NX/S ⊗ NY/S|X → NY/S|X [1] which is the

analogue of the map g⊗n→ n from Section 2.4. We need to deal with the same technical

issue that appears in Section 2.5. Using the splitting in Lemma 2.6 we see that there is

an anti-symmetric part ∧2NY/S|X in NX/S ⊗NY/S|X = (NX/Y ⊕NY/S|X)⊗NY/S|X . We

need to kill this anti-symmetric part canonically. Lemma 2.14 and 2.15 describe how to

do this.

Lemma 2.14 I2
Y ∩ I2

XIY = I2
Y IX .

Proof. We have I2
Y ∩ I3

X = I2
Y IX because the map

Sym2N∨Y/S|X =
I2
Y

I2
Y IX

→ Sym2N∨X/S =
I2
X

I3
X

is injective. Then we have

I2
Y IX ⊂ I2

Y ∩ I2
XIY ⊂ I2

Y ∩ I3
X = I2

Y IX . �

Lemma 2.15 There is an isomorphism of vector bundles ( IXIY
I2XIY

)∨ ∼= Sym2NY/S|X ⊕

(NX/Y ⊗NY/S|X) on X.
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Proof. There is a morphism of short exact sequences

0 // IY
IY IX

⊗ IY
IY IX

//

��

IX
I2
X

⊗ IY
IY IX

//

v

��

IX
I2
X + IY

⊗ IY
IY IX

//

u

��

τxx

0

0 // I
2
Y

I2
Y IX

// IXIY
I2
XIY

// IXIY
IY (I2

X + IY )
// 0.

Everything above is clear except for the injectivity of
I2Y
I2Y IX

→ IXIY
I2XIY

. This is due to

Lemma 2.14. �

The short exact sequence on the top is the dual of the sequence of the normal

bundles tensored with N∨Y/S|X , so it splits naturally. The map u is an isomorphism as

mentioned in the proof of Proposition 2.13. One can construct a splitting v ◦ τ ◦ u−1

for the short exact sequence on the bottom. Therefore IXIY
I2XIY

∼= I2Y
I2Y IX

⊕ IXIY
IY (I2X+IY )

∼=

Sym2N∨Y/S|X ⊕ (N∨X/Y ⊗N∨Y/S|X). The diagram of two short exact sequences above says

that there is a commutative diagram

0 // N∨Y/S|X ⊗N∨Y/S|X //

��

N∨X/S ⊗N∨Y/S|X //

v

��

N∨X/Y ⊗N∨Y/S|X //

id

��

τ
ww

0

0 // Sym2N∨Y/S|X //

∼=
��

Sym2N∨Y/S|X ⊕ (N∨Y/S|X ⊗N∨X/Y ) //

∼=
��

N∨X/Y ⊗N∨Y/S|X //

∼=
��

0

0 // I
2
Y

I2
Y IX

// IXIY
I2
XIY

// IXIY
(I2
X + IY )IY

// 0.

Definition 2.16 Define the morphism NX/S⊗NY/S|X → NY/S[1] which is analogous to

g⊗ n→ n in Section 2.4 as follows

NX/S ⊗NY/S|X → Sym2(NY/S|X)⊕ (NX/Y ⊗NY/S|X) ∼= (
IXIY
I2
XIY

)∨ → NY/S|X [1],

where the map on the left hand side is the obvious one under the identification NX/S
∼=

NX/Y ⊕ NY/S|X , and the map on the right hand side is given by the extension class of
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the short exact sequence

0→ IXIY
I2
XIY

→ ϕ∗
IY
IY I2

X

→ IY
IY IX

→ 0.

The following proposition is analogous to property (I) in Section 2.4.

Proposition 2.17 There is a commutative diagram

NX/S ⊗NY/S|X // NY/S|X [1]

NX/Y ⊗NY/S|X //

OO

NY/S|X [1],

OO

where the horizontal map at top is in Definition 2.16, and the horizontal map at bottom

is the Bass-Quillen class αs,N∨
Y/S
|
X

(1)
Y

.

Proof. The isomorphism N∨X/Y ⊗ N∨Y/S|X ∼=
IXIY

(I2X+IY )IY
is mentioned in the proof of

Proposition 2.13. It suffices to prove that the three small diagrams

NX/S ⊗NY/S|X // Sym2NY/S|X ⊕ (NX/Y ⊗NY/S|X)
∼= // (

IXIY
I2
XIY

)∨ // NY/S|X [1]

NX/Y ⊗NY/S|X //

OO

NX/Y ⊗NY/S|X
∼= //

OO

(
IXIY

(I2
X + IY )IY

)∨ //

OO

NY/S|X [1]

OO

are commutative. Obviously, the left one is commutative. Commutativity of the one in

the middle is due to the compatibility of the short exact sequence in Lemma 2.15. The

rest of our proof is devoted to the commutativity of the diagram on the right.

There is a natural map IY
IY I

2
X
→ g∗

IY
(I2X+IY )IY

. We get ϕ∗
IY
IY I

2
X
→ s∗

IY
(I2X+IY )IY

by

applying ϕ∗ on both sides. This gives the two compatible short exact sequences

0 // IXIY
I2
XIY

//

��

ϕ∗
IY
IY I2

X

//

��

IY
IY IX

//

��

0

0 // IXIY
(I2
X + IY )IY

// s∗
IY

(I2
X + IY )IY

// IY
IY IX

// 0,
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which proves that the diagram on the right is commutative. �

The following proposition is similar to Proposition 2.4.

Proposition 2.18 There is a commutative diagram

Sym2NX/S
//

��

NX/S[1]

��
Sym2NY/S|X ⊕ (NX/Y ⊗NY/S|X) ∼= (

IXIY
I2
XIY

)∨ // NY/S|X [1],

where the bottom horizontal map is in Definition 2.16.

However, we do not expect the following big diagram

NX/S ⊗NX/S
//

��

Sym2NX/S
//

��

NX/S[1]

��
NX/S ⊗NY/S|X // Sym2NY/S|X ⊕ (NX/Y ⊗NY/S|X) ∼= (

IXIY
I2
XIY

)∨ // NY/S|X [1]

is commutative generally. One can check that the left square is not commutative as

mentioned in Proposition 2.4.

Proof. We need to prove that the two small diagrams in diagram (2)

Sym2NX/S

∼= //

��

(
I2
X

I3
X

)∨

��

// NX/S[1]

��
Sym2NY/S|X ⊕ (NX/Y ⊗NY/S|X)

∼= // (
IXIY
I2
XIY

)∨ // NY/S|X [1] (2)

are commutative. The diagram on the right of (2) commutes because the two short
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exact sequence

0 // IXIY
I2
XIY

//

��

ϕ∗
IY
IY I2

X

//

��

IY
IY IX

//

��

0

0 // I
2
X

I3
X

// ϕ∗
IX
I3
X

// IX
I2
X

// 0.

are compatible. Let us prove that the left diagram in (2) commutes. We construct a

diagram below

Sym2N∨Y/S ⊕ (N∨X/Y ⊗N∨Y/S|X)

ζ

++

ε // Sym2N∨Y/S|X
ε′ // Sym2N∨X/S

N∨X/Y ⊗N∨Y/S|X
ζ′ // N∨X/S ⊗N∨X/S

ϑ

OO

IXIY
I2
XIY

δ //

ξ

**

OO

I2
Y

I2
Y IX

δ′ //

[[

I2
X

I3
X

UU

IXIY
(I2
X + IY )IY

∼=
IX

I2
X + IY

⊗ IY
IY IX

ξ′ //

GG

IX
I2
X

⊗ IX
I2
X

,

ϑ′

OO

UU

where all the vertical maps are natural isomorphisms. The dotted arrows are constructed

by splittings in the proof of Lemma 2.15, and the solid arrows are the obvious ones

which also appear in the proof of Lemma 2.15. The two short exact sequences and

their splittings in the proof of Lemma 2.15 are compatible, so the diagram above is

commutative. Taking the direct sum and direct product of the maps above, we get a

commutative diagram

Sym2N∨Y/S ⊕ (N∨X/Y ⊗N∨Y/S|X)
ε×ζ // Sym2N∨Y/S ⊕ (N∨X/Y ⊗N∨Y/S|X)

ε′⊕(ϑ◦ζ′)// Sym2N∨X/S

IXIY
I2
XIY

ξ×δ //

∼=

OO

I2
Y

I2
Y IX

⊕ IXIY
I2
X + IY

(ϑ′◦ξ′)⊕δ′ //

∼=

OO

I2
X

I3
X

.

∼=

OO
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We hope to prove that the diagram above is dual to the left square in (2). This says

that we need to prove the following statement (3):

The map we constructed above ((ϑ′ ◦ ξ′) ⊕ δ′) ◦ (ξ × δ) is equal to the natural map

IXIY
I2XIY

→ I2X
I3X

.

Consider the following diagram

IXIY
I2
XIY

δ //

ξ

))

I2
Y

I2
Y IX

δ′ // I
2
X

I3
X

IXIY
(I2
X + IY )IY

∼=
IX

I2
X + IY

⊗ IY
IY IX ξ′

// IX
I2
X

⊗ IX
I2
X

ϑ′

OO

N∨X/S ⊗N∨Y/S|X
θ //

λ

**

OO

N∨Y/S|X ⊗N∨Y/S|X

YY

θ′

<<

N∨X/Y ⊗N∨Y/S|X ,

EE

λ′

::

where the dotted arrows are the splittings in the proof of Lemma 2.15. The diagram

above is commutative because the two short exact sequences and their splittings in the

proof of Lemma 2.15 are compatible.

Notice that N∨X/S ⊗ N∨Y/S|X →
IXIY
I2XIY

is surjective. To prove the statement (3), it

suffices to show that the map (θ′ ⊕ (ϑ′ ◦ λ′)) ◦ (θ × λ) : N∨X/S ⊗N∨Y/S|X = IX
I2X
⊗ IY

IY IX
→

Sym2N∨X/S =
I2X
I3X

constructed via the splittings is equal to the natural map

IX
I2
X

⊗ IY
IY IX

→ I2
X

I3
X

,

(a⊗ b)→ ab, for a ∈ IX
I2
X

, and b ∈ IY
IY IX

.

One can verify it easily. �

The following lemma is analogous to property (II) in Section 2.4.
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Lemma 2.19 If NX/S[−1] → NY/S|X [−1] preserves the pre-Lie brackets, then there is

a commutative diagram

Sym2NY/S|X // NY/S|X [1]

Sym2NY/S ⊕ (NX/Y ⊗NY/S|X) //

OO

NY/S|X [1],

id

OO

where the bottom horizontal map is in Definition 2.16.

Proof. Put what we want to prove into a larger diagram

Sym2NY/S|X
χ // NY/S|X [1]

Sym2NY/S|X ⊕ (NX/Y ⊗NY/S|X)

ψ
jj

φ
44

Sym2NX/S

ι
44

//

OO

NY/S|X [1].

OO

The outer square commutes because we assume that the brackets are preserved. We

want to show that χ ◦ ψ = φ. The commutativity of the outer square and Proposition

2.18 show that χ ◦ ψ ◦ ι = φ ◦ ι. The map ι splits, so we get our desired result. �

There should be a statement analogous to property (III). It will appear in the proof

of Theorem 2.3 below.

Proof of Theorem 2.3. We first prove that the Bass-Quillen Lie module map
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αs,N∨
Y/S
|
X

(1)
Y

is zero if the pre-Lie brackets are preserved. There is a commutative diagram

NY/S|X ⊗NY/S|X // Sym2NY/S|X // NY/S|X [1]

Sym2NY/S|X ⊕ (NX/Y ⊗NY/S|X) //

OO

NY/S|X [1]

id

OO

NX/S ⊗NY/S|X //

OO

ff

NY/S|X [1]

id

OO

NX/Y ⊗NY/S|X //

OO

NY/S|X [1]

id

OO

due to Lemma 2.19 and Proposition 2.17. The Bass-Quillen class αs,N∨
Y/S
|
X

(1)
Y

that appears

at the bottom of the diagram above vanishes because the composition NX/Y → NX/S →

NY/S|X is zero.

Let us turn to prove that the vector bundle map NX/S[−1]→ NY/S|X [−1] preserves

the pre-Lie brackets if the Bass-Quillen class αs,N∨
Y/S
|
X

(1)
Y

is zero. The proof is similar to

the one in Section 2.4. In [7] Calaque and Grivaux showed that the pre-Lie brackets on

NX/S[−1] and NY/S|X [−1] defined by the extension classes of short exact sequences can

be also defined as follows

Sym2NX/S
// Sym2 TS|X // TS|X [1] // NX/S[1],

Sym2NY/S|X // Sym2 TS|X // TS|X [1] // NY/S|X [1].

The dotted arrow is due to the fact that f : X ↪→ S and j : Y ↪→ S split to first order.

The map in the middle is the Atiyah class.

Using the compatibility condition on splittings of tangent bundles and the fact above,
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we conclude that the diagram

Sym2NY/S|X //

��

Sym2 TS|X //

id
��

TS|X [1] //

id

��

NY/S|X [1]

Sym2NX/S
// Sym2 TS|X // TS|X [1] // NX/S[1]

OO

is commutative. The diagram above and Proposition 2.18 say that we have a commuta-

tive diagram

Sym2NY/S|X //

��

NY/S|X [1]

id

��
Sym2NY/S|X ⊕ (NY/S|X ⊗NX/Y ) // NY/S|X [1]

which is analogous to property (III) in Section 2.4. Based on the diagram above and

Proposition 2.17 it is clear that the diagram

Sym2NY/S|X ⊕ (NY/S|X ⊗NX/Y ) //

��

NY/S|X [1]

id

��
Sym2NY/S|X // NY/S|X [1]

is commutative if the Bass-Quillen class αs,N∨
Y/S
|
X

(1)
Y

is zero. Compose the diagram above

with the one in Proposition 2.18. We get a commutative diagram

Sym2NX/S
//

��

NX/S[1]

��
Sym2NY/S|X ⊕ (NY/S|X ⊗NX/Y ) //

��

NY/S|X [1]

id

��
Sym2NY/S|X // NY/S|X [1],

so we conclude that the brackets are preserved if the Bass-Quillen class αs,N∨
Y/S
|
X

(1)
Y

is

zero. �
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We end this section by providing an example where the Bass-Quillen class is not

zero. Consider the embeddings

X
∆X // X ×X = Y

∆X×X//

p1

||
S = X ×X ×X ×X

π1

vv

for a smooth scheme X, where all the inclusions are the diagonal embeddings, and all the

splittings are the projections to the first factor. The normal bundle NY/S is p∗1TX⊕p∗2TX

in this case, where p1 and p2 are the two projections: X ×X → X. It is clear that the

Bass-Quillen class αp1,N∨Y/S |X(1)
Y

: TX ⊗ (TX ⊕ TX) → TX [1] is zero plus the Atiyah class:

TX [−1]⊗ TX [−1]→ TX [−1]. It is not zero in general.
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Chapter 3

Orbifold Hochschild cohomology

We study the multiplicative structure of orbifold Hochschild cohomology in an attempt to

generalize the results of Kontsevich and Calaque-Van den Bergh relating the Hochschild

and polyvector field cohomology rings of a smooth variety.

We introduce the concept of linearized derived scheme, and we argue that when X

is a smooth algebraic variety and G is a finite abelian group acting on X, the derived

fixed locus X̃G admits an HKR linearization. This allows us to define a product on the

cohomology of polyvector fields of the orbifold [X/G]. We analyze the obstructions to

the associativity of this product and show that they vanish in certain special cases. We

conjecture that in these cases the resulting polyvector field cohomology ring is isomorphic

to the Hochschild cohomology of [X/G].

Inspired by mirror symmetry we introduce a bigrading on the Hochschild homology

of Calabi-Yau orbifolds. We propose a conjectural product which respects this bigrading

and simplifies the previously introduced product.

3.1 Background

In this section we review the theorem of Kontsevich and Calaque-Van den Bergh about

the multiplicative structure on Hochschild cohomology of smooth algebraic varieties and
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a similar theorem in Lie theory. We recall Kontsevich’s proof based on deformation

quantization of Poisson manifolds. Then we move to the orbifold case and review the

construction of the orbifold HKR isomorphism. A few new definitions and interpretations

in this section will be important throughout this chapter.

3.1.1 Multiplicative structure on Hochschild cohomology

Both sides in the HKR isomorphism below

IHKR : HT∗(X)
∼−→ HH∗(X)

are graded commutative rings: polyvector field cohomology classes can be multiplied

using the wedge product on ∧∗TX and cup product on cohomology, while Hochschild

cohomology classes can be composed using the Yoneda product. However, the HKR

isomorphism is not a ring map in general.

Kontsevich [27] claimed that the rings HT∗(X) and HH∗(X) are in fact isomorphic,

via a modification of the HKR isomorphism. This result was later proved by Calaque

and Van den Bergh [6].

Theorem 3.1 (Calaque-Van den Bergh, Kontsevich) The map

HT∗(X)
y td−

1
2−→ HT∗(X)

HKR−→ HH∗(X)

is a ring isomorphism. Here td is the Todd class of X.

The ring HT∗(X) is bigraded, and the product respects this bigrading. Moreover,

the Hochschild cochain complex carries a filtration given by order of polydifferential op-

erators, which in turn induces a filtration on Hochschild cohomology. Kontsevich’s claim
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(along with the explicit formula for the corrected ring isomorphism) can be interpreted

as saying that this filtration admits a multiplicative splitting, yielding a bigrading on

HH∗(X) which refines the usual grading.

Before we move on to the orbifold case, we recall a similar theorem in Lie theory and

Kontsevich’s proof. If we replace the Lie algebra TX [−1] in the derived category by a

Lie algebra g in vector spaces, we get a similar theorem first proved by Duflo [17].

Theorem 3.2 (Duflo, Kontsevich) The map

H∗(g, Sym(g))
J

1
2−→ H∗(g, Sym(g))

PBW−→ H∗(g, Ug)

is an isomorphism of algebras, where J is considered as an element in the completed

symmetric algebra ̂Sym(g∗) and given by the formula

J(x) = det(
1− exp−adx

adx
)

for x ∈ g.

The theorem above is a consequence of Kontsevich’s main theorem on deformation quan-

tization of Poisson manifolds [27] which we recall in the next subsection.

3.1.2 Deformation quantization of Poisson manifolds

All the contents in this subsection are from [27]. Let M be a real smooth manifold and

Π ∈ Γ(∧2TM) be a smooth bi-vector field. The formula {f, g} = Π(df ∧ dg) defines a

bilinear operator for smooth functions f and g. We say that the bi-vector field defines

a Poisson structure on M if {−,−} satisfies the Jacobi identity.

Kontsevich relates the Poisson structure on M with the deformation of the algebra

of smooth functions on M . Let A be the algebra of smooth functions on the manifold
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M . The star-product on A is an associative R[[~]]-linear product on A[[~]] = A⊗RR[[~]]

given by the formula for f, g ∈ A

f ? g = fg + ~B1(f, g) + ~2B2(f, g) + · · · ∈ A[[~]],

where Bi are bidifferential operators. We extend the product to A[[~]] by linearity. We

are only interested in the star products up to the following natural isomorphisms.

The map

D : f → f + ~D1(f) + ~2D2(f) + · · ·

extended by ~-linearity defines an automorphism D(~) of A[[~]]. It acts on the set of

star-products as

?→ ?′, x ?′ y = D(~)(D(~)−1x ? D(~)−1y),

for x, y ∈ A[[~]].

Theorem 3.3 (Kontsevich) The set of equivalence classes of star-products on a s-

mooth manifold M can be naturally with the set of equivalence classes of Poisson struc-

tures on M depending formally on ~

Π = Π1~ + Π2~2 + · · · ∈ Γ(∧2TM)[[~]]

modulo diffeomorphism.

It is observed by Deligne is that every deformation problem is governed by some

differential graded Lie algebra. The theorem above is a consequence of a more general

statement about differential graded Lie algebras.
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Definition 3.4 A differential graded Lie algebra (DGLA) is a graded vector space L with

[−,−] and d, where [−,−] is graded antisymmetric and satisfies graded Jacobi identity,

and d is a differential satisfying the Leibniz rule

d[x, y] = [dx, y] + (−1)|x|[x, dy].

We define two DGLAs associated with a smooth manifold M . Let A be the algebra

of smooth functions on M the Hochschild cochain complex is

C∗(A,A) =
⊕
k≥0

Ck(A,A), Ck(A,A) = Homk(A
⊗k, A).

The shifted complex C∗(A,A)[1] is a DGLA. The differential is

dΦ(a0 ⊗ · · · ⊗ ak+1) = a0Φ(a1 ⊗ · · · ⊗ ak+1)−
k∑
i=0

Φ(a0 ⊗ · · · ⊗ (aiai+1)⊗ · · · ⊗ ak+1)

+(−1)kΦ(a0 ⊗ · · · ⊗ ak)ak+1,Φ ∈ Homk(A
⊗k+1, A),

and the Lie bracket is

[Φ1,Φ2] = Φ1 ◦ Φ2 − (−1)k1k2Φ2 ◦ Φ1

for Φi ∈ Homk(A
⊗ki+1, A), where the operation ◦ is defined as

(Φ1 ◦ Φ2)(a0 ⊗ · · · ⊗ ak1+k2)

=

k1∑
i=0

(−1)ik2Φ1(a0 ⊗ · · · ⊗ ai−1 ⊗ (Φ2(ai ⊗ · · · ⊗ ai+k2))⊗ ai+k2+1 ⊗ · · · ⊗ ak1+k2).

The first DGLADpoly(M) we hope to study is the subalgebra of the shifted Hochschild

cochain complex defined as follows. The space Dn
poly(M) consists of Hochschild cochains

A⊗n+1 → A given by polydifferential operators. In local coordinates (xi) an element in

Dn
poly(M) can be written as

f0 ⊗ · · · ⊗ fn →
∑

(I0,...,In)

CI0,...,In(x1, · · · , xd)∂I0(f0) . . . ∂In(fn),
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where the sum is finite over the multi-indices Ik.

The second DGLA is the polyvector fields Tpoly(M) defined as

T npoly(M) = Γ(M,∧n+1TM).

The differential is zero and the bracket is

[ξ0 ∧ · · · ∧ ξk, η0 ∧ · · · ∧ ηl] =

k∑
i=0

l∑
j=0

(−1)i+j+k[ξi, ηj] ∧ ξ0 ∧ · · · ∧ ξi−1 ∧ ξi+1 ∧ η0 ∧ · · · ∧ ηj−1 ∧ ηj+1 ∧ · · · ∧ ηl,

for k, l ≥ 0 and ξi, ηi ∈ Γ(M,TM), and

[ξ0 ∧ · · · ∧ ξk, h] =
k∑
i=0

(−1)iξi(h)(ξ0 ∧ · · · ∧ ξi−1 ∧ ξi+1 ∧ · · · ∧ ξk),

for a smooth function h.

We discuss the relation between DGLAs and deformations. Let g be a nilpotent

DGLA. We define the deformation functor Defg as follows. We define MC(g) to be the

set of Maurer-Cartan equation modulo the gauge equivalence

MC(g) = {x ∈ g1|dx+
1

2
[x, x] = 0}/Γ0

where Γ0 is the nilpotent group associated with the Lie algebra g0. The functor Defg is

from the category of finite-dimensional nilpotent commutative algebras without unit to

the category of sets

Defg(m) =MC(g⊗m).

It can be extended to ~R[[~]] = lim←−(~R[[~]]/~kR[~]) by taking limits.

Let A be the algebra of smooth functions on M . Suppose there is a deformation of

the associative algebra A

x ∗ y = a · b+ ~B1(x, y) + ~2B2(x, y) + · · · .
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One can check that ∗ is associative if and only if B = ~B1 + ~2B2 + · · · is an element in

Defg(~R[[~]]⊗ g), i.e.,

dB +
1

2
[B,B] = 0,

where the DGLA g is the shifted Hochschild cochain complex.

The deformation functor associated with Dpoly(M) classifies the star-product on

A[[~]] and the deformation functor associated with Tpoly(M) classifies the Poisson struc-

tures on M modulo diffeomorphism.

The morphisms between DGLAs are called L∞-morphisms introduced in [27]. The

L∞-morphisms induce maps on homology of DGLAs. We say the L∞-morphism is a

quasi-isomorphism if the induced map on homology is an isomorphism.

Proposition 3.5 (Kontsevich) An L∞-morphism from g1 to g2 induce natural trans-

formation of the deformation functors, where gi are DGLAs. If an L∞-morphism is a

quasi-isomorphism, then it induces an isomorphism of deformation functors.

Theorem 3.6 (Kontsevich) There is a quasi-isomorphism U : Tpoly(M)→ Dpoly(M).

The formula of the morphism U is written down explicitly in [27].

Proposition 3.5 and the theorem above imply Theorem 3.3 immediately. To prove

Theorem 3.2, we need to study the tangent spaces and tangent maps associated with the

deformation functor of a DGLA g. If x ∈ (g⊗m)1 satisfies the Maurer-Cartan equation

dx + 1
2
[x, x] = 0 where m is a finite dimensional nilpotent without unit, the tangent

space Tx at x is defined as the complex g[1]⊗m with the differential d+ [x,−]. When g

is the Hochschild cochain complex of an algebra A and m = ~R[[~]], the tangent space

at x is the Hochschild cochain complex of the deformed algebra A[[~]] corresponding to
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x ∈ Defg(m). Kontsevich [27] defines the cup product on the tangent space g[1] ⊗ m

when g is Tpoly(M) or Dpoly(M).

Theorem 3.7 (Kontsevich) The L∞-morphism U in Theorem 3.6 maps the cup prod-

uct for Tpoly(M) to the cup product for Dpoly(M).

Kontsevich applied Theorem 3.7 to prove Theorem 3.2. Let g be a finite dimensional

Lie algebra over R. The dual space g∗ is naturally a Poisson manifold with the Kirillov-

Poisson bracket [26]. The space g∗ can be considered as an algebraic Poisson manifold

because the coefficients of the bracket are linear functions on g∗. We consider the algebra

of algebraic functions on g∗ instead of the algebra of smooth functions. The algebra of

algebraic functions on g∗ is the symmetric algebra Sym(g).

Theorem 3.8 (Kontsevich) The canonical quantization of the algebra of algebraic

functions on the Poisson manifold g∗ is isomorphic to the family of algebras U~(g) defined

as the universal enveloping algebras of g with the bracket ~[−,−].

The Kirillov-Poisson bracket and the deformed product satisfy Maurer-Cartan e-

quation for Tpoly(M) and Dpoly(M) respectively. The corresponding tangent spaces are

the Chevalley-Eilenberg complex of the g-module Sym(g) and the Hochschild cochain

complex of Ug respectively. Applying Theorem 3.7 and passing to the cohomology, we

obtain Theorem 3.2.

3.1.3 Formality of derived schemes

We go back to the case of algebraic geometry. The problem of understanding an ana-

logue of Kontsevich’s claim for orbifolds has been open for at least 20 years. The most
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recent (negative) progress is due to Negron-Schedler [29] who argue that the Hochschild

cochain complex of an orbifold does not satisfy a formality result similar to the one

Kontsevich used. However, this does not rule out the possibility that an analogue of the

Kontsevich claim holds for a corrected filtration from the one they study. This problem

is particularly interesting in view of its connections to Ruan’s crepant resolution conjec-

ture. For example, getting a good understanding of the orbifold Hochschild cohomology

product would explain the matching between the cohomology ring of the Hilbert scheme

of n-points on a K3 surface S and the Chen-Ruan orbifold cohomology ring of [Sn/Σn],

as observed by Fantechi-Göttsche [18].

The HKR map relates the derived Lie group LX with its Lie algebra NX/LX =

TX [−1]. In general, suppose X̃ is an arbitrary derived scheme which is not necessary a

derived group. We can still consider the total space NX/X̃ of the normal bundle of X

in X̃, where X is the underlying classical scheme X ↪→ X̃. This leads to the following

definition.

Definition 3.9 For a derived scheme X̃, the linearization LX̃ of X̃ is defined to be

the total space of the normal bundle NX/X̃ , where X is the underlying classical scheme

X ↪→ X̃. A choice of isomorphism LX̃ ∼= X̃ (if one exists) will be called a linearization

of X̃.

For example, consider X ↪→ LX. Then

LLX = NX/LX = TX [−1],

and the HKR isomorphism provides a linearization of LX.
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We need to address a technical detail about the above isomorphism. The linearization

LX̃ of a derived scheme X̃ is by definition the total space of the normal bundle NX/X̃ ,

hence it comes with a natural projection which makes it a scheme over X. Moreover,

this projection splits the inclusion X ↪→ X̃. However, in general X̃ may not admit such

a projection. This explains why in general here is no way to define an isomorphism

LX̃ ∼= X̃ over X. If we hope to define an isomorphism LX̃ ∼= X̃, we usually need to

find a natural base scheme Y such that both X̃ and LX̃ are affine over Y . Then we

can consider the structure complex of LX̃ and X̃ as OY -algebras. There is a bijection

between the set of isomorphisms OL
X̃

∼= OX̃ in the derived category of Y and the set

of isomorphisms LX̃ ∼= X̃ over Y . A choice of such an isomorphism will be called a

linearization of X̃ over Y .

The HKR isomorphism

exp : TX [−1] = LLX
∼= // LX

linearizes the derived loop space LX over X. Here LX = X ×RX×X X is to be viewed

as a scheme over X via one of the two projection maps onto the left or right factors

X ×RX×X X → X.

For most derived schemes X̃, even if they are affine over a scheme Y , it is not true

that X̃ is isomorphic to LX̃ over Y . If one thinks about the structure complexes as OY -

algebras, the existence of such an isomorphism would say that the structure complex

OX̃ of X̃ would be quasi-isomorphic to its cohomology. This is equivalent to saying that

the derived scheme X̃ is formal over Y in the sense of [16]. See [3] for more discussions.
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The HKR isomorphism on Hochschild cohomology is obtained by dualizing the struc-

ture complexes of TX [−1] and LX with respect to X, and taking global sections:

HH∗(X) = HomX×X(∆∗OX ,∆∗OX) = HomX(∆∗∆∗OX ,OX)

= Γ(X, (OLX)∨) ∼= Γ(X, SymTX [−1]) =
⊕

Hp(X,∧qTX)

= HT∗(X).

Duals of functions are distributions. We will need a relative version of this concept,

made precise in the following definition.

Definition 3.10 For a map of spaces f : Y → X the space of relative distributions is

defined by

D(Y/X) = Hom(f∗OY ,OX).

We will often omit the space X when it is clear from context.

For example consider the map LX → X, whereX is a smooth algebraic variety. Then

the Hochschild cohomology of X is naturally identified with the space of distributions

on LX,

D(LX/X) = Hom(∆∗O∆,OX) = HH∗(X),

while the polyvector field cohomology of X is naturally the space of distributions on

TX [−1], the linearization of LX,

D(TX [−1]) = Hom(Sym ΩX [1],OX) = HT∗(X).

Therefore we should think of polyvector fields as (invariant) distributions on the Lie

algebra TX [−1] and Hochschild cohomology as (invariant) distributions on the derived
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group LX. The HKR isomorphism is then interpreted as the isomorphism on distri-

butions induced by the exponential map. The product structures on the two sides are

given by convolution of distributions, where the group structure on TX [−1] is given by

addition in the fibers.

This interpretation was probably the basis for Kontsevich’s claim: for ordinary Lie

algebras a theorem of Duflo [17] asserts that the rings of invariant distributions on a Lie

group and on its Lie algebra are isomorphic, after a correction to the exponential map

by what is known as the Duflo element.

3.1.4 The orbifold HKR isomorphism

Before we begin we need an analogue of the HKR isomorphism for orbifolds. Let X be a

smooth algebraic variety, let G be a finite group acting on X, and denote by X = [X/G]

the corresponding global quotient orbifold.

We have the following diagram

LX

p

��

q

))IX

bb

//

��

X

∆
��

X
∆ // X× X.

Here LX denotes the loop space of the stack X defined by analogy with the case of

ordinary spaces as the derived self-intersection

LX = X×RX×X X.

Its underlying underived stack IX is the inertia stack of X,

IX = X×X×X X.
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Unlike the case where X is a smooth space with no group action, the two maps IX→ X

are no longer isomorphisms: it is not hard to see that

IX =

[
(
∐
g∈G

Xg)/G

]
,

where Xg denotes the fixed locus of the action of g ∈ G on X.

We can rewriteXg as ∆×X×X∆g, where ∆ = {(x, x)} ⊂ X×X and ∆g = {(x, gx)} ⊂

X×X. We get an explicit formula for the derived loop space LX if we replace the above

intersection by the corresponding derived intersection:

LX =

[
(
∐
g∈G

X̃g)/G

]
,

where

X̃g = ∆×RX×X ∆g.

We will call X̃g the derived fixed locus of g.

The orbifold HKR isomorphism expresses the derived loop space LX as the total space

of a certain vector bundle over IX, as explained by Arinkin, Căldăraru and Hablicsek [3].

The derived loop space LX decomposes naturally into connected components, so it is

better to look at each component X̃g of LX individually. The orbifold HKR isomorphism

identifies X̃g with the total space of the tangent bundle of Xg. More precisely, for each

g ∈ G [3] construct a linearization isomorphism of derived schemes over X

TXg [−1] = LX̃g

∼−→ X̃g.

In explicit terms this translates into an isomorphism of commutative OX-algebras

q∗OX̃g

∼−→ ig∗ Sym(ΩXg [1]),
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where ig : Xg ↪→ X is the inclusion of the fixed locus. Applying Hom(−,OX) to this

algebra isomorphism we get an induced isomorphism on distributions

D(TXg [−1]/X)
∼−→ D(X̃g/X).

We will denote D(TXg [−1]/X) by HT∗(X; g), and D(X̃g/X) by HH∗(X; g).

Grothendieck duality allows us to give an explicit form to the space D(TXg [−1]/X):

D(TXg [−1]/X) = HomX(ig∗ Sym ΩXg [1],OX) =
⊕
p+q=∗

Hp−cg(Xg,∧qTXg ⊗ ωg),

where cg is the codimension of Xg/X and ωg is the dualizing sheaf of the inclusion

Xg ⊆ X. Taking G-invariants of the direct sum over g ∈ G we get the final form of the

orbifold HKR isomorphism for X:

HH∗(X) =

(⊕
g∈G

HH∗(X; g)

)G

=

(⊕
g∈G

D(X̃g/X)

)G

∼=

(⊕
g∈G

HT∗(X; g)

)G

=

(⊕
g∈G

⊕
p+q=∗

Hp−cg(Xg,∧qTXg ⊗ ωg)

)G

.

We think of the right hand side above as the definition of the space of polyvector fields

on X,

HT∗(X) =

(⊕
g∈G

HT∗(X; g)

)G

.

We define

HT∗(X;G) =

(⊕
g∈G

⊕
p+q=∗

Hp−cg(Xg,∧qTXg ⊗ ωg)

)
.

Note that HT∗(X;G) carries a natural G action, and we set

HT∗([X/G]) = HT∗(X;G)G.
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As stated above, for a smooth variety X there is an obvious associative product

on HT∗(X). However, when G is non-trivial, it is not at all obvious what the analo-

gous product structure should be on HT∗([X/G]). Understanding candidates for such a

product is the goal of this chapter.

We close this subsection by noting that the above HKR isomorphisms can be assem-

bled to an analogue of the exponential map

exp : TIX[−1] = LLX
∼−→ LX

from the Lie algebra LLX to the derived group LX.

3.2 Definition of the product on orbifold polyvector

fields

In this section we define the product on orbifold polyvector fields. The technical results

used in the definition are introduced in this section, but will be proved in Section 3.3.

As we have explained previously, the Hochschild cohomology and the polyvector

fields cohomology of a space X can be viewed as the distributions on the derived loop

space (a derived Lie group) and on its Lie algebra, respectively. The product structures

on these come from the convolution of distributions. We begin by recalling the definition

of the convolution product of distributions on (classical) Lie groups and Lie algebras.



57

3.2.1 Distributions on Lie groups and Lie algebras

Let G be a Lie group with Lie algebra g. The convolution product of distributions D(G)

on G is defined as follows

D(G)⊗ D(G) // D(G×G)
m∗ // D(G),

where m is the multiplication map G × G → G, and m∗ is the induced map on distri-

butions. The Lie algebra g of G is a vector space. It is considered as an abelian group

under the addition operation of vectors. One can define the convolution product for

D(g) similarly.

In the derived setting, the convolution product on orbifold Hochschild cohomology is

known as the composition of morphisms in the derived category. We hope to define the

convolution product on the polyvector fields. Therefore, it is important to know how to

recover the convolution product on D(g) with the knowledge of the group G only. The

following is how we do this.

First there is a multiplication map m : G×G→ G. Taking derivative of this map, we

get the induced map on tangent spaces Lm : LG×G → LG, where LG = g is the tangent

space of G at origin. We use the same notation L as the notation for the linearization

of derived schemes in the derived setting.

There is a natural isomorphism LG×G ∼= LG×LG. Under this natural identification,

the map Lm : LG × LG → LG is nothing but the addition law on the vector space LG.

We can recover the convolution product of D(LG) now

D(LG)⊗ D(LG) // D(LG × LG)
∼= // D(LG×G)

Lm∗ // D(LG).
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3.2.2 A non-trivial isomorphism in the derived setting

We can try to do exactly the same thing in the derived setting. However, there is a

technical issue. The natural isomorphism LG×G ∼= LG × LG is not at all obvious for the

derived loop space. The analogous statement would be

LLX×RXLX
∼= LLX ×RX LLX

for the derived loop space of an orbifold X. The left hand side is obviously linear: it is

a total space of a vector bundle over the inertia stack IX. On the other hand, it is not

at all obvious that the right hand side can be linearized.

The following two propositions will be proved in the next sections.

Proposition 3.11 Let X = [X/G] be a global quotient orbifold of a finite group G

acting on a smooth algebraic variety. If we further assume G is abelian, then there is

an isomorphism

L(LX×RXLX)
∼= LLX ×RX LLX.

The derived loop space LX decomposes naturally into connected components, so we

can restate the above proposition on components.

Proposition 3.12 In the same setting as Proposition 3.11, there is an isomorphism

L
X̃g×RXX̃h

∼= LX̃g ×RX L
X̃h

for any g, h ∈ G.
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3.2.3 The definition of the convolution product in the derived

setting

The multiplication map for Lie groups plays an important role in the case of Lie groups

and Lie algebras. We need to know what the multiplication map is for the derived loop

space LX = X×RX×X X of X. It is the projection map p1× p3 onto the first and the third

factors

LX×X LX
m //

=
��

LX.

=
��

X×RX×X X×RX×X X
p1×p3// X×RX×X X.

We need three lemmas for derived groups which are generalizations of well-known

results from classical Lie group theory.

Lemma 3.13 A map f : X −→ Y between derived schemes induces a map on linearl-

izations Lf : LX −→ LY .

Proof. We have a commutative diagram

X0

i
��

g // Y 0

j
��

X
f // Y,

where X0 and Y 0 are the classical schemes of X and Y respectively. Then there is a

commutative diagram of derived tangent complexes

TX0

��

// g∗TY 0

��
i∗TX // i∗f ∗TY = g∗j∗TY .
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Passing to the quotient, we get an induced map

NX0/X = i∗TX/TX0 → g∗(j∗TY )/g∗TY 0 = g∗(j∗TY /TY 0) = g∗NY 0/Y .

The map above is equivalent to a map NX0/X → NY 0/Y ×Y 0 X0 in terms of total

spaces. �

Applying the above lemma to the multiplication map of derived loop space yields an

induced map Lm : LLX×RXLX → LLX.

Lemma 3.14 Suppose there is a commutative diagram

X
f //

i ��

Y

j��
S

of (derived) schemes. Then there is a pushforward map for relative distributions, i.e.,

there is a natural induced map f∗ : D(X/S)→ D(Y/S).

Proof. We have D(X/S) = Hom(i∗OX ,OS). Applying j∗ to the map OY → f∗OX ,

we get a map j∗OY → j∗f∗OX = i∗OX . Composing it with i∗OX → OS, we get the

desired pushforward map. �

Lemma 3.15 Suppose there is a commutative diagram

W = X ×RS Y //

��

π

&&

Y

j

��
X i // S

of (derived) schemes. Then there is a natural map D(X/S)⊗ D(Y/S)→ D(W/S).
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Proof. We have

Hom(i∗OX ,OS)⊗ Hom(j∗OY ,OS)→ Hom(i∗OX ⊗OS j∗OY ,OS)

= Hom(π∗OW ,OS). �

With the three lemmas above we are able to define our desired product.

Definition 3.16 Under the assumptions in Proposition 3.11 we define the following

binary operation on D(LLX/X), which is our proposed definition for a product on orbifold

polyvector fields:.

D(LLX/X)⊗ D(LLX/X) −→ D(LLX ×RX LLX/X)
∼−→ D(L(LX×XLX)/X)

Lm∗−→ D(LX/X),

where the first arrow is due to Lemma 3.15, the second arrow is the non-trivial isomor-

phism in Proposition 3.11, and the last map is due to Lemmas 3.13 and 3.14.

Looking at each connected component of LX individually, the definition gives a map

for every g, h ∈ G

D(LX̃g/X)⊗ D(L
X̃h/X)→ D(LX̃g ×RX L

X̃h/X)
∼−→ D(L

(X̃g×XX̃h)
/X)

Lm∗−→ D(L
X̃gh/X).

3.3 The formality of double fixed loci

We begin by studying the cohomology sheaves of the structure complex of LX̃g ×RX L
X̃h .

Then we compute the linearization L
X̃g×RXX̃h explicitly. At last, we prove Proposition-

s 3.11 and 3.12, in other words we construct a formality isomorphism

LX̃g ×RX L
X̃h
∼= L

X̃g×RXX̃h .
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The construction will be indirect: we will use known results to show that both sides are

isomorphic to

TXg [−1]|Xg,h ⊕ TXh [−1]|Xg,h ⊕ E[−1],

where E is the total space of the excess intersection bundle for the intersection of Xg

and Xh in X.

Throughout this section X will be a smooth variety, and g, h will denote commuting

elements of a group G which acts on X.

Before we begin we note that the derived fixed locus X̃g = ∆×RX×X ∆g is not directly

a scheme over X. It is more naturally viewed as a scheme over ∆ or ∆g, both of which

are isomorphic (in different ways) to X. We will use the latter when computing the fiber

product X̃g ×RX X̃h.

Similarly, the derived fixed locus X̃h = ∆ ×RX×X ∆h is naturally isomorphic to

∆g×RX×X ∆gh, which is also a scheme over ∆g. Therefore, while the notation X̃g×RX X̃h

is imprecise, what we will really mean by it is

(∆×RX×X ∆g)×R∆g (∆g ×RX×X ∆gh) = ∆×RX×X ∆g ×RX×X ∆gh.

We think of this as the derived fixed locus of g and h, and denote it by X̃g,h.

3.3.1 The cohomology sheaves of the structure complex

It is difficult to compute OL
X̃g
×RXL

X̃h
directly, but we can compute its cohomology sheaves

more easily, and we begin with this computation.

We hope to compute the cohomology sheaves of

OL
X̃g
×RXL

X̃h
= Sym(ΩXg [1])⊗LOX Sym(ΩXh [1]).
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The calculation becomes straightforward using the following lemma.

Lemma 3.17 Suppose i, j are closed embeddings of classical schemes, and E , F are

vector bundles on X and on Y , respectively. Denote by W the fiber product of classical

schemes below

X ×S Y = W

k
��

l // Y

j
��

X i // S.

Then

Hq(i∗E ⊗LOS j∗F ) = j∗l∗(E |W ⊗F |W ⊗ E∨),

where E is the excess intersection bundle,

E =
TS|W

TX |W + TY |W
.

Proof. [13, Proposition A.6]. �

The lemma above shows that

Hn(OL
X̃g
×RXL

X̃h
) =

⊕
p+q+i=n

(∧pΩXg |Xg,h ⊗ ∧qΩXh|Xg,h ⊗ ∧iE∨).

In other words, if we knew that LX̃g×RXL
X̃h is formal over its underlying classical scheme

Xg,h, the above calculation would imply that

LX̃g ×RX L
X̃h
∼= TXg [−1]|Xg,h ⊕ TXh [−1]|Xg,h ⊕ E[−1].

We will prove the formality statement in (3.3.3).

We will now argue that the linearization L
X̃g,h is precisely the space that appears on

the right hand side of the equality above,

L
X̃g,h = TXg [−1]|Xg,h ⊕ TXh [−1]|Xg,h ⊕ E[−1].

By definition, L
X̃g,h = N

Xg,h/X̃g,h . To compute the normal bundle, we need to know

what the derived tangent complex of X̃g,h is.
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3.3.2 The derived tangent complex

The standard reference for the derived tangent complex is [23]. Suppose X and Y are

closed subschemes of a scheme S. Let W̃ = X ×RS Y be the derived intersection and

W = X ×RS Y be the classical intersection. There is an exact sequence

0→ TX |W ∩ TY |W = TW → TX |W ⊕ TY |W → TS|W → E → 0.

The complex

TX |W ⊕ TY |W → TS|W = Cone(TX |W ⊕ TY |W → TS|W )[−1]

is the restriction to W of the derived tangent complex TW̃ |W of W̃ . Since only its H0

and H1 sheaves are non-zero, the information contained in it is equivalent to the data of

the triple (H0,H1, η), where H0(TW̃ |W ) = TW , H1(TW̃ |W ) = NW/W̃ = E, and the class

η is an element in Ext2
S(E, TW ).

For example, if we consider the situation where S = X × X, X = ∆, Y = ∆g,

so that W = Xg, we have H0(TX̃g) = TXg and H1(TX̃g) = E. Moreover, the excess

bundle in this case equals the coinvariant bundle (TX |Xg)g, which in characteristic zero

is canonically isomorphic to the invariant bundle TXg .

The linearization LW̃ is by definition the total space of the normal bundle NW/W̃ , the

cone of the map TW → TW̃ |W . Since H0(TW̃ |W ) = TW , it follows that the normal bundle

NW/W̃ is the first cohomology H1(TW̃ |W )[−1] of TW̃ |W . In the example considered above

this shows that LX̃g = TXg [−1].

The above discussion also works for derived schemes. If we replace X, Y , and S by

derived schemes in the commutative diagram at the beginning of (3.3.2), we have the

same formula

TW̃ |W = Cone(TX |W ⊕ TY |W −→ TS|W )[−1],
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where TX , TY , and TS are the derived tangent complexes of X, Y , and S. The scheme

W is the underlying classical scheme of W̃ = X ×RS Y . Since all the complexes are

restricted to W , we will omit the restrictions from X, Y , S, and W̃ to W for simplicity

from now on.

It helps us to compute the derived tangent complex T
X̃g,h if we set S = X, X = X̃g,

Y = X̃h, and W̃ = X̃g,h respectively.

Lemma 3.18 The derived tangent complex of X̃g,h is quasi-isomorphic to

T∆ ⊕ T∆g ⊕ T∆h → TX×X ⊕ TX×X ⊕ TX×X → TX×X ,

where the maps are of the form

(v1, v2, v3)→ (v1 − v2, v2 − v3, v3 − v1),

and

(a, b, c)→ a+ b+ c.

We can compute the cohomology of the derived tangent complex of X̃g,h using the

above lemma. We have H0(T
X̃g,h) = TXg,h . To compute the first cohomology it suffices

to compute the cokernel of the map below

V ⊕ V ⊕ V → V ⊕ V ⊕ V ⊕ V,

where (V = TX ∼= T∆
∼= T∆g ∼= T∆h) and the maps are (v, v′, v′′)→ (v − v′, v − gv′, v −

v′′, v − hv′′). This is done in the lemma below.

Lemma 3.19 Suppose V is a finite dimensional representation of a finite group G over

a field of characteristic 0. Let g and h be two elements of G. Then the quotient of
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V ⊕ V ⊕ V ⊕ V by the relations (v, v, v, v), (v, gv, 0, 0), and (0, 0, v, hv) is isomorphic to

Vg ⊕ Vh ⊕
V

V g + V h
.

Proof. Let L be the linear subspace (v, v, v, v), and note that L = H1 ∩ H2 ∩ H3,

where H1 is defined by v1 = v2, H2 is defined by v1 = v3, and H3 is defined by v3 = v4.

Then we have an isomorphism

V ⊕ V ⊕ V ⊕ V
L

∼=
V ⊕4

H1

⊕ V ⊕4

H2

⊕ V ⊕4

H3

∼= V ⊕ V ⊕ V.

Under this identification, the second and third relations become (v − gv, v, 0) and

(0,−v, v − hv). There is a natural projection to the first and third components,

V ⊕ V ⊕ V
(v − gv, v, 0), (0,−v′, v′ − hv′)

→ V ⊕ V
(v − gv, 0), (0, v′ − hv′)

= Vg ⊕ Vh.

It is easy to show that the kernel is V
V g+V h

. So we get a short exact sequence

0→ V

V g + V h
→ V ⊕ V ⊕ V

(v − gv, v, 0), (0,−v′, v′ − hv′)
→ Vg ⊕ Vh → 0.

By the averaging map v → 1
ord(g)

∑ord(g)
i=1 gi ·v, the map V → Vg splits in characteristic

0. We can use the averaging map of g and h to get a canonical splitting of the short

exact sequence above. �

The discussion above shows that the first cohomology of the tangent complex of X̃g,h

is E ⊕ TXg ⊕ TXh , where E = TX
TXg+T

Xh
. As a consequence we have an isomorphism

L
X̃g×RXX̃h = L

X̃g,h
∼= TXg |Xg,h [−1]⊕ TXh|Xg,h [−1]⊕ E[−1].

3.3.3 Formality of L
X̃g ×R

X L
X̃h

The linearizations LX̃g and L
X̃h are by definition the total spaces of vector bundles over

Xg and Xh respectively, so we study the formality of Xg ×RX Xh first. The key tools are

[3, Theorem 1.8 and Lemma 4.3].
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Proof. [Proof of Proposition 3.12.] The inclusion Xg → X splits to first order. By

[3, Lemma 4.3], the derived scheme Xg ×RX Xh is formal over Xg ×Xh if and only if the

short exact sequence on Xg,h = Xg ×X Xh

0→ TXh

TXg ∩ TXh

→ TX
TXg

→ E =
TX

TXg + TXh

→ 0

splits.

Define a map

TX
TXg

→ TXh

TXg ∩ TXh

by the formula

v 7→ 1

ord(h)

∑
hi · v.

The map is well-defined because g and h commute under our initial assumptions (or

the ones in Proposition 3.12). It splits the short exact sequence above. This shows

Xg ×RX Xh is formal over Xg ×Xh.

Consider the following commutative diagram

X̂g,h = Xg ×RX Xh

**

  

Xg,h

gg

q
��

p
// Xg

i
��

Xh j // X

By [3, Theorem 1.8] we know that the dg functor j∗i∗(−) is isomorphic to the dg functor

q∗ (p∗(−)⊗ Sym(E∨[1])).

The structure complex of LX̃g ×RX L
X̃h is

i∗ Sym(ΩXg [1])⊗LOX j∗ Sym(ΩXh [1]) = j∗ (j∗i∗ Sym(ΩXg [1])⊗ Sym(ΩXh [1])) .
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Using the isomorphism of the two dg functors above, we see that j∗i∗(Sym(ΩXg [1])) ∼=

q∗(p
∗(Sym(ΩXg [1]))⊗ Sym(E∨[1])). As a consequence

i∗ Sym(ΩXg [1])⊗LOX j∗ Sym(ΩXh [1]) =

= j∗q∗ (Sym(ΩXg |Xg,h [1])⊗ Sym(E∨[1])⊗ Sym(ΩXh|Xg,h [1]))

= j∗q∗ Sym ((ΩXg |Xg,h ⊕ ΩXh|Xg,h ⊕ E∨)[1]) .

Therefore LX̃g ×RX L
X̃h is formal over X (and it is isomorphic to L

X̃g,h). �

3.4 Associativity of the product

In this section we explain the strategy for studying the associativity of the product.

In other words we want to show that, under the assumption that certain Bass-Quillen

cohomology classes vanish, the product defined in Section 3.2 is associative. The proof

is reduced to Propositions 3.21 and 3.22, which will be proved in Section 3.5.

Formality of triple intersections. To prove the associativity it is natural to study

the triple intersection X̃g,h,k = X̃g ×RX ×X̃h ×RX X̃k for g, h, and k ∈ G. More precisely

we define

X̃g,h,k = (∆×RX×X ∆g)×∆g (∆g ×RX×X ∆gh)×∆gh (∆gh ×RX×X ∆ghk)

= ∆×RX×X ∆g ×RX×X ∆gh ×RX×X ∆ghk,

as explained at the beginning of Section 3.3. Under the assumption that G is abelian

it is not hard to see that X̃g,h,k is formal over X, and it is isomorphic to L
X̃g,h,k

. The

proof is essentially the same as the one in Section 3.3.
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The diagram

X̃g,h,k //

��

X̃g,hk

��

X̃gh,k // X̃ghk

is commutative because it is the associativity of the group law of the loop space L[X/G].

Taking distributions over on the corresponding linearizations, we get the following com-

mutative diagram

D(L
X̃g,h,k

) //

��

D(L
X̃g,hk

)

��
D(L

X̃gh,k
) // D(L

X̃ghk
).

For simplicity we have denoted the relative distributions with respect to X as D(−)

instead of D(−/X).

Consider the following diagram (∗∗):

D(L
X̃g)⊗ D(L

X̃h)⊗ D(L
X̃k)

m⊗id

��

id⊗m //

))

D(L
X̃g)⊗ D(L

X̃hk)

vv

m

��

D(L
X̃g,h,k

) //

��

D(L
X̃g,hk

)

��
D(L

X̃gh,k
) // D(L

X̃ghk
)

D(L
X̃gh)⊗ D(L

X̃k) m
//

55

D(L
X̃ghk

),

=

hh

where m is the product on orbifold polyvector fields in Definition 3.16. Associativity of

m is equivalent to commutativity of the outer part of the diagram.

The middle square is commutative by the discussion in the previous paragraph. The

squares on the bottom and right are commutative because they are the definitions of

our product.
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We need to examine the ones on the top and left. The left one is the diagram

D(LX̃g)⊗ D(L
X̃h)⊗ D(L

X̃k) //

m⊗id

��

D(L
X̃g,h,k

)

��
D(L

X̃gh)⊗ D(L
X̃k) // D(L

X̃gh,k
).

Expand the diagram in detail

D(LX̃g)⊗ D(L
X̃h)⊗ D(L

X̃k) //

m⊗id

��

D(L
X̃g,h)⊗ D(L

X̃k)

��

// D(L
X̃g,h ×RX L

X̃k)
∼ //

��

D(L
X̃g,h,k

)

��
D(L

X̃gh)⊗ D(L
X̃k)

= // D(L
X̃gh)⊗ D(L

X̃k) // D(L
X̃gh ×RX L

X̃k)
∼ // D(L

X̃gh,k
).

Clearly, the left and middle squares of the diagram above are commutative. We have

to show commutativity of the square on the right. Note that the maps on distributions

are induced from maps on spaces, so we only need to show the commutativity of the

diagram below

L
X̃g,h ×RX L

X̃k

∼ //

��

L
X̃g,h,k

��
L
X̃gh ×RX L

X̃k

∼ // L
X̃gh,k

.

Similarly, the commutativity of the top square in the big diagram (∗∗) reduces to

the commutativity of the diagram below

LX̃g ×RX L
X̃h,k

∼ //

��

L
X̃g,h,k

��
LX̃g ×RX L

X̃hk

∼ // L
X̃g,hk

.

We will only analyze the former diagram; the proof of the commutativity of the latter

is entirely similar.

There is, however, one more compatibility that needs to be discussed. Even though

we wrote the top left diagonal map in the big diagram (∗∗) as a single map, it is in fact
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clear from the discussion above that there are two maps here,

D(LX̃g)⊗ D(L
X̃h)⊗ D(L

X̃k)
→→ D(L

X̃g,h,k
).

One is the one that appears in the left square in the big diagram (∗∗), and the other

one is the one that is in the top square of the big diagram (∗∗). We need to prove that

these two maps are the same. This question is easily reduced to the following problem.

As mentioned in the previous section, the linearizations LX̃g , L
X̃h , and L

X̃k are

vector bundles over the underlying schemes Xg, Xh, and Xk. To prove the formality of

derived intersections of linearizations, it suffices to prove the formality of the underlying

schemes. There are two ways to define the isomorphism LX̃g ×RX L
X̃h ×RX L

X̃k
∼= L

X̃g,h,k
.

One uses the fact that X̂g,h = Xg ×RX Xh is formal and X̂(g,h),k = Xg,h×RX Xk is formal.

The other uses the fact that X̂h,k = Xh ×RX Xk is formal and X̂g,(h,k) = Xg ×RX Xh,k

is formal. Therefore, we need to prove that the two isomorphisms agree, i.e., that the

diagram below is commutative

(Xg ×RX Xh)×RX Xk

id

��

∼ // L
X̂g,h

×RX Xk = L
X̂g,h

×R
Xg,h (Xg,h ×RX Xk)

∼ // L
X̂g,h

×R
Xg,h L ̂X(g,h),k

// L
X̂g,h,k

id

��
Xg ×RX (Xh ×RX Xk)

∼ // Xg ×RX L
X̂h,k

= (Xg ×RX Xh,k)×R
Xh,k L

X̂h,k

∼ // L ̂Xg,(h,k)
×R
Xh,k L

X̂h,k
// L
X̂g,h,k

.

Unfortunately we can not prove the commutativity of the diagrams above without

further assumptions. The Bass-Quillen class plays an important role in what follows.

We review it below.

Let X ↪→ Y ↪→ S be a sequence of closed embedding of smooth schemes, and assume

that there is a fixed first order splitting of the map X ↪→ Y .

The class we need is the Bass-Quillen class associated to the restriction NY/S|X(1) of

the normal bundle NY/S to the first order neighborhood X(1). In this chapter we call
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this class the Bass-Quillen class associated to the sequence of embeddings X ↪→ Y ↪→ S.

The following two statements, which will be proven in the next section, imply the

commutativity of the diagrams above, under the assumption that the Bass-Quillen class-

es associated to Xg,h ↪→ Xgh ↪→ X and Xg,h ↪→ Xg ↪→ X vanish for all g, h ∈ G. This

will give the following Theorem 3.20.

Theorem 3.20 Suppose [X/G] is a global quotient orbifold, where X is a smooth al-

gebraic variety and G is a finite abelian group acting on X. Then the construction

in Section 3.2 defines an operation on HT∗(X;G) which recovers the wedge product on

HT∗(X) when G is trivial.

This operation is associative if the Bass-Quillen class associated to the sequence of

closed embeddings Xg,h ↪→ Xg ↪→ X vanishes for all g, h ∈ G.

Proposition 3.21 Under the assumptions of Theorem 3.20, assume that the Bass-

Quillen class associated to Xg,h ↪→ Xgh ↪→ X vanishes. Then the diagram

L
X̃g,h ×RX L

X̃k

∼ //

��

L
X̃g,h,k

��
L
X̃gh ×RX L

X̃k

∼ // L
X̃gh,k

.

is commutative.

Proposition 3.22 Under the assumptions of Theorem 3.20, assume that the Bass-

Quillen class associated to Xg,h ↪→ Xg ↪→ X and Xg,h ↪→ Xh ↪→ X vanish. Then

the diagram

(Xg ×RX Xh)×RX Xk

id
��

∼ // L
X̂g,h ×RX Xk ∼ // L

X̂g,h,k

id

��
Xg ×RX (Xh ×RX Xk) ∼ // Xg ×RX L

X̂h,k

∼ // L
X̂g,h,k .

is commutative.
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Examples.

• If X is affine, then all the Bass-Quillen classes above are zero.

• Consider theG = Z/2Z action on an abelian varietyX. We have eitherXg,h = Xgh

or Xgh = X in this case, so it is easy to show that all the Bass-Quillen classes are

zero.

Therefore the product on HT∗(X;G) defined in Section 3.2 is associative in the cases

above.

3.5 Consequences of vanishing of Bass-Quillen class

We prove Propositions 3.21 and 3.22 in this section.

All the linearizations are total spaces of vector bundles over the underlying schemes,

so we can reduce the result of Proposition 3.21 to the commutativity of the following

two formality isomorphisms

Xg,h

��

Xg,h ×RX Xk ∼ //

��

oo E(g,h),k[−1] = L ̂X(g,h),k

��
Xgh

��

Xgh ×RX Xk

��

∼ //oo Egh,k[−1] = L
X̂gh,k

X Xkoo

where E(g,h),k = TX
T
Xg,h

+T
Xk

and Egh,k = TX
T
Xgh

+T
Xk

are excess bundles supported on Xg,h,k

and Xgh,k respectively.

To check the commutativity, we need to look at how the isomorphism is defined in

[3]. For simplicity, denote TX by V . The two isomorphisms are defined based on two
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splittings of the two short exact sequences

0 // V k

V g,h ∩ V k
//

��

V

V g,h
= NXg,h/X

tt

//

��

V

V g,h + V k
= E(g,h),k

//

��

0

0 // V k

V gh ∩ V k
// V

V gh
= NXgh/X

tt

// V

V gh + V k
= Egh,k // 0.

The two splittings are compatible in the sense that the diagram above commutes because

the two splittings are the averaging map by the element k ∈ G

v → 1

ord(k)

ord(k)∑
i=1

ki · v.

Proposition 3.21 is a consequence of the more general result Proposition 3.23 below,

by replacing X, Y , Z, and S in by Xg,h, Xgh, Xk, and X. Note that all the assumptions

in Proposition 3.23 except for the last one hold trivially for Xg,h, Xgh, Xk, and X.

Proposition 3.23 Consider a sequence of closed embeddings X ↪→ Y ↪→ S, and a

separate closed embedding Z ↪→ S.

Assume that all the closed embeddings split to first order in the sense of [3], and that

the first order splittings of X ↪→ Y ↪→ S are compatible in the sense that was explained in

Theorem 2.2. We further assume that the Bass-Quillen class associated to X ↪→ Y ↪→ S

is zero. Then the diagram

X ×RS Z
∼ //

��

EX,Z [−1] = EW [−1] = LX×RSZ

��
Y ×RS Z

∼ // EY,Z [−1] = ET [−1] = LY×RSZ

is commutative, where EX,Z = EW = TS
TX+TZ

and EY,Z = ET = TS
TY +TZ

are the excess

bundles supported on

W = X ×S Z and T = Y ×S Z.
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The horizontal isomorphisms are defined in [3] and will be explained in the proof below.

The map EX,Z [−1]→ EY,Z [−1] is induced by the obvious map of vector bundles.

Before we begin the proof we note that the setup of the above proposition gives rise

to the following diagram of spaces, where W and T are the underived fiber products,

X

��

X ×RS Z

��

oo

W = X ×S Z

ff

''yy

77

��

Y

��

Y ×RS Z

��

oo

T = Y ×S Z

ff

((xx

77

S Z.oo

Proof. The compatibility of first order splittings implies that the following two short

exact sequences and their splittings are compatible

0 // NW/Z
//

��

NX/S|W
uu

//

��

EW //

��

0

0 // NT/Z |W // NY/S|W
uu

// ET |W // 0.

The two isomorphisms EW [−1] ∼= X ×RS Z, and ET [−1] ∼= Y ×RS Z are defined using the

two splittings of short exact sequences above. The three horizontal maps on the left of

the diagram below are the splittings of the short exact sequences. The composition of

horizontal maps below are the desired isomorphisms EW [−1] ∼= X ×RS Z and ET [−1] ∼=
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Y ×RS Z,

EW [−1] //

��

NX/S[−1]|W ∼ //

��

X ×RS X|W = X ×RS W //

��

X ×RS Z

��
ET [−1]|W //

��

NY/S[−1]|W ∼ //

��

Y ×RS Y |W = Y ×RS W //

��

Y ×RS Z

��
ET [−1] // NY/S[−1]|T ∼ // Y ×RS Y |T = Y ×RS T // Y ×RS Z.

We only need to prove the commutativity of the isomorphisms in the middle

NX/S[−1]|W ∼ //

��

X ×RS X|W = X ×RS W

��
NY/S[−1]|W ∼ // Y ×RS Y |W = Y ×RS W

because all the others are commutative. We can restrict everything to X first, and then

restrict to W . Therefore, it suffices to show the commutativity of

NX/S[−1] ∼ //

��

X ×RS X

��
NY/S[−1]|X ∼ // Y ×RS Y |X = Y ×RS X.

This is Theorem 2.2 in Chapter 2. �

Proof of Proposition 3.22. For simplicity denote the space Xg, Xh, Xk, and X

in Proposition 3.22 by X, Y , Z, and S.

Because of Proposition 3.23 we have the commutativity of

X ×RS Y
∼ // EX,Y [−1] = LX×RS Y W ×RS Z

∼ //

��

EW,Z [−1] = LW×RSZ

��
X ×RS T

∼ //

OO

EX,T [−1] = LX×RS T

OO

Y ×RS Z
∼ // EY,Z [−1] = LY×RSZ ,
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where T = Y ×SZ and W = X×SY . As a consequence we get the commutative diagram

X ×RS Y ×
R
S Z

//

id

��

EX,Y [−1]×RS Z = EX,Y [−1]×RW (W ×RS Z) //

��

EX,Y [−1]×RW EW,Z [−1] //

��

EX,Y,Z [−1]

id

��
X ×RS Y ×

R
S Z

//

id

��

EX,Y [−1]×RS Z = EX,Y [−1]×RY (Y ×RS Z) // EX,Y [−1]×RY EY,Z [−1] //

id

��

EX,Y,Z [−1]

id

��
X ×RS Y ×

R
S Z

//

id

OO

X ×RS EY,Z [−1] = (X ×RS Y )×RY EY,Z [−1] // EX,Y [−1]×Y EY,Z [−1] //

id

OO

EX,Y,Z [−1]

id

OO

X ×RS Y ×
R
S Z

//

id

OO

X ×RS EY,Z [−1] = (X ×RS T )×RT EY,Z [−1] //

OO

EX,T [−1]×RT EY,Z [−1] //

OO

EX,Y,Z [−1],

id

OO

where all the arrows are isomorphisms, and EX,Y,Z is the excess bundle of the triple

intersection X ×RS Y ×RS Z.

The two rightmost squares of the diagram above commute because there are natural

isomorphisms EX,Y,Z ∼= EX,Y |U ⊕ EW,Z ∼= EX,T ⊕ EY,Z |U , where U = X ∩ Y ∩ Z =

X ×S Y ×S Z. The commutativity of the outer square of the diagram above is the one

that we needed to prove in Proposition 3.22. �

3.6 A possible simplification

This section is more speculative. After we rewrite our product in Definition 3.16 in

more concrete terms, we propose a way to simplify the formulas for Calabi-Yau glob-

al quotient orbifolds. The simplification is motivated by the definition of Chen-Ruan

orbifold cohomology, so we need to first review this definition before proceeding. We

then provide several examples comparing the simplified product with the Chen-Ruan

orbifold cohomology, via homological mirror symmetry. We end this chapter by stating

a number of questions that remain open for future research.

In Section 3.3 we computed the structure complexes of L
X̃g,h and LX̃g ×RX L

X̃h , so
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we can write the two-step map

D(LX̃g)⊗ D(L
X̃h)→ D(LX̃g ×RX L

X̃h) ∼= D(L
X̃g,h)→ D(L

X̃gh)

in Definition 3.16 in more concrete terms. Explicitly, for g ∈ G define

HT(p,q)(X; g) = Hp−cg(Xg,∧qTXg ⊗ ωg).

The two composition of the maps above can then be written as a direct sum over

p, p′, q, q′ of maps

HT(p,q)(X; g)⊗ HT(p′,q′)(X;h)→
rkE⊕
i=0

HT(p+p′−i,q+q′+i)(X; gh)

factoring through the middle term (coming from D(L
X̃g,h))

rkE⊕
i=0

Hp+p′−cg,h−i(Xg,h,∧qTXg |Xg,h ⊗ ∧q′TXh|Xg,h ⊗ ∧iE ⊗ ωg,h).

Here E is the excess bundle for the intersection of Xg and Xh in X. Note in particular

that if G is trivial our definition recovers the classical product on polyvector fields.

Observe that the HT(p,q) notation does not give a bigrading – a priori all the maps

above, for 0 ≤ i ≤ rkE could be non-zero. The simplification we propose, for the

Calabi-Yau case, is to leave only one of these maps, for a specific i. (Conjecturally, all

the other maps would be zero anyway.)

The formulas for Chen-Ruan orbifold cohomology. We now discuss some prepa-

rations for the motivation for the simplification of the product we defined. The idea is

to draw inspiration from mirror symmetry, and to regard, in the Calabi-Yau case, Chen-

Ruan orbifold cohomology as the mirror of orbifold Hochschild cohomology.
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Let X be a complex manifold endowed with the action of a finite group G. Chen

and Ruan [11] defined a version of the singular cohomology ring for the orbifold [X/G].

Fantechi and Göttsche [18] wrote down the formula for the product explicitly as follows.

They first constructed an associative product on

H∗orb(X;G) =
⊕
g∈G

H∗−2ι(g)(Xg,C)

which maps αg ∈ H∗−2ι(g)(Xg,C) and βh ∈ H∗−2ι(h)(Xh,C) to

(αg, βh) 7→ ighg,h∗(αg|Xg,h · βh|Xg,h · γg,h).

Here γg,h is the top Chern class of a certain twist bundle whose rank is ι(g) + ι(h) −

ι(gh)− codim(Xg,h, Xgh), where ι(g) is the so-called age of g, see [18].

The Chen-Ruan orbifold singular cohomology ring is obtained by taking G-invariants:

H∗orb([X/G]) = H∗orb(X;G)G.

Note that the above ring is bigraded with respect to the orbifold Hodge decomposi-

tion [1]

Hn−2ι(g)(Xg,C) =
⊕
p+q=n

Hp−ι(g)(X,∧q−ι(g)ΩXg).

Hyperkähler conjecture. We discuss the formula of Fantechi-Göttsche and its rela-

tion with hyperkähler conjecture. Let S be a hyperkähler surface and Sn be the n copies

of direct product of S. The symmetric group Σn acts naturally on Sn. One part of the

conjecture states that the orbifold singular cohomology H∗orb([S
n/Σn]) is isomorphic to

the singular cohomology of the Hilbert scheme of n points on S. Fantechi-Göttsche [18]

proves the statement above holds up to a sign. We discuss the sign issue first. Let
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l(g) be the minimal number of transpositions whose product is g for g ∈ G. Define a

modified product on H∗orb([S
n/Σn]) by

αg ∗ βh = (−1)
l(g)+l(h)−l(gh)

2 αg · βh.

Denote this new ring by (H∗orb([S
n/Σn], ∗).

Theorem 3.24 (Fantechi-Göttsche) Let S be a complex projective surface with triv-

ial canonical bundle. There is a canonical ring isomorphism between (H∗orb([S
n/Σn], ∗)

and H∗(S[n]), where S[n] is the Hilbert scheme of n points on S.

The formula of this canonical ring isomorphism is given in [18].

Orbifold Hochschild cohomology. Mirror symmetry associates two graded com-

mutative rings to a Calabi-Yau space: the A- and the B-model state spaces, which are

interchanged by the mirror operation. When the target space is a compact Calabi-Yau

manifold X, the A-space is H∗(X,C), while the B-space is HH∗(X). When it is an

orbifold [X/G], these spaces are naturally the Chen-Ruan orbifold cohomology and the

orbifold Hochschild cohomology rings of [X/G].

Since the product in the A-model preserves the p, q bidegree, the yoga of mirror

symmetry suggests that the product in the B-model should also preserve some bidegree

for Calabi-Yau orbifolds.

The proofs of the following two lemmas are left as exercises to the reader.

Lemma 3.25 There is a natural isomorphism

ωg|Xg,h [−cg]⊗ ωh|Xg,h [−ch] ∼= ∧rE[r]⊗ ωg,h[−cg,h],

where r is the rank of the excess bundle E.
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Lemma 3.26 The bundle TXg |Xg,h decomposes naturally into a direct sum as TXg,h ⊕

NXg,h/Xg , and similarly for TXh |Xg,h.

The class γg,h ∈ Hk(Xg,h,∧kΩXg,h) in Fantechi and Göttsche’s paper [18] acts natu-

rally on ⊕
p,q

Hp(Xg,h,∧qTXg |Xg,h ⊗ ∧q′TXh|Xg,h ⊗ ∧rE∨ ⊗ ωg,h),

where

k = ι(g) + ι(h)− ι(gh)− codim(Xg,h, Xgh)

and the action is given by the contraction of ΩXg,h with TXg,h.

We are now ready to give a new construction for an operation on HT∗(X;G) which

mimics more closely the Fantechi-Göttsche product [18]. Define the bigraded piece

HTp,q(X;G) of bidegree p, q of HT(X;G) by

HTp,q(X;G) = Hp−ι(g)(X,∧q+ι(g)−cgTXg ⊗ ωg).

The product will be bigraded, being given by maps

HTp,q(X;G)⊗ HTp′,q′(X;G)→ HTp+p′,q+q′(X;G).

Note that unlike the product in Definition 3.16, only one of the maps there is non-zero.

We conjecture that in Calabi-Yau situations, the two products agree – in other words,

all the maps in Definition 3.16 which do not preserve the bigrading are zero. This is the

case in all the examples we study below.
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Definition 3.27 The new product is defined as the following composition:

Hp(Xg, ∧q TXg ⊗ ωg[−cg])⊗Hp′(Xh,∧q′TXh ⊗ ωh[−ch])

→ Hp+p′(Xg,h,∧qTXg |Xg,h ⊗ ωg|Xg,h [−cg]⊗ ∧q
′
TXh|Xg,h ⊗ ωh|Xg,h [−ch])

∼= Hp+p′−r(Xg,h,∧qTXg |Xg,h ⊗ ∧q′TXh|Xg,h ⊗ ωg,h[−cg,h]⊗ ∧rE)

→
⊕
i+j=k

Hp+p′−r+k(Xg,h,∧q−iTXg |Xg,h ⊗ ∧q′−jTXh |Xg,h ⊗ ωg,h[−cg,h]⊗ ∧rE)

→ Hp+p′−r+k(Xgh,∧q+q′+r−kTXgh ⊗ ωgh[−cgh]).

The first arrow is the naive restriction from Xg and Xh to Xg,h. The isomorphisms in

the middle are due to Lemma 3.25. The last arrow is the map Lm∗ in Definition 3.16.

The second arrow in the middle involving k is the action of γg,h in Lemma 3.26. One

does indeed verify that this map respects the bigrading defined above.

Examples. For a first example consider an abelian surface A endowed with the action

of Z/2Z, acting by negation in the group law of A. The tangent bundle of A is trivial,

so there are no Duflo correction terms. The mirror of the orbifold [A/G] is expected to

be [A/G] itself in this case. This suggests that the product we defined should match

with the one on the orbifold cohomology of [A/G], so we expect to find isomorphisms

HT∗([A/G]) ∼= HH∗([A/G]) ∼= H∗orb([A/G],C),

It is known [18] that in this case the classes γg,h are trivial. Write G = {e, τ} where

e is the identity element. Then we have

HH∗([A/G]) = (HH∗(A, e)⊕ HH∗(A, τ))G = HH∗(A, e)⊕ HH∗(A, τ)τ ,

where for g ∈ G the notation HH∗(A, g) was explained in Section 3.1. The space

HH∗(A, e) is the Hochschild cohomology of A, and its product is well-understood from
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the Kontsevich and Calaque-Van den Bergh theorem. The only non-trivial product we

need to understand is

HH∗(A, τ)⊗ HH∗(A, τ)→ HH∗(A, e).

Note that the space

HH∗(A, τ) = H0(Aτ ,∧0TAτ ⊗ ωτ ) = H0(Aτ ,C),

is a 16-dimensional vector space in cohomological degree 2. It is of bidegree (1, 1) under

the new bigrading we defined in Definition 3.27. By the definition of our product,

it is also clear that the product of two (1, 1)-form gives a (2, 2)-form which lands in

H2(A,∧2TA). This matches perfectly with the product on orbifold cohomology [18].

For another example, consider a holomorphic symplectic orbifold [X/G]. Again, the

mirror of [X/G] is expected to be [X/G], so we expect to get

HT∗([X/G]) ∼= HH∗(X/G) ∼= H∗orb([X/G],C).

The right hand side decomposes into

H∗−2ι(g)(Xg,C) =
⊕
p+q=∗

Hp−ι(g)(Xg,∧q−ι(g)ΩXg)

by the Hodge decomposition. The left hand side is

⊕
g∈G

Hp−ι(g)(Xg,∧q+ι(g)−cgTXg ⊗ ωg).

Moreover, ωg is trivial and ΩXg ∼= TXg because of the holomorphic symplectic condi-

tion. There is a canonical identification between the two sides as vector spaces, and we

believe the two products should agree. The bigradings of the two sides match completely

because 2ι(g) = cg.
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One important example we have in mind is when X = Kn consists of n copies of

a K3 surface K and G = Σn is the symmetric group acting on Kn by permutation.

The group is not abelian in this case, but the constructions and results in Sections 3.2

and 3.3 still work because one can check directly that Proposition 3.12 holds in this

situation. The key point is that in this situation all the tangent bundles and normal

bundles involved are copies of direct sums of TK , so the short exact sequence in the proof

of Proposition 3.12 splits naturally.

Open questions. (1) We can not prove that the simplified product in Definition 3.27

agrees with the one in Definition 3.16. We conjecture that they agree under the Calabi-

Yau assumption.

(2) For any Calabi-Yau orbifold, we believe that our product on orbifold polyvector

fields should match with the Chen-Ruan orbifold cohomology of the mirror.

(3) This is our main conjecture. For any orbifold [X/G] with an abelian group action,

we believe that Kontsevich’s Theorem holds, i.e., the orbifold Hochschild cohomology

should be isomorphic to the orbifold polyvector fields. More precisely, we conjecture

that the diagram

D(LX̃g)⊗ D(L
X̃h)

��

HKR◦(−ytd(TXg )−
1
2 )⊗HKR◦(−ytd(T

Xh
)−

1
2 )
// D(X̃g)⊗ D(X̃h)

��

D(L
X̃g×RXX̃h) ∼= D(LX̃g ×RX L

X̃h)

Lm∗
��

HKR◦(−ytd(T
Xg,h

)−
1
2 )

// D(X̃g ×RX X̃h) = D(X̃g,h)

m∗
��

D(L
X̃gh)

HKR◦(−ytd(T
Xgh

)−
1
2 )

// D(X̃gh)

is commutative, where the horizontal maps are isomorphisms. All the HKR maps that
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appear in the horizontal isomorphisms are the formality isomorphisms in Sections 3.1-

3.3. They generalize the classical HKR isomorphism as explained in [3]. As mentioned

at the very beginning of this paper, HKR can not be an isomorphism of rings, so we

need to add the Duflo correction term in the horizontal isomorphisms.
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Chapter 4

Applications in deformation theory

and hyperkähler manifolds

We discuss applications in deformation theory and hyperkähler manifolds in Chapter 4.

In particular, we solve the question in Section 1.4 raised by Markman.

4.1 A commutative diagram of representations of

the shifted bundle

We need the following contraction operation due to Toda [32] before we state the results.

Consider the exponential Atiyah class

exp(atF ) = 1 + atF + · · ·+ (atF )k

k!
+ · · · ,

where (atF )k ∈ Extk(F ,F ⊗ ∧kΩX).

Let α̃ be a class in HT∗(X) and α̃p,k ∈ Hp(X,∧kTX) be the homogenous degree (p, k)

part of α̃. We can contract α̃p,k with (atF )k

k!
to get an element in Extp+k(F ,F ). Taking

the sum over all (p, k), we get the desired class which will be denoted by ˜αy exp(atF ) ∈

Ext∗(F ,F ). When α̃ is a class in H1(X,TX), we recover the previous contraction

α̃y atF in Section 1.4.
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There is another way to produce a class in Ext∗(F ,F ) with a given class α̃ ∈

HT∗(X). It uses the HKR isomorphism

IHKR : HT∗(X)→ HH∗(X).

Since HH∗(X) can be interpreted as natural transformations of the identity functor at

the dg level, this yields a natural map HH∗(X)→ Ext∗(F ,F ).

Theorem 4.1 The two classes defined above are the same. In other words the diagram

HH∗(X) // Ext∗(F ,F )

HT∗(X)

IHKR

OO

(−)y exp(atF )

77

is commutative.

There is an analogous result for Hopf algebras. See Theorem 2.7 in [10] and see [24]

for more details. We prove Theorem 4.1 in Subsection 4.1.2.

The inspiration for Theorem 4.1 comes from a similar statement in Lie theory.

4.1.1 A similar diagram for Lie algebras.

Let g be a finite dimensional Lie algebra over a field of characteristic zero and let V be

a finite dimensional representation of g. There is a diagram

(Ug)g // Hom(V, V )

(Sg)g.

PBW

OO 88

The PBW map from the symmetric algebra Sg to the universal enveloping algebra Ug

is defined on the degree n-th component of Sg as follows

x1 · · ·xn →
1

n!

∑
σ∈Σn

xσ(1) · · ·xσ(n).
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Here Σn is the symmetric group on a finite set of n symbols. The universal enveloping

algebra Ug acts naturally on V . This natural action defines the map (Ug)g → Hom(V, V )

on the top of the diagram above. The map (Sg)g → Hom(V, V ) is defined as follows.

We can rewrite the representation map g⊗ V → V as a map Λ : V → V ⊗ g∗. Take the

exponent

exp(Λ) = idV + Λ + · · ·+ Λk

k!
+ · · ·

of the map Λ. Then we can contract exp(Λ) with Sg. The similarity between this

diagram and the diagram in Theorem 4.1 was explained in Section 1.4.

Proposition 4.2 The diagram of the Lie algebra g above is commutative.

Proof. We can prove that the Lie algebra diagram is commutative even before taking

g-invariants, i.e., the diagram

Ug // Hom(V, V )

Sg

PBW

OO 99

is commutative. The map PBW factors through the tensor algebra Tg

PBW : Sg
ψ // Tg // Ug,

so we can replace Ug at the top left corner of the diagram by Tg. It is easy to check

that the map Sg→ Hom(V, V ) is equal to the following map

Sg
ψ // Tg

ϕ // Hom(V, V ),

where the map ϕ : Tg → Hom(V, V ) is defined as follows. Rewrite the representation

map g ⊗ V → V as a map Λ : V → V ⊗ g∗. Instead of taking the exponential of the
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map Λ, we compose the map Λ with itself k times. We get a map Λ⊗k : V → V ⊗ (g∗)⊗k

in this way. Contract Λ⊗k with g⊗k and get a map g⊗k → Hom(V, V ). Adding the k-th

components for all k ∈ N, we obtain the desired map ϕ : Tg→ Hom(V, V ).

Now we have two maps Tg→ Hom(V, V ). One of them is the map ϕ, and the other

one is Θ : Tg→ Ug→ Hom(V, V ). We want to show that they agree. This follows from

Lemma 4.3 below by setting W1 to be V and W2 to be g⊗k. �

Lemma 4.3 Let W1 and W2 be finite dimensional vector spaces over a field k and f

be a map W2 ⊗W1 → W1. Rewrite the map as g : W1 → W ∗
2 ⊗W1 by the adjunction

formula Hom(W2 ⊗k W1,W1) = Hom(W1,W
∗
2 ⊗k W1). Fix an element x ∈ W2. Then

f(x⊗−) is a map from W1 to W1. This map is precisely g followed by the contraction

with x.

Proof. This is due to the adjunction property

Hom(W2 ⊗k W1,W1) = Hom(W1,W
∗
2 ⊗k W1). �

4.1.2 Proof of Theorem 4.1

The proof for the Lie algebra diagram reduces the commutativity of the Lie algebra

diagram to a statement about tensor algebras. The statement about tensor algebras

remains valid in the case of derived categories.

Proof of Theorem 4.1. One can define a map Sym(TX [−1]) → T (TX [−1]) given

by the formula

x1 ∧ · · · ∧ xn →
1

n!

∑
σ∈Σn

(−1)sgn(σ)xσ(1) · · ·xσ(n),

where T (TX [−1]) is the tensor algebra on TX [−1].
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The map above is a differential graded version of the map ψ in (4.1.1). Let X(1) be

the first order neighborhood of X in X ×X. There are embeddings i : X ↪→ X(1) and

j : X(1) ↪→ X ×X. Arinkin and Căldăraru [2] showed that T (TX [−1]) is isomorphic to

(i∗i∗OX)∨, where (−)∨ is the dual. The map

(i∗i∗OX)∨ → (i∗j∗j∗i∗OX)∨ = (∆∗∆∗OX)∨ = Hom(∆∗OX ,∆∗OX)

is defined by the adjunction j∗ a j∗. The composite map

Sym(TX [−1])→ T (TX [−1]) ∼= (i∗i∗OX)∨ → (i∗j∗j∗i∗OX)∨

= (∆∗∆∗OX)∨ = Hom(∆∗OX ,∆∗OX)

is the sheaf version HKR isomorphism as showed in [2]. Taking cohomology on both

sides of the equality above, we get the HKR isomorphism

IHKR : HT∗(X) =
⊕
p+q=∗

Hp(X,∧qTX)→ HH∗(X).

Now it is clear that we have a commutative diagram

Hom(∆∗OX ,∆∗OX) // Hom(F ,F )

T (TX [−1])

OO 55

Sym(TX [−1]),

OO

;;

which is similar to the Lie algebra diagram in (4.1.1). Taking cohomology on the diagram

above, we get the diagram

HH∗(X) // Ext∗(F ,F )

HT∗(X) =
⊕
p+q=∗

Hp(X,∧qTX)

IHKR

OO

(−)y exp(atF )

55
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that we start with in Theorem 4.1. �

4.2 Applications of Theorem 4.1

We apply Theorem 4.1 to obtain Theorem 4.5 below. Then we explain Theorem 4.5

answers the question of Markman in Section 1.4.

We first introduce a few notations. Denote IHKR(α̃) by

α ∈ HH∗(X) = Ext∗X×X(O∆,O∆),

where O∆ = ∆∗OX . Denote the image of α in Ext∗(F ,F ) by αF . For any vector bundle

F on X, Căldăraru and Willerton [14] defined an abstract Chern character ch(F ) which

lies in the degree zero part of the Hochschild homology HH∗(X) = Ext∗X×X(S−1
∆ ,O∆),

where S−1
∆ = ∆∗(ω

∨
X [− dimX]). There is an HKR isomorphism for Hochschild homology

IHKR : HH∗(X)→ HΩ∗(X) =
⊕
q−p=∗

Hp(X,∧qΩX).

The image of the abstract Chern character under the map IHKR is the usual Chern

character of F [12].

Lemma 4.4 If αF is zero, then α ◦ ch(F ) is zero. Here ◦ is the composition of mor-

phisms in Db(X ×X) and ch(F ) is the abstract Chern character.

Proof. The proof is known in an email correspondence with Eyal Markman. Let β

be any class in Ext∗X×X(O∆, S∆), where S∆ = ∆∗(ωX [dimX]). Similar to the definition

of the class αF associated to α ∈ Ext∗X×X(O∆,O∆), we get a class βF ∈ Ext∗X(F , SXF ),

where SX(−) = ωX [dimX]⊗−. It is shown in [12] that the class ch(F ) is characterized

by the identity

TrX×X(β ◦ ch(F )) = TrX(βF ).
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Due to the equality above, we have

TrX×X(γ ◦ α ◦ ch(F )) = TrX((γ ◦ α)F ) = TrX(γF ◦ αF )

for any γ ∈ Ext∗X×X(O∆, S∆). The right hand side is zero since we assume that αF is

zero. We can conclude that α◦ch(F ) is zero because the equality TrX×X(γ◦α◦ch(F )) =

0 holds for any γ and Tr(−) is non-degenerate. �

We discuss the action of HT∗(X) on HΩ∗(X). The space HΩ∗(X) is naturally a

module over HT∗(X), mimicking the module structure of Hochschild homology over

cohomology. For an object F in the derived category of X, its Mukai vector v(F ) lies

in HΩ∗(X). Thus we can act with the class α̃ to obtain α̃y v(F ) ∈ HΩ∗(X).

The two HKR isomorphisms IHKR and IHKR can be twisted by the Todd class. We

denote the resulting twisted isomorphisms by IK and IK

IK : HH∗(X)→ HΩ∗(X) =
⊕
q−p=∗

Hp(X,∧qΩX),

IK : HT∗(X) =
⊕
p+q=∗

Hp(X,∧qTX)→ HH∗(X).

They are given by the formula IK = (− ∧ td
1
2 ) ◦ IHKR and IK = IHKR ◦D−1, where

D−1 is the inverse of the Duflo operator.

The Mukai vector v(F ) of F is IK(ch(F )) by definition. There are natural ring

structures on HH∗(X) and HT∗(X): the product on HH∗(X) is the Yoneda product, and

the product on HT∗(X) is the wedge product. Kontsevich [27] claimed that the map IK

is a ring isomorphism. This statement was proved by Calaque and Van den Bergh [6].

The Hochschild homology is a module over the Hochschild cohomology and similarly

HΩ∗(X) is a module over HT∗(X). Calaque, Rossi, and Van den Bergh [9] proved that

the maps IK and IK respect the module structures.
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With the help of Theorem 4.1, we obtain the following result.

Theorem 4.5 If α̃y exp(atF ) = 0, then we have

D(α̃)y v(F ) = 0.

Here D is the Duflo operator,

D(α̃) = td
1
2y α̃,

where td is the Todd class of X.

Remark 4.6 We are using the contraction symbol y in three different ways in this paper.

• A polyvector field α̃ ∈ HT∗(X) acts on a class v ∈ HΩ∗(X). This action is denoted

by α̃y v ∈ HΩ∗(X).

• A class v ∈ HΩ∗(X) acts on a polyvector field α̃ ∈ HT∗(X). This action yields an

element vy α̃ ∈ HT∗(X). We only use the second contraction in the Duflo operator

D(α̃) = td
1
2y α̃ in this paper. Note that D is an automorphism of HT∗(X). The

inverse operator is D−1(α̃) = td−
1
2y α̃.

• The third contraction map is βy exp(atF ) ∈ Ext∗(F ,F ) for β ∈ HT∗(X). An

element β in Hp(X,∧kTX) can only contract with the term (atF )k

k!
in the Taylor

expansion of exp(atF ). It is easy to distinguish this map from the previous two

maps.

Proof of Theorem 4.5. The commutative diagram in Theorem 4.1 shows that

α̃y exp(atF ) = αF ,
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which is zero under the assumption of Theorem 4.5. We conclude that α ◦ ch(F ) is zero

by Lemma 4.4. Since IK and IK respect the module structures, we have

0 = IK(α ◦ ch(F )) = (IK)−1(α)y IK(ch(F )) = (IK)−1(α)y v(F ).

The inverse map of IK is the composite map

(IK)−1 : HH∗(X)
(IHKR)−1

// HT∗(X) D // HT∗(X).

As a consequence

0 = IK(α ◦ ch(F )) = (IK)−1(α)y v(F ) = D(α̃)y v(F ).

The special case when α̃ ∈ H1(X,TX). Note that our statement in Theorem 4.5

appears to be different from the original one in Section 1.4, which did not have the Duflo

operator D. We prove that the original statement follows easily from ours.

The result in Section 1.4 says that α̃y v(F ) is zero if α̃y exp(atF ) is zero for any

α̃ ∈ H1(X,TX). From now on let α̃ be an element in H1(X,TX). The only term in

exp(atF ) = 1 + atF + (atF )2

2!
+ · · · that can contract with α̃ is atF , so α̃y exp(atF ) =

α̃y atF in this case.

Choose F = OX . We have α̃y exp(atOX ) = 0. Therefore

D(α̃)y v(OX) = (td
1
2y α̃)y td

1
2 = 0

according to Theorem 4.5.

Expand the Todd class td as 1 + c1
2

+
c21+c2

12
+ · · · , and note that the only term of

(td
1
2y α̃)y td

1
2 in H2(X,OX) is α̃y c1

2
. Since (td

1
2y α̃)y td

1
2 = 0, we can conclude that

α̃y c1 is zero for any α̃ ∈ H1(X,TX). The fact that α̃y c1 = 0 for α̃ ∈ H1(X,TX) is also
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known due to Griffiths. Consider the first order deformation of X corresponding to α̃.

The vanishing of α̃y c1 is equivalent to the class c1 remaining of type (p, p).

The term α̃y c1
4

is exactly the difference between D(α̃) and α̃ because

D(α̃) = td
1
2y α̃ = (1 +

c1

4
+ · · · )y α̃ = α̃ +

c1

4
y α̃ + 0.

We conclude that α̃y v(F ) is zero if and only ifD(α̃)y v(F ) is zero for α̃ ∈ H1(X,TX).
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