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abstract

Online integration platforms have become integral components of modern
digital ecosystems. These platforms establish connections with numerous
third-party services, enabling a seamless exchange of data and interactions
among these services. This pervasive connectivity, while enhancing effi-
ciency and convenience, has raised various security and privacy concerns.
This dissertation delves into such multifaceted challenges posed by online
integration platforms, focusing on two primary threat vectors.

First, we investigate the vulnerabilities that arise from the design of the
integration platform’s access control. These platforms typically employ
permission-based models to regulate the extent of access granted to third-
party services. However, many of these models are inadequately designed,
which leaves them susceptible to exploitation by malicious third-party
services seeking to escalate their privileges and gain unauthorized access
to user data. To illustrate these vulnerabilities, we conduct a systemic
analysis of the app integration platforms in team-based business collabo-
ration platforms (Slack and Microsoft Teams). Our study reveals that an
adversarial-controlled app not only poses a direct threat to the data within
the platforms but may also jeopardize the security of other connected third
parties.

Second, even when the access control of an integration platform is
appropriately designed and implemented, the platform itself still poses a
privacy concern by design. Integration platforms inherently possess vast
repositories of user data, as they act as centralized hubs through which
data from various third-party services pass. Consequently, the platforms
have the capability to accumulate extensive information about users and
their activities, creating a potential risk to user privacy. Given the intrinsic
nature of this issue, it calls for the development of novel system designs.
In particular, we focus on two popular types of integration platforms,
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namely trigger-action platforms and smart-home platforms. Through a
comprehensive examination of their specific security requirements and
data communication flow, we propose secure and efficient protocols de-
signed to safeguard user data from the prying eyes of these platforms.

Due to the connections with various third-party services, a compromise
to the security of integration platforms has cascading effects. Securing
integration platforms is therefore a vital part of the protection of user data.
By focusing on several distinct but representative types of integration plat-
forms, this dissertation aims to contribute valuable insights and practical
solutions to enhance the security and privacy of user data in the evolving
landscape of digital interactions among online services.
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1 introduction

In an era marked by the proliferation of digital services and the ever-
expanding scope of the Internet, users have increasingly embraced a mul-
titude of services to manage various aspects of their digital lives. Online
integration platforms have thus emerged as indispensable cornerstones of
modern digital ecosystems, since they play a vital role in bridging the gap
between a diverse array of digital services that do not directly communi-
cate with each other. These platforms facilitate seamless interaction and
data exchange between third-party services. For instance, trigger-action
platforms, one popular type of integration platforms, allow users to con-
nect an email service to a smart speaker and set up an automation rule that
rings the speaker each time a new email is received [26]. Such pervasive
connectivity of the integration platforms has enabled a more efficient and
convenient digital landscape [146].

However, integration platforms also introduce a series of security and
privacy concerns. These platforms inherently serve as central hubs through
which data flows from various third-party services, and hence a com-
promise to the security of an integration platform can have far-reaching
consequences. Any vulnerability or breach can be exploited to gain unau-
thorized access to a wealth of user data, with repercussions that extend
not only to the user data within the platform but also to the connected
third-party services. The diverse range of these third-party services may
thus lead to a spectrum of potential risks, ranging from phishing attempts
and loss of sensitive information to life-threatening attacks, such as ma-
licious manipulation of critical components in energy distribution and
medical systems.

In light of these risks, the task of securing integration platforms takes on
paramount importance and motivates the overarching question to answer
in this dissertation:
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What are the prevalent security and privacy risks to user data in
online integration platforms and how can we develop robust security
mechanisms to mitigate these risks?

To solve this question, we take a comprehensive approach by focusing
on the threat vectors that originate from the two primary players in the
system: the connected third-party services and the integration platforms
themselves.

The first threat arises from third-party services under adversarial con-
trol. Integration platforms commonly rely on permission-based models
to govern the scope of access granted to third-party services [76, 101].
Nonetheless, when these access control schemes are not adequately de-
signed, they introduce vulnerabilities that can be exploited by malicious
third-party services. These adversaries can manipulate the system to es-
calate their privileges, ultimately obtaining illicit access to user data to
which they should not have any entitlement.

The second threat stems from the platforms themselves, constituting
a more direct and inherent challenge. Even when the access control of
an integration platform is appropriately designed and implemented, the
platform still naturally accumulates a vast amount of user data, enabling
it to infer a wealth of information pertaining to users and their daily
activities [102]. This aggregation of data, while essential for the platform’s
intended function, simultaneously poses a risk to user privacy.

This dissertation examines both of these threats and, through the case
study of selected integration platforms, aims to understand the scope of
the associated risks as well as their possible mitigations, thereby advancing
our efforts toward secure and privacy-preserving integration platforms.
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1.1 Contributions
Our contribution towards securing user data in integration platforms
comes in twofold. Firstly, we assess the vulnerabilities stemming from the
inadequate design of their access control models for third-party services.
We use the app ecosystem in business collaboration platforms as a case
study to illustrate such vulnerabilities, given the complex array of func-
tionalities and permissions offered in these systems. Secondly, we address
the inherent security and privacy issues within these integration platforms
by introducing new system designs. Our focus in this endeavor is targeted
at two types of integration platforms, namely trigger-action platforms and
smart-home platforms, chosen due to their extensive integration with a
vast number of third-party services.

Through the study of these distinct yet representative types of inte-
gration platforms, we have contributed valuable insights and practical
solutions to enhance the security and privacy of user data, which are sum-
marized in the thesis statement below and then expanded upon in the rest
of this section.

Thesis statement. Securing user data in online integration platforms
necessitates a dual defense strategy against threats originating from third
parties and from the platforms themselves. Addressing the former re-
quires dynamic and fine-grained access control mechanisms, while the
latter demands the development of specialized protocols tailored to each
platform’s distinct security requirements and communication flows.

Contributions to security analysis of third-party access
control in integration platforms [81]

Business collaboration platforms. Business collaboration platforms like
Microsoft Teams and Slack enable teamwork by supporting text chatting
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and third-party resource integration. A user can access online file stor-
age, make video calls, and manage a code repository, all from within the
platform, thus making them a hub for sensitive communication and re-
sources. The key enabler for these productivity features is a third-party
app ecosystem. We contribute an experimental security analysis of the
access control scheme in Microsoft Teams and Slack. To guide the analy-
sis, we derive a common permission model for these two BCPs and then
experimentally examine each interaction method between apps and users.
Specifically, we introduce three new attack classes that leverage funda-
mental shortcomings of the access control model: app-to-app delegation
attacks, user-to-app interaction hijacking, and app-to-user confidentiality
violations. We constructed proof-of-concept attacks for these classes to
achieve effects such as sending arbitrary emails on behalf of victims, merg-
ing code requests, launching fake video calls with loose security settings,
and stealing private messages without having the appropriate permission.
Finally, we provide an analysis of countermeasures that these business
collaboration platforms can adopt today.

Contributions to system designs towards secure and
privacy-preserving integration platforms [78, 79]

Trigger-action platforms. Trigger-action platforms, such as IFTTT, Zapier,
and Microsoft Power Automate, enable millions of end-users to automate
interactions between a wide variety of third-party services ranging from
cloud services to IoT device vendors and social networks. End-users create
simple automation rules using the trigger-action paradigm. For example,
one can connect Outlook email with a smart speaker so that whenever
an email that contains the keyword “Important” arrives at the inbox will
trigger a notification from the speaker. Unfortunately, the current design
of TAPs is flawed from a security and privacy perspective, allowing un-
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fettered access to sensitive user data from connected third-party services.
To address this issue, we present two different systems, each occupying a
different point in the design spectrum:

• First, we have eTAP, a privacy-enhancing protocol that allows trigger-
action platforms to execute automation rules without accessing users’
private data in plaintext. We use garbled circuits as a primitive
to support a commonly used set of computations in user-created
automation rules, and leverage the unique structure of trigger-action
platform to make the protocol practical. We formally state and prove
the security guarantees of our protocols. We implement and evaluate
eTAP. It can support 93.4% of computational rules in Zapier and 100%
of the 500 most-used rules in IFTTT. We show that most functions
can be evaluated with a modest performance impact: on average
rule execution latency increases by 70 ms, or 55% when compared to
an insecure baseline system.

• Next, we have minTAP, a more lightweight approach that provides
data access minimization for trigger-action platforms. The goal of
minTAP is to mitigate the attribute-level overprivilege in automation
rules. Instead of preventing all plaintext access, minTAP releases
only the necessary attributes of user data to trigger-action platforms
and fends off unrelated API access, by leveraging language-based
data minimization to apply the principle of least-privilege. Using real
user-created rules on IFTTT, we demonstrate that minTAP sanitizes a
median of 4 sensitive data attributes per rule with less performance
overhead (5 ms) and does not require any modifications to IFTTT.

Smart-home systems. Modern IoT services feature an integrator service
and several device vendors. The integrator acts as an intermediary by
providing a centralized interface that allows users to remotely control
devices from various vendors. To achieve this, the integrator forwards
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communications between users and vendors. While such IoT services
provide benefits, they also observe interactions between users and devices,
which can be used to infer sensitive personal information, leading to
privacy concerns. We propose Mohito, a privacy-preserving IoT system
that hides such interactions from both the integrator and the vendors.
In Mohito, we protect both the interaction data and metadata, such that
no one can learn which user is communicating with which device. By
utilizing oblivious key-value storage as a primitive and leveraging the
unique communication graph of IoT services, we build a practical protocol
that is capable of handling large concurrent traffic, a common demand
in IoT systems. Our evaluation shows that Mohito can achieve up to
600×more throughput than the state-of-the-art general-purpose metadata-
hiding systems that provide similar security guarantees.

Other technical contributions

In the process of designing secure protocols for integration platforms, we
have also developed a generalized technique for oblivious evaluation of
regular expression (Section 3.5). This technique holds a broader appli-
cation scope beyond the context of integration platforms — any systems
that need to evaluate regular expressions without learning input strings
can utilize this technique. Specifically, we devise a way to convert the tran-
sition function of a deterministic finite automaton into a Boolean circuit
that can be efficiently encoded into a garbled circuit.

1.2 Related Work
In this section, we provide an overview of related research work. The aim
of this section is twofold: to contextualize our work within the current
security and privacy landscape of integration platforms, and to establish
links with existing work in the broader domains of authorization, access
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control, and data privacy. Subsequent chapters delve into more detailed
discussions of related research tailored to the specific focus of each chapter.

Access control in integration platforms

OAuth [158], an open standard for access delegation, is commonly used
by integration platforms to define the set of resources that a connected
party can access. Despite the wide adoption, OAuth-based access control
systems are usually poorly implemented. Studies [76,179,189] have shown
that developers tend to make many mistakes when implementing OAuth,
such as exposing application secrets, redirecting secret tokens arbitrarily,
or even inventing home-brewed and insecure OAuth protocol flows. These
mistakes ultimately undermine the security properties of OAuth and leave
the systems vulnerable to attacks.

Moreover, the OAuth protocol does not specify how permissions should
be defined. Therefore, overprivileged access is a common issue in OAuth-
based systems, even when there is no implementation flaw. This issue is
particularly pronounced on IoT platforms, where a line of work [71,73,101,
115, 126] has demonstrated that third-party applications are frequently
granted access to a significantly larger volume of resources than they
actually utilize. Similar findings are corroborated by studies conducted
on mobile platforms [96, 125], voice assistant platforms [178], and trigger-
action platforms [102].

A remark by Chen et al. [76] aptly pinpoints the root cause of these prob-
lems — the initial objective of OAuth was to simply serve the authorization
needs for traditional websites, but the protocol has been significantly re-
purposed and re-targeted over the years. Consequently, the specification
of OAuth may not satisfy the requirements of these emerging platforms.
Our work chooses to examine the OAuth-based access control system in
business collaboration platform, a recently established integration plat-
form tailored to meet the surging demands of remote work. Compared to
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the integration platforms studied in the prior research endeavors, business
collaboration platforms offer a broader spectrum of functionalities and en-
able more direct communication channels between users and third-party
applications. This higher level of intricacy results in more substantial
challenges when it comes to designing a secure access control system,
potentially leading to new attack vectors and vulnerabilities.

Designing secure integration platforms

The research community has recently shown interest in designing new
privacy-preserving protocols for trigger-action platforms, due to the gener-
alizability of these platforms’ trigger-action style computational paradigm.

Least-privilege. The problem of overprivileged access isn’t confined to
third-party applications alone; it also extends its influence to the platforms
themselves, turning them into a privacy threat. To solve this problem,
several solutions, such as SPKI/SDSI [88] and Macaroon [66], have been
proposed to facilitate finer-grained authorization by attaching predicate
conditions to access tokens. However, while they offer a generic approach,
they do not seamlessly integrate into the data flow of trigger-action plat-
forms, nor are they readily adaptable to capture the expressive nature of the
trigger-action style computational paradigm. DTAP [102] extends upon
Macaroon’s idea to build a protocol tailored for trigger-action platforms to
ensure all tokens acquired by the platforms are not overpriviledged. Our
work in Chapter 4 goes further to craft a more fine-grained access control
system by delving into the data attribute level and allowing for a more
flexible way to express the predicate condition.

Encryption. OTAP [84] takes a different approach to secure trigger-action
platforms. It uses end-to-end encryption to fully protect the integrity and
confidentiality of data while it transits through an untrusted platform. Its
main drawback is that no computation is allowed — a primary feature for
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trigger-action platforms. While there are some works that utilize hardware-
based trusted execution environments (TEEs) to enable computations [172,
206], our work in Chapter 3 proposes a purely cryptographic solution that
avoids the underlying security design issues in TEEs [77, 154, 186].

Metadata-hiding. Filter-and-Fuzz [198] achieves metadata protection by
instructing smart home devices to generate cover traffics, successfully hid-
ing the timestamp of each message. In comparison, our work in Chapter 5
additionally hides the metadata information of which sender is communi-
cating with which receiver and employs a more efficient server-side cover
traffic scheme.

1.3 Organization of Dissertation
This dissertation is organized as follows. In Chapter 2, we contribute to
the understanding of security vulnerabilities resulting from the access
control model in integration platforms with a systematic analysis of the
third-party app ecosystems in two widely-used business collaboration
platforms, Microsoft Teams and Slack. In Chapters 3 to 5, we describe
three different designs to address the privacy concerns stemming from
the design of today’s integration platforms. Specifically, we propose eTAP
and minTAP for trigger-action platforms and Mohito for smart-home plat-
forms. Each of these designs provides a different trade-off among security,
performance, and functionality. Finally in Chapter 6, we conclude with
remarks summarizing the contributions of this dissertation and examine
potential future work.
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2 security analysis of access control in business
collaboration platforms’ app ecosystem

In this chapter, we delve into the first category of threats to user data
in online integration platforms – that is, the attempts by malicious third
parties seeking to circumvent the access control enforced by the platforms.
We use the third-party app ecosystem in business collaboration platforms
as a case study to illustrate to scope of this threat and propose a set of
possible countermeasures. These platforms offer a broader spectrum of
functionalities and enable more direct communication channels between
users and third parties, thus resulting in more substantial challenges when
it comes to designing a secure access control system and leading to new
attack vectors and vulnerabilities.

2.1 Introduction
Business Collaboration Platforms (BCPs) like Slack and Microsoft Teams
are indispensable collaboration and productivity tools. Beyond multi-user
chat features, BCPs enhance productivity by allowing users to integrate
third-party resources. For example, users can make video calls with Zoom,
store files on DropBox, chat with customers, and manage code repositories,
all from within the BCP. A vibrant third-party app ecosystem allows many
such integrations. Thus, BCPs not only host private communications
between users but also serve as a hub for all their sensitive resources
from third-party systems. As such, it is vital to understand the security
and privacy properties of this emerging class of distributed multi-user
collaboration platforms.

We contribute to understanding the security of BCPs by performing an
experimental analysis of the third-party app model. We focus on the app
model because it allows BCPs to access sensitive data from third-party
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systems. Although there is work on understanding the operational security
issues of BCPs (e.g., web security flaws [38, 39]), to our knowledge, no
work has examined the third-party app model. We focus our work on
Slack and Microsoft Teams — two of the most widely-used BCPs with
mature app ecosystems [19]. Furthermore, these two systems share design-
level commonalities and potentially with other BCPs. Thus, any security
findings are potentially broadly applicable to BCP design.

Performing the security analysis of Slack and Microsoft Teams is chal-
lenging because these systems, including their apps, are closed-source.
Specifically, apps themselves are remotely-hosted web services whose
endpoints are only known to the BCP. This precludes classical analysis
techniques such as source code and binary analysis or API endpoint test-
ing. As an external party, we can only interact with apps the way a human
user would — through the BCP itself. Therefore, we focus our analysis
efforts on the interactions between apps and users, such as sending mes-
sages and reacting to them. To conduct the analysis methodically, we first
systematize an access control model that describes the approaches taken
by Slack and Teams using a uniform vocabulary. We then explore how an
attacker can violate the access control model by experimentally studying
each interaction method.

We find that the BCP app model uses a two-level access control system
consisting of the OAuth protocol and a runtime policy enforcer. Abstractly,
a BCP app requests OAuth tokens to interact with categories of resources.
For example, an app might request an OAuth token to read chat messages.
However, this token does not entirely dictate what specific messages the
app can read. Thus, the user has to specify the fine-grained access control
policy at runtime. Once the user installs an app and permits it to read
chat messages, the user can additionally specify that the app may read
messages from specific channels (e.g., the “usenix-security-submission”
channel). Whenever an app issues an API request to the BCP server to



12

read a chat message from a specific channel, the access control system
first verifies the OAuth token and then executes a runtime policy check to
verify that the app is authorized to read from that specific channel.

By examining each interaction method between BCP apps and users, we
establish that this two-level access control system does not adequately con-
fine third-party application behavior. Concretely, we have discovered that
the BCP access control system violates two standard security principles:
(1) least privilege and (2) complete mediation [169]. This allows malicious
apps to escalate their privilege and violate the confidentiality and integrity
of private chat messages and third-party resources connected to BCPs. To
demonstrate the concrete harms posed to end-users, we introduce three
attack classes for BCPs along with attack prototypes:
(1) App-to-App Delegation Attacks (Section 2.4): BCPs support apps
that can interact with each other for productivity reasons, independently
of human involvement. To support such meaningful interactions, the BCP
access control model allows apps to act on behalf of a user. We show
how malicious apps can exploit this to violate the confidentiality and
integrity of resources that victim apps manage. Our proof-of-concept
attacks include sending arbitrary emails on a victim’s behalf, merging
code pull requests, and retweeting any links using the victim’s account.
(2) User-to-App Interaction Hijacking (Section 2.5): BCP apps can cus-
tomize how users interact with them and with workspace features. For
example, an app can introduce new ‘slash commands’ into a workspace
or manipulate how URLs get unfurled. For example, one can start a Zoom
video call by entering /zoom on the Slack UI. We show how a second ma-
licious app can interfere when a user attempts to interact with a benign
app, a problem similar to DNS domain squatting and voice assistant skill
squatting [134, 207].
(3) App-to-User Confidentiality Violations (Section 2.6): BCP apps inter-
act with users by participating in any approved channels or conversations,
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where a human user explicitly ‘adds’ the app as a member. BCPs imple-
ment runtime policy checks to enforce security policies in these situations.
We show how a malicious app can exploit gaps between OAuth and these
runtime mechanisms to leak private messages it does not have permission
to view.

Finally, we propose a set of countermeasures that BCPs like Microsoft
Teams and Slack can adopt today as a temporary solution to mitigate the
attacks (Section 2.7). For example, enforcing user confirmation before
every app-to-app interaction and command name collision can fix most
issues, but this is undoubtedly a user-hostile solution. As a result, solutions
with acceptable security and usability trade-offs necessitate rethinking the
app and access control model in multi-user communication platforms.

Ethics and Disclosure. We conducted all experiments inside private
workspaces with the authors as the only members. We did not exercise
cross-workspace features; thus, our investigations did not influence other
workspaces. We did not distribute or submit our test malicious apps to any
BCP app directory, so our attack did not affect BCP users other than the
authors’ testing accounts. We ethically disclosed all attacks we found to
Slack and Microsoft, both of which have confirmed their existence. Due to
their view of the workspace as a trusted environment, the assumptions that
social engineering is a prerequisite for the attacks, and that the workspace
administrator will correctly manage app installations, these attacks do not
meet their definitions of a security vulnerability.

2.2 Business Collaboration Platforms
BCPs provide chatrooms that facilitate online collaboration among a group
of people, who usually belong to the same workspace, such as a project
team or a research group. In BCPs, one can create a virtual workspace to
host all conversations for a group. It supports discussions among the users
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send message
Welcome!

BCP User BCP Clients BCP Server Cloud Backends of BCP Apps

Interact API Calls

Responses BCP API Call
method : chat.postMessage
text   : Hello, world!
channel: CHANNEL_ID
token  : xxxx-xxxxxxx-xxxx

Event Notification
type   : message
text   : Welcome!
channel: CHANNEL_ID
user   : USER_ID
ts     : TIMESTAMP

Figure 2.1: Overview of BCP’s ecosystem: A BCP user interacts with their
BCP clients to communicate with the BCP server. BCP apps, which are
maintained as separate web services by different third-party developers,
communicate with BCP server via API calls and event notifications. A
user has to install and authorize an app before accessing its functionalities.

who joined the workspace through various conversation channels. Users
can open a new channel which can be public — any user can join — or
private — only those who are invited can join. Users can also send direct
messages to any other user or group of users in the workspace. To use a
BCP, a human user interacts with their BCP client on their computer or
mobile device, which then communicates with the backend servers of
the BCP through various APIs. The backend server then responds to the
client, updating what the user sees. We illustrate this communications
framework in Figure 2.1.

In this work, we focus on Microsoft Teams and Slack, due to their
popularity and mature third-party app ecosystem. A recent survey of 900
businesses [19] has shown that they are the two most popular BCPs1and
are the only ones that provide a list of officially supported third-party
apps.

BCP App

Beyond basic chatting features, modern BCPs usually offer many third-
party integrations, commonly known as apps, which are cloud services pro-

1The original survey listed Skype for Business as the top spot, but it has since been
discontinued and replaced by Microsoft Teams.
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viding additional productivity-enhancing functionalities in the workspace,
often connecting user’s data from other services (such as email or online
storage) to the workspace. These BCP apps exist on cloud servers not main-
tained by the BCP. These app backends communicate with the BCP servers
by subscribing to event notification APIs and reacting when information
about a new event is received, as depicted in Figure 2.1. Generally, a BCP
app can simultaneously act in three roles: workspace feature provider,
interactive bot, and user delegate.

Workspace feature provider. The app may enhance a workspace’s ex-
isting features. For example, an app made by Twitter can customize the
default link unfurling feature to preview tweets linked in messages auto-
matically. The app may also provide user-invokable actions through slash
commands. As another example, Google’s Slack app [10] shows a user’s
recent schedule when the user types /gcal.

Interactive bot. The app can present itself in the workplace as a bot user
and interact with other users the same way as a typical human user. The
user can, for example, chat with the app’s bot user directly, invite it to a
channel, or share files with it. Due to these convenient features, this role
has become the app’s primary communication interface with its users.

User delegate. If permitted, the app may also perform actions on behalf
of users. This role is particularly beneficial for enhancing productivity.
For example, when users visit Dropbox’s web page and wish to share files
with others in their Slack workspace, they must divert their attention back
and forth between Dropbox and Slack. In contrast, with the delegation
ability, Dropbox enables the user to click a button without leaving the
webpage and let Dropbox’s Slack app [8] share files on their behalf. As a
result, the shared files appear to have been sent directly from the user.
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Life Cycle of BCP Apps

Microsoft Teams and Slack allow any BCP user to create and distribute
BCP apps without requirements, such as applying for a developer account.
BCP apps generally go through the following stages in their life cycle:
registration, publication, installation, per-user authorization, in-use, and
removal.

Registration. To enable the various functionalities in Section 2.2, an app
needs to query different web APIs or subscribe to different event notifi-
cation APIs on the BCP’s backend server, which in turn usually require
different permissions. The app developer must register the app in the
corresponding BCP’s developer portal by submitting a manifest, which
specifies the app’s backend URL, required permissions, and subscribed
events. We note that, in both Microsoft Teams and Slack, the developer
does not need to submit any of the app’s codebase, as all their apps are
hosted purely inside the developer’s server. No client-side code is accessi-
ble by Slack, Microsoft, or the end-users.

Publication. After the app has been successfully registered, the de-
veloper can choose to either distribute the app’s public installation URL
through its own advertising channels or submit the app to the official app
directory [33, 36]. For the second option, the app must follow submission
guidelines and go through the platform’s vetting procedure, which primar-
ily involves checking if the app’s requested permissions match its claimed
functionality (e.g., through a provided test account). However, as BCP
apps are closed-source and their codes are not submitted for examination,
it is difficult to enforce these guidelines strictly.

Installation. In Microsoft Teams and Slack, any user2 can install an app
to the workspace. During installation, a permission request page will
be presented to the user, detailing what the app can do, as illustrated
in Figure 2.2. The user then either accepts all permissions or rejects all
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Figure 2.2: Installing apps with bot scopes (left) and user scopes (right)
in Slack.

permissions. This installation is relatively invisible to other users; they are
not notified when a new app is installed, and the list of installed apps is
often hidden in secondary menus in the UI.

Per-User Authorization. If an app wants to act as the delegate of some
users in the workspace, it may initiate a separate permission request to

2Although Microsoft Teams and Slack provide a setting for the administrators of
a workspace to limit which users are allowed to install apps and which apps can be
installed, the default for both BCPs is that any user can install any apps from any source.
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each user, usually by sending the request link via the app’s bot user. Once
the user authorizes it, the app gains permission to act on behalf of that
user.

In-use and Removal. After the app is installed and authorized, it may
additionally ask for integration with the user’s account on third-party
services. For example, Google’s Slack app requests the user to authorize
access to their Google account. BCPs do not manage the communications
between BCP apps and third-party services. If the app developer updates
an app to request a different set of permissions, the user has to reinstall
the app and go through the permission prompts as before. Finally, when
a user uninstalls an app, it is deauthorized by the BCP. However, there
is no guarantee that the app properly disconnects itself from third-party
services.

Security and Privacy Concerns

The widespread usage of BCPs in remote work environments implies that
a lot of sensitive information passes through it. With the potential ability to
access such information, BCP apps lead to security and privacy concerns.
Moreover, some of the design choices that we described earlier exacerbate
such concerns: (1) all-or-nothing permissions that disallow selective toggling
of permissions; (2) imperceptible installation that reduces the chances for
users to notice what kinds of apps are installed and also prevents any
workspace-wide consent mechanisms; (3) pure server-side implementation
that prevents BCPs or other entities from inspecting the app’s behavior
through traditional tools like static or dynamic analysis. This also allows
the app to change its behavior at will.
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Figure 2.3: An example of Slack permission system. We show three exam-
ple scopes that App 1 may acquire. The arrow lines indicate that a token
can be used to query all resource instances of the types allowed by the
token’s scope. However, Slack performs additional runtime policy checks
(indicated by the red crosses) to determine which of these instances can
actually be accessed.

2.3 Analysis of App Permission Model in BCP
We study the permission systems in Microsoft Teams and Slack to identify
their similarities and differences to understand the potential security de-
sign issues and systematically perform experimental security analysis. We
focus on these two BCPs since they are the top two most popular ones [19]
and have mature app ecosystems. We also introduce a practical threat
model and the methodology we will use to analyze the third-party apps
in these two BCPs.

App Permission System

At a high level, Microsoft Teams and Slack have designed their access con-
trol model based on a similar permission-based system. This permission
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system controls whether or not an app has access to various resources in a
workspace. An app must first declare a set of permission scopes it requires,
with each scope representing the permission to read or write a type of
resource. However, such scopes are statically defined by the BCPs and
thus do not allow more dynamic and fine-grained access control over the
specific instances under a single type of resource. To solve this problem,
the BCP permission system includes runtime policies that are usually user-
configurable. For example, to read a message in a private channel, a Slack
app not only needs the groups:history scope but also has to be added
to the channel’s member list by some user, as shown in Fig. 2.3. We now
examine this two-level permission system in detail and show that it has
security design issues that can violate the least privilege principle and
cause privilege escalation.

Level 1: static permission scopes. An app needs to acquire several
different permission scopes to perform all of its functionality. Each scope
represents the permission to read or write a type of resource in a workspace,
such as channel messages or shared files.

To install the app, the user must accept all of its requested permissions;
neither BCPs provide options to selectively toggle them. Slack’s permission
scopes are implemented as standard OAuth permission scopes. Slack
provides two types of scopes for its apps: bot token scope, which allows
an app to provide workspace features or act as a bot user, and user token
scope, which allows an app to perform actions on behalf of an authorized
user. For example, the chat:write bot token scope permits the app to
send messages with its bot user as the author, while the chat:write user
token scope allows sending messages as the user. Microsoft Teams follows
a similar design: a set of core app capabilities that must be declared in an
app’s manifest is the equivalent of Slack’s bot token scope, while Microsoft
Graph API’s OAuth permission scopes are equivalent to Slack’s user token
scope. The difference is that only the first type of scope is shown during
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the app installation; the second type can only be acquired by initiating a
separate permission request to the user after installation.

These scopes are static, in the sense that they are predefined based
on how BCPs categorize the workspace resources, and therefore might
not align with the user’s desired security policies, which can vary by
workspaces and evolve. To compensate for the static nature of scopes, both
BCPs impose a second level of permission checking.

Level 2: runtime policy checks. Microsoft Teams and Slack implement
runtime policies to determine which instances in a resource type an app
can access based on various conditions. Users can usually control these
conditions to express their desired security policies. For example, users
can have more fine-grained control of which messages in private channels
an app (that has the prerequisite permission scope) can view: in Slack,
they can invite the app to a specific channel, indicating that the app can
view all messages inside this channel; in Microsoft Teams, they can @-
mention the app in the messages that they wish the app to read. In this
way, runtime monitors grant users some flexibility to dynamically adjust
the set of resources of an app can access.

Security design issues. Despite the two-level checking, we uncover two
design issues in the BCP permission system that violate basic security
principles.

1. The runtime policies are ad-hoc and incomplete. As a result, not all
user security policies can be correctly expressed. We find that not
only do they differ in each BCP, but even in the same BCP there are
often inconsistencies between the runtime policies of similar types
of resources. For example, Slack treats public channel messages
and direct messages as two separate types of resources; however, it
only imposes a policy on the former by checking whether the app is
invited to the channel, but provides no mechanism to limit which
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user the app can send direct messages to. The incompleteness of
runtime policies leads to coarse-grained access control, violating the
principle of least privilege.

2. The ownership or provenance of some resources is not properly
tracked or enforced. This frequently happens when a user dele-
gates an app to create resources. For example, Microsoft Teams does
not differentiate between messages sent by a real user and a dele-
gated app. In addition, due to the multi-user multi-app nature of
BCP workspace, the ownership of a resource can sometimes be hard
to define correctly. When the ownership or provenance is absent, or
the system assumes the wrong one, the principle of complete mediation
can be violated and potentially lead to privilege escalation.

Although it is possible to build a BCP permission system to fix the above
problems by allowing the user to specify the security policy for every
instance of resources and tracking every resource’s provenance, we will
see in Sections 2.4 to 2.5 that such an ideal system is hard to design and
often requires sacrificing usability.

Threat Model

Based on our analysis of the permission model above, we derive a threat
model for BCP apps. We assume that the attacker has targeted a BCP workspace
containing a number of users and already-installed apps. The attacker
has also tricked one of the users (referred to as the victim) into installing
the attacker-controlled malicious app, i.e., the victim has granted all the
permission scopes requested by the malicious app. We believe this is a
reasonable assumption, because (1) the malicious app can easily mimic a
legitimate app by copying its publicly available manifest, making the two
indistinguishable for the victim during installation, and (2) by default, any
user in the workspace is allowed to install any app from any source. In our
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threat model, the attacker can be either an outsider or a curious user inside
the workspace who wants to gain the information they cannot access. For
example, an admin can recommend everyone in the organization to install
a malicious app (disguised as an innocent management app), hoping to
steal chat logs from private channels they are not invited.

In addition, we assume that the BCP’s clients and its backend server
are secure and do not collude with the attacker — attacking such infras-
tructure is an orthogonal research direction. Therefore, the capacity of the
malicious app is limited to the functionality defined by the BCP’s API. We
also assume that the other apps installed in the workspace are benign and
secure, which means they follow the security guidelines [35, 40] and do
not contain any implementation-level flaws such as exposing their tokens
directly.

Security Analysis Methodology

We perform experimental security analysis on Microsoft Teams and Slack
to study how a malicious app (defined by our threat model) can exploit
the two security design issues in these two BCPs’ permission systems.
Specifically, for each potential exploit, we evaluate its practicality and preva-
lence.

To explore potential exploits, we examine every type of interaction the
malicious app can have with other entities in the workspace and check
whether such interaction involves resources that have incomplete runtime
policy or suffer from improper ownership tracking. If so, we explore
attacks causing security-critical consequences. For each attack, we analyze
how it stems from the security design issues in the permission system, how
it violates the security principles, and how it jeopardizes the workspace’s
integrity or confidentiality guarantees expected by the user. We detail our
findings in Sections 2.4 to 2.6, and summarize the prerequisites and effect
surface for each attack in Fig. 2.4.
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For practicality, we build proof-of-concept malicious apps and, if appli-
cable, target the attack on selected apps. Since most apps require a valid
third-party account to function properly, running large-scale analysis is
infeasible. Thus, we only select a few targeted apps that connect to sensi-
tive resources and test them manually. We only install one targeted app at
a time in our test workspace to avoid undesired interference.

For prevalence, we analyze the app’s potential ability to launch attacks.
We collect the requested permissions of all published apps from the two
BCPs’ official app category3, and count how many apps have sufficient
permissions or resources to launch each attack. It is important to note that
our goal is not to prove that some specific apps are malicious; we only
examine the capabilities granted by various permission scopes and how
they can be abused to perform malicious actions. This strategy allows for
a sound analysis despite apps being closed-source, as the apps we find
indeed have prerequisite permissions to potentially launch attacks.

3We collected 2,460 apps from the Slack [33] on April 7, 2021 and 1,304 apps from
Microsoft Teams [36] on November 17, 2021.
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2.4 App-to-App Delegation Attacks
One of the core functionalities provided by BCP apps is to chat with users
through their bot users interactively. However, a BCP app can also send
and receive messages on the user’s behalf and, therefore, chat with other
app bot users. In this section, we present the delegation attack, where one
malicious app abuses such app-app interactions and causes security-critical
consequences. We then show that the source of this vulnerability roots
in the fundamental design issues of current BCP permission systems — a
violation of least privilege.

App-to-App Interactions

Both Microsoft Teams and Slack allow their apps to present themselves in
a workspace as bot users so that human users can send direct messages to
these bot users to instruct them to perform certain tasks. This functionality
is commonly used to let users manage their data in other online services,
such as emails and file storage, without leaving the BCP.

At the same time, these two BCPs also allow apps to perform certain
actions in the workspace on behalf of the user. If an app sends a message
in this way, this message will appear as if the user sent it. Such dele-
gation can be useful to enhance productivity. For example, Dropbox’s
BCP app [8] utilizes it to share files in channels on behalf of the user. In
Slack, this can be achieved if the app has acquired the chat:write user
token scope in its OAuth permission request with the user; in Microsoft
Teams, although none of its standard app capabilities grants permissions
to delegate, one can still employ the advanced Microsoft Graph API and
ask for the Chat.ReadWrite scope.

By combining the above two functionalities, we can enable app-to-app
interactions in BCPs: one app that has the delegated permission to send
user’s messages can interact with another app’s bot user. Such interaction
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can be beneficial; for example, Dokkio’s Slack app [7] can organize files
sent by Dropbox’s app into a coherent page for the workspace and tag
them as shared by different users. Slack regards app-app interaction as
an important feature with growing demand [111]. However, allowing
one app to communicate with other app’s bot users has severe security
implications. When the former app turns malicious, it can potentially
invoke actions from the latter app, and such actions might affect data in
the user’s connected third-party account. We refer to attacks exploiting
this vulnerability as delegation attacks.

We note app-app interactions can happen in other ways. Although
receiving a message from the user is the most intuitive trigger event to
indicate when the app should perform its actions, an app may subscribe
to other triggers as well, like when a file is shared or an emoji reaction
is added. As such, apps with delegated permissions to produce these
triggers can also launch potential delegation attacks.

Post-removal interactions. Even after an app’s removal from the workspace,
it can have residual effects that cause delegation attacks. Slack provides
its apps the ability to schedule a message to be sent at a future time (us-
ing the same chat:write user token scope). We find that if the app is
removed before the message’s scheduled time, its message will still be
sent, potentially invoking actions from other apps. In Microsoft Teams,
although there is no scheduling feature, this issue is more severe due to
its two separate permission schemes. Upon uninstallation, only the app’s
standard capabilities declared in the manifest will be removed, while its
delegation permissions acquired through the Graph API remain entirely
intact. Therefore, a user cannot, by simply removing a Teams app from
the workspace, prevent the app from continuing to send messages on
the user’s behalf and interact with other apps, allowing the channel for
delegation attacks to remain open.

Current defenses. We note that Microsoft Teams and Slack do have
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workarounds that can prevent app-to-app interactions. They allow apps
to interact with users through alternative ways, such as slash commands
and interactive UI windows. This prevents other apps from interfering
since neither BCPs allow an app to send slash commands or click buttons
in a UI. Slack in particular also tracks which messages are sent by a real
user through the Slack client and which are sent by a delegated app, so
that the app receiving the messages can choose whether to respond or not.
However, both of these mechanisms require the receiving app’s developer
to decide which actions can be triggered by other apps, but the current
design of BCP permission system does not provide any ways for it to
learn whether the delegated messages align with the user’s actual intent,
making it impossible to arrive at the correct decision. As we will discuss
in Section 2.7, a principled fix would trade-off functionality or usability.

Delegation Attack

We now focus on the delegation attack targeting both Microsoft Teams apps
and Slack apps. We have built a tool that crawls the information of a
targeted app from the two BCPs’ official app directories and analyzes
which trigger events the app is subscribing to. In the case of Microsoft
Teams, we can also extract all message keywords that trigger the targeted
app’s actions. We set up a workspace as defined per our threat model.
The attacker app has acquired the appropriate delegated permission from
a victim user who has also installed the targeted apps with connection to
third-party services. The attacker app produces the trigger events, and
we observe whether the targeted app will be tricked into performing the
actions (see Section A.1 for more implementation details). Since most
apps require a valid third-party account to function properly, performing
large-scale automated analysis is infeasible. Thus, in this section, we select
a few apps connecting to sensitive third-party resources and manually
target them, demonstrating that delegation attacks can indeed trigger
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security-critical or privacy-violating actions.

1 Send emails on victim’s behalf. MailClark’s Slack app [13] allows
sending emails directly from Slack to include non-Slack users in a Slack
conversation. MailClark provides a unique email address for a list of non-
Slack guests in a channel configured by the user. The email account and the
recipients are only accessible to MailClark and the user. The attacker app
induces MailClark to send any emails of the attacker’s choice to recipients
configured by the user. Specifically, the malicious app launches this attack
by sending messages to the channel as the user. During this procedure,
MailClark will automatically send the attacker’s message as an email to
all recipients and indicate the author as the user.

2 Chat with victim’s website visitors. Chatlio [5] is a service that lets
developers add live chat functionality to their websites. It also provides an
accompanying Slack app that automatically forwards any messages of the
website visitors to a Slack channel and vice versa. Therefore, website own-
ers can chat with any visitors in real-time through Slack. Unfortunately,
this convenient feature makes Chatlio’s app a victim of delegation attacks.
Our attacker app can post messages directly into the channels used by
Chatlio to chat with website visitors and thus launch further phishing
attacks or harvest sensitive user info, as it now appears like a trustworthy
entity to the visitors.

3 Merge pull requests in victim’s code repository. BitBucket’s Microsoft
Teams app [4] will merge a given pull request if it receives a message
starting with the keyword merge. It will then ask for confirmation, at
which point the attacker app can reply with the text yes to approve the
merge. The attacker app may additionally use the list keyword to ask
BitBucket’s app to display all pull requests in the victim user’s connected
repos or the find keyword to locate a specific pull request. If the repo
is public, the attacker can even submit and merge its own pull request,
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leading to code poisoning or backdoor injection.

4 Execute victim’s automation flows. Microsoft Power Automate has
a Teams app [41] that, upon receiving the message Run flow [id], will
execute the specified automation flow in the user’s account. These flows
can perform various actions in a wide range of services connected to Power
Automate. The app also accepts messages like List flows and Describe
flow [id] that can be utilized by the attacker to learn more about the
user’s flows and conduct more targeted attacks.

5 Retweet on victim’s behalf. Ziri [15] is a Slack app that helps users
interact with tweets in a non-disruptive way. It connects to the user’s
Twitter account and requests permission to retweet. After that, whenever
a Twitter link is shared in Slack, and the user adds a Twitter emoji reaction
to that message, Ziri will automatically retweet the shared Twitter on the
user’s behalf. The attacker app can thus send a message containing a link
to a chosen tweet (that includes harmful information) and add an emoji
to the message on behalf of the user. After that, Ziri will successfully
detect the tweet link and retweet it using the victim user’s account. Such
uncontrolled tweets can have detrimental effects, especially when the
connected account is high profile, such as the organization’s official twitter.

Summary. The first four attacks rely on message events to trigger the
actions in the targeted app, while the last one relies on a reaction event. We
note that once the attacker and targeted apps are installed and properly
authorized, the attacks do not require additional user inputs and can
happen anytime, even when the user is not logged into its BCP client.
In addition, the attacker app can delete the traces of trigger events once
the attack is finished, making it even sneakier (since in both BCPs, the
permission to send messages or add emoji reactions also grants for free
the permission to delete them).
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Analysis of Root Cause and Potentially Prevalence

The delegation attack is possible because both BCPs’ permission systems
violate the principle of least privilege. Currently, the permission to send del-
egated messages is governed by Slack’s chat:write or Microsoft Teams’s
Chat:ReadWrite scope; however, these two scopes allow the app to send
messages to any place that the user has access to, be it a public channel,
direct message with other users, or direct message with other app’s bot
user. In addition, neither BCPs provide additional runtime policies that
allows the user to limit the destinations. Therefore, even if the user wants
to install a simple app that only sends delegated messages to a small subset
of other users for sharing or notification purposes, it must grant this app
such overprivileged scopes that inevitable comes with the ability to launch
delegation attacks.

App’s residual permissions after removal. The reason why a removed
app can still keep some residual permission differs in two BCPs. Slack’s
permission system violates the principle of complete mediation by failing
to check that the proper provenance of the scheduled message, which
is the removed app, should have no permissions at the time when the
message is sent. Whereas in Microsoft Teams, it is the result of two separate
permission systems: only the app’s core capabilities are associated with
Teams, while the Graph API’s permissions are tied to the user’s Microsoft
Account (outside the permission system of Teams). Therefore, when the
app is uninstalled in Teams, only the former is revoked while the latter is
not affected. We note this issue is not Teams-specific, but also exists in other
systems when permissions are managed by different trust domains [203].

Potential Prevalence. We report the number of apps capable of executing
the delegation attack and that are vulnerable to the attack. For Microsoft
Teams, we find vulnerable apps by counting apps that use bot commands
capability, as these apps will accept text input from the user (or a delegated
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app) to perform various actions. We observe that 427 (33%) of Teams apps
use bot commands, implying that they are vulnerable to a delegation attack.
However, Teams apps do not list whether they will request any delegated
permission since it is acquired through a separate system. For Slack, we
find 563 Slack apps (23%) request at least one ‘write’ user scope, allowing
them to interact with other apps adversarially, while 1,493 Slack apps
(61%) request at least one ‘read’ scope, implying that they are subscribing
to events in the workspace and thus can be potentially affected by the
attack. We note that the measurements for Slack’s vulnerable apps are
the worst-case estimation. Since these apps are third-party web services
with hidden endpoints, it is impossible to learn the app’s behavior directly.
Furthermore, most apps only perform actions after a third-party account is
connected, preventing us from fully automating the evaluation of apps on
a large scale. Thus we may miscount apps that (1) have already employed
a countermeasure by blindly rejecting delegated messages, (2) subscribe
the certain events but never trigger their security-critical actions based on
these events.

2.5 User-to-App Interaction Hijacking
BCPs provide various features that serve as entry points for users to in-
teract with apps. Examples of these features includes ‘@’-mention, slash
command, and link unfurling (see Section 2.2). In this section, we discuss
how a malicious app exploits such interactions between the user and other
apps in the workspace. Specifically, we find two different ways that this
can happen: the malicious app can hijack other app’s registered slash
commands, and replace another app’s unfurled link content. In particular,
we note that both Microsoft Teams and Slack allow apps to customize
their appearance (e.g., name, icon, and description) without restriction.
A malicious app can thus completely mimic the appearance of another
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app4to exploit the above interactions more stealthily. Finally, we analyze
the root cause and potential prevalence of these attacks.

Slash Command Hijacking

In Slack’s user-to-app interactions, all apps’ slash commands share a single
namespace, creating the potential for name collisions. A malicious app
can hijack another app’s commands, responding to any user that tries
to launch the hijacked command in the victim app’s stead. Two specific
design flaws enable this attack. First, Slack only invokes the most recently
installed app when multiple apps in a workspace have registered the same
command. Second, both creating and renaming commands are silent
and do not trigger a notification or permission prompt in Slack. As a
result, one can hijack a targeted command in two ways: (1) create a new
command with the same name as the targeted one; (2) rename an existing
command to the targeted one. In other words, the commands scope becomes
over-privileged as it implicitly allows an app to take over any command
within a workspace (by exploiting the name collision). However, Slack
does not recognize this design issue as a security-critical problem5; we
find no runtime policy checks of an app’s permission to create or rename
commands with a specific name.

We demonstrate the command hijacking attack on Zoom’s Slack app [16].
From Zoom’s app, users can invoke the command /zoom to start private
Zoom meetings and display a Zoom call in Slack, as shown in Figure 2.5a.
If the command is invoked in a private channel, only users in this pri-
vate channel will receive this private call. We create a malicious app that

4This may not be the case for apps published in the BCP official catalog, as per their
security guidelines. Although a Slack app can still requests chat:write.customize to
send messages with customized appearance.

5Slack acknowledged this problem in its document, but only suggests developers to
“avoid terms that are ... likely to be duplicated,” and not to make the command “too
complicated for users to easily remember.”
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(a) The official Zoom app.

(b) The spoofed Zoom meeting.

Figure 2.5: Zoom meetings created by official and spoofed /zoom com-
mands in Slack. The spoofed Zoom meeting is secretly created by the
attacker but publicly shown as started by the victim. The word “Fake” is
added clear demonstration, it can be removed in practical attacks.

masquerades as the official Zoom app. At the time of installation, our ma-
licious app requests the commands scope to implement a benign command
called /foo. Once installed, we rename this command as /zoom to hijack the
previous official /zoom command. After that, the malicious app will use
the attacker’s Zoom account to start meetings every time a user invokes
the /zoom command, as shown in Figure 2.5b. Attackers can also treat
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Figure 2.6: Demonstration of phishing attacks using the Command Hijack-
ing attack in Slack. The two messages are sent to the user after invoking
the official and hijacked /gcal command, respectively. The attacker can
start a valid OAuth authorization process to acquire access to the user’s
account.

this vulnerability as a novel entry point for phishing attacks, as shown in
Figure 2.6.

Since Microsoft Teams does not allow apps to register their own com-
mands, it does not suffer from this vulnerability.

Link Unfurling Hijacking

Microsoft Teams allows an app to provide customized link unfurling for an
authorized user. The app can register a domain in its manifest. Whenever
the user posts a URL under this domain, the app can append a rich message
card containing texts, images, or even interactive buttons. For example,
Lucidchart’s Teams app [12] unfurls a document sharing URL to preview
the document as well as a button to accept the sharing invitation. Such
unfurled content can be hijacked similarly to Slack’s slash command: a
malicious app can register the same domain as the victim app and, if the
malicious app is installed after the victim app, its unfurled content will be
displayed instead of the victim app’s one. Moreover, the malicious app
can masquerade as the victim app to further deceive the user, as its name
and icon will also be part of the unfurled content.

While Slack also allows multiple apps to register the same domain, it



36

chooses to display all app’s unfurled contents in parallel, avoiding the
issue of link unfurling hijacking.

Analysis of Root Cause and Potential Prevalence

The command and unfurling hijacking attacks work by violating least
privilege and complete mediation, which results from an overprivileged scope
and the improper tracking of resource ownership. First, the corresponding
scope that allows an app to use slash commands or unfurl a domain should
not spontaneously grant the ability to modify the app’s currently registered
command names or domains; an app that performs such operation should
need to be re-installed. Second, whenever an app registers a command or
a domain, it should gain ownership of this command or domain, however,
given the namespace collision, both BCPs fail to enforce such ownership,
which thus can be easily taken over by another newly-installed app.

Potential Prevalence. In Slack, this slash command attack only exploits
the commands scope, which is requested by 1,266 apps (51.5%). These
apps can immediately overwrite each other’s commands to hijack their
standard workflows. Recall, once installed, these apps can change their
slash commands at any time, without requiring re-installation or notifying
the users (or admins) of the workspace. We also find that many apps in the
Slack App Directory already have conflicting commands: 270 apps register
commands used by other apps. This implies the wide reuse of conflicting
commands, and thus Slack is likely to preserve this design choice. In
Microsoft Teams, the link unfurl attack relies on the messageHandlers
capability, which is requested by 77 apps (5.9%). We find that 13 of them
register a domain that is also registered by other apps.
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2.6 App-to-User Confidentiality Violations
We analyze the different ways in which BCP apps interact with user mes-
sages. Our main discovery is that an attacker can leak messages from
private channels without having permission to read from those channels.
Concretely, we can exploit two features in Slack: (1) Link unfurling of
message URLs (Section 2.6); (2) Pinning, starring, or emoji-reacting to
messages (Section 2.6). We additionally find that the root cause behind
this privilege escalation is incomplete mediation coupled with a lack of
ownership tracking of resources (Section 2.6). We note that in Microsoft
Teams these features are either absent or inaccessible to apps, so it does
not suffer from this vulnerability.

Message Extraction Attack via Link Unfurls

BCPs have a built-in link unfurling feature that previews the website
content for any URLs contained in a chat message. We first describe how
link unfurling works with message URLs and then show an attack where
a malicious app without Slack’s groups:history, the permission scope
that controls the read access to messages in private channel, abuses this
feature to effectively monitor all chats in any private channel joined by an
authorized user.

Unfurling of Message URLs

Slack provides a public URL to every message in a workspace. This URL,
if accessed, will only show the message if the login credential of a user
who has access to the message is provided. We find that when the user
sends a message m1 in their own personal channel (i.e., where users can
message themselves) andm1 contains a URL that links tom2, wherem2

can be any message in any of the channels that the user is a member of,
Slack will automatically unfurl m2, adding its text content (up to 8001
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User 1

Private Channel #1

Figure 2.7: Privilege escalation exploiting link unfurling.

characters) and author as an additional attribute to the original message
m1.

While this is a reasonable and useful functionality because the user’s
personal channel is intended for drafting messages and keeping links and
files handy (as described by Slack), it leads to unwarranted access, as
illustrated in Fig. 2.7. Slack allows an app with im:history user token
scope to read the user’s personal channel. This grants the app the ability
to readm1 with all its attachments. In this case, the attachments include
the unfurled content, which is m2, a message from a private channel.
Therefore, the app is implicitly permitted to readm2, which is protected
under the groups:history scope, and the app with only im:history does
not have access to originally.

Attack Workflow

Now, we present a powerful attack based on the issue identified above.
Through this attack, a malicious app can achieve privilege escalation —
it gains the ability to monitor all chat messages in any private channel
where the victim user is a member of, effectively gaining the permissions
provided by the groups:history user token scope but without explicitly
requesting it.

The key insight enabling this attack is that if the attacker can learn
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the message URL of a private channel message, it can then instruct the
malicious app to post a generated URL to the victim user’s personal chan-
nel (using the chat:write scope as we described in Section 2.4), actively
leaking messages from that private channel. We additionally find that
Slack’s message URL always follows the format:

“https://[workspace].slack.com/archives/
[channel-ID]/p[message-ID]”

Therefore, the attacker’s job becomes learning valid combinations of chan-
nel ID and message ID.

We have discovered several ways to obtain such combinations without
resorting to groups:history and detailed them in Section A.1. Here we
describe one method that utilizes groups:read. This user token scope
provides the read access to the metadata of the user’s private channels,
including the channel ID and the ID of the latest message in the channel.
By constantly querying a channel’s metadata, the attacker can pull every
message from any private channel the victim user has joined. We note that
even if multiple messages occur between two queries, the attacker can still
guess their IDs since Slack’s message ID is a counter that increments for
consecutive messages (see Section A.1 for details).

Extracting other types of messages and files. This attack also works for
other types of messages. An app’s bot user can use this to view any public
channel messages without the corresponding bot token scope or invitation
to join that channel. Additionally, it can even be applied to read files
shared with the user. Unlike message URL, there is no easy way to obtain
a valid file URL through alternative approaches; yet, whenever a file is
uploaded in a chat message, the file’s public URL will also be included
in that message. The attacker can then instruct Slack to unfurl the public
URL to obtain a direct-downloadable link. Therefore, the attacker can
access files by reading all the messages in the user’s joined channels.
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Message Extraction Attack via Pins, Stars, or Reactions

We demonstrate another message extraction attack exploiting the incom-
pleteness of resource ownership tracking in Slack. This time we leverage
the productivity feature of pinning and starring messages (that add them
to a user’s saved message list) and the convenience feature of adding
emoji reactions to messages. The attack builds upon the same message ID
guessing technique from the prior attack.

To pin, star, or react to a message, the app needs to present the mes-
sage ID and the ID of the message’s channel to the corresponding Slack
API, with the pins:, stars:, or reactions:write user token scope respec-
tively. However, the read counterpart of these scopes (pins:, stars:, or
reactions:read) does more than permit the app to view the IDs of the
pinned, starred, and reacted messages; they also allow the app to view
the contents of these messages. Therefore, after a valid channel ID and
message ID is obtained, the app with both read and write scopes can
either pin, star, or react to the message, effectively allowing itself to read
the given message. As we have seen in the prior attack, an app without
permission to read a user’s private channel message is still able to acquire
the channel ID and message IDs of that channel’s messages. Hence, a
malicious app can repeatedly pin, star, or react to these messages and read
through all messages in the channel. We note that the app can also undo
these operations using the corresponding write scope again to prevent the
user from spotting any suspicious activity. With this attack, the malicious
app can read all the messages that the user has access to, using only these
seemingly harmless operations.

Analysis of Root Cause and Potential Prevalence

In both message extraction attacks, the malicious app obtains the ability to
read any messages that the user has access to, with only some irrelevant
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permission scopes. We consider this behavior as a violation of the user’s
privacy expectations. When a user grants the im:history scope to an app,
there is no description in the authorization prompt that suggests the app
can read private channels6. In addition, it puts the privacy of other users in
these channels at risk — the messages they posted may suddenly become
accessible to an app that they never authorized. Even worse, they have no
way of knowing the leakage, since all it takes is for one user to install the
app, an action that is hardly perceptible to them (Section 2.2), while the
app itself is never a member of the channel.

An adversarial admin can use these attacks to monitor chats in pri-
vate channels they are not invited to by forcing everyone to install their
malicious app that disguises itself as an innocent management app.

Such privacy violation in the first attack is a failure of not enforcing
complete mediation, which results from the improper tracking of resource
provenance in Slack. Take Fig. 2.7 for example: when Slack finds a link
to m2 in m1, it blindly appends the content of m2 as m1’s attachments,
without tracking wherem2 originates from. As such, any entity that can
read m1 can also read m2, whereas these two messages have different
provenances and should be checked against two separate permissions.
The second attack can also be mitigated if Slack tracks and checks who
performed the operation. While Slack needs to allow apps to read the
content of pinned, starred, or emoji-reacted messages for functionality
purposes, this rule should not apply if the app trying to read the message
is the one who performed the operation (since it does not make sense for
an app to pin a message it does not already know).

Potential Prevalence. Out of all 1,640 apps (66.7%) that do not request
explicit scopes to read private channels (i.e., groups:history), we only
counted 11 apps with the necessary permissions to extract messages via

6Accessing private channel messages with only im:history will cause Slack API to
return an missing_scope error and a message saying that groups:history is needed.
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pins, stars, reactions, or link unfurls.

2.7 Potential Countermeasures
We discuss countermeasures for the attacks we previously discussed. We
note that these countermeasures are point fixes for the BCP permission
model as it currently exists. The attack classes we’ve identified exist be-
cause the BCP permission model violates classic security principles. As
such, even with these countermeasures, we cannot guarantee that all fu-
ture issues will be prevented. We characterize each countermeasure from
three perspectives: which design issues it attempts to solve, how much it
helps mitigate the attacks, and what the cost or trade-off is.

Finer-grained Scopes

The BCPs we examined define several coarse-grained scopes that manage
multiple resources of different types. For example, Slack’s chat:write
user scope allows an app to send messages to any target with the identity
of the authorizing user. The Microsoft Teams Graph API Chat.ReadWrite
scope grants a Microsoft Teams app similar permissions. Therefore, even
if the app’s functionality only requires sending messages to human users,
it needs to acquire one of these broad scopes, which inevitably comes with
the permission to send messages to apps and thus the ability to perform
impersonation attacks on other apps. These scopes are coarse-grained
as they allow an app to send messages to separate targets (app and non-
app). BCPs can break down these scopes into two separate scopes: one
that allows sending messages to non-app targets, and another that allows
messages to app targets. However, this countermeasure cannot handle the
attacks exploiting scopes that do not have finer-grained concepts (such as
command hijacking).
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Stricter Runtime Policy Checks

Stricter runtime checks can help address the message extraction attacks
found in Slack. Specifically, Slack first needs to fix its coarse-grained mod-
eling of the message resources by decoupling the unfurled content from
the message and treating it as a separate type of resource. Slack also needs
to track the origin of the unfurled content, for example, whether it is a
message from another channel or a file shared with the user. Then, when-
ever an app requests to read a message, Slack should enforce an additional
dynamic condition check to examine whether the provided token has the
correct privilege to access the origin of the unfurled content. If not, only
the message should be returned to the app, but not the appended unfurled
content.

For the attack via pins, stars, or reactions, we present two options. The
first is that when an app wants to read the pinned or starred messages,
Slack should send the message content only if the app has the privilege
to read the original message; otherwise, only the message ID is returned.
However, this may inversely encourage malicious apps to request more
privileges to maintain their original functionality. The second is for the
BCP to consider the entity that issued the pin, star, or react operation. For
example, an app can only read the content of a pinned/starred/reacted
message if the pinning/starring/reacting is done by a human user or a
different app; if it is done by the requesting app itself, then the BCP only
returns the message ID. The tracking should occur even when a user has
delegated control of their account to an app. When an app performs
actions on behalf of a user, those actions should still be tracked as having
been taken by an app. This should not hurt any benign app’s functionality
because if a message is pinned, starred, or reacted on by a benign app, it
is reasonable to assume that the app should already know the message’s
content.

However, this countermeasure does not apply to situations where it is
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difficult for an app or Slack to determine whether an action is malicious
or user-intended. In Section 2.4, we demonstrated various legitimate
scenarios in which users indeed want apps to perform actions on their
behalf.

Indicate Identity of Action Issuer

To counter delegation attacks, the victim app should be able to determine
if a received event comes from a human or an impersonated user and thus
choose whether to respond or not. Thus, BCPs should indicate the identity
of the action issuer (i.e., whether a real or delegated user performed the
action) and therefore allow for identity checks on the victim app’s side.
Slack has provided this information for a few actions, such as posting
messages but ignored it for other actions such as reacting to a message,
which might also lead to exploits. However, as mentioned earlier, in some
cases, even if the app knows the action is coming from another app, it is
hard to tell whether the intent of the action is malicious or not.

Explicit User Confirmation

The final countermeasure is to request confirmation from users. From
the perspective of victim users, all attacks stem from the fact that either
victim apps or the BCPs automatically reacted to malicious events (in an
unwanted way). Therefore, before accessing sensitive data, both the apps
and the BCP should prompt the user for confirmation. For example, they
can create a consent popup UI that involves clicking a button. Based on
the current design of Microsoft Teams and Slack, only human users can
perform such actions, making it hard to forge UI actions. This will prevent
both delegation and message extraction attacks.

To resolve namespace collision attacks, BCPs should actively check
for namespace collisions when apps are being installed. For example,
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Slack should detect when an app attempts to register a command with
the same name as a command already registered in the workspace, and
Microsoft Teams should detect when an app has the same name as another
app already installed in the workspace. We outline three solutions that
BCPs may adopt. First, they can refuse to install the new app whose
command would conflict with an existing one. However, this robs BCPs of
functionality and unfairly penalizes apps installed later. Second, they can
permit installation but require the user to make a selection whenever a
namespace collision arises during use, but this requires the user to pay
attention at all times. Third, after detecting a collision, they can provide
an alias mechanism where users can change the conflicting names. In
conclusion, runtime user confirmation can mitigate namespace collision
attacks, but at the expense of productivity and user convenience.

2.8 Related Work
To the best of our knowledge, this is the first work to analyze the security
and privacy of third-party apps in business communication platforms.
However, considerable work has been done in other types of app platforms
that share varying degrees of similarities with BCPs.

Social networks. Facebook and other social network platforms allow
third-party applications that offer users additional functionality and ser-
vices but generally at the cost of user privacy [74, 167]. These apps are
similar to BCP apps in terms of pure server-side implementations and
all-or-nothing permission, but they are installed in a single-user home
space, whereas BCP apps are in a multi-user workspace. Symeonidis et
al. show Facebook apps lead to collateral information collection [181],
where they can collect not only data of the users who install them but
also of their friends. This is akin to our findings of BCP apps; however,
BCP apps can also actively affect other users’ actions, such as through
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interaction hijacking. On the other hand, several studies propose different
access control schemes for apps in social networks [53,83,174,175,182,188].
While these solutions aim to solve the problem of coarse-grained permis-
sions, they usually require the social network provider to host some part
of the application codes, which does not suit the current communication
framework of BCP apps.

Voice assistants. Amazon Alexa, a voice assistant often built into smart
home devices, allows users to install third-party apps called skills. Similar
to BCP apps, Alexa skills often appear in the form of chatbots; however
the primary way of interacting with Alexa skills is through voice com-
mands. Studies have shown that Alexa skills can be easily squatted to
enable phishing attacks [134, 207], similar to how Slack’s commands can
be hijacked. However, skill squatting relies on the inherent ambiguity of
voices, whereas we exploit the namespace collisions of commands. In an
orthogonal direction, many works try to measure the privacy practices of
current Alexa skills and find that many skills do not honor their privacy
policy and request overprivileged access [44, 113, 141, 178].

Android. Many studies have analyzed the security and privacy of An-
droid apps. The closest related attacks to this work are the confused
deputy and collusion attacks [68, 96, 145, 147, 171]. Just as in BCPs, the
app-to-app communications in Android can be used with malicious intent;
however, they usually aim to achieve privilege escalation to access more
user data instead of attacking users’ accounts in other services. In addition,
the problem of coarse-grained permission scopes is also found in Android,
granting apps powerful capabilities that can be used to exploit various
vulnerabilities [125]. Meanwhile, defenses proposed for Android apps
usually require static or dynamic analysis [99, 104, 112, 192, 196], making
them incompatible with BCP apps, which have no client-side codes.

Other OAuth-based systems. Studies have shown that overprivileged
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attacks are a common issue in OAuth-based systems [71, 73, 101, 115, 126].
In addition, despite its wide adoption, OAuth is usually poorly designed
and implemented by developers [76, 179, 189]. BCPs use coarse-grained
scopes for certain operations and couple them with separate runtime
policy checks that we have shown to be incomplete.

2.9 Limitations
For ethical reasons, we did not publish our attack apps to the Slack app
directory or Microsoft Teams app store, and thus cannot comment on their
vetting processes. However, we did analyze their security guidelines [35,
40] for publishing apps and found no obvious restrictions that would
fundamentally prevent the attacks described in this work. These attacks
rely on abusing permissions acquired for benign purposes, causing the
information-limited vetting to be ineffective. BCPs do, however, prohibit
two apps from sharing the same name, making it harder for a published
app to mimic the appearance of another app; but as we noted in Section 2.5,
a Slack app can circumvent this restriction by requesting the chat:write
.customize permission scope, which allows the app the send messages
using customized name and icon, avoiding the need to modify the app’s
own name and icon declared in the manifest.

2.10 Summary
We performed an experimental security analysis of the app model of two
popular BCPs: Slack and Microsoft Teams. Our methodology was to
study each BCP-facilitated interaction method between apps and users.
We found that these BCPs violate two standard security principles: least
access and complete mediation. We created proof-of-concept attacks that
exploit these violations to (1) impersonate users and trick victim apps into
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performing unwanted actions; (2) hijack commands; (3) steal messages
from private channels without appropriate permissions. Our discussion
of countermeasures indicates that while point fixes for these attacks can
be deployed at the cost of BCP usability, preventing further issues requires
redesigning the BCP app access control model.
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3 etap: protecting data privacy and integrity in
trigger-action platforms

From this chapter, we begin to study the second category of threats in
online integration platforms, which is their extensive access to user data
from connected third-party services. Here we first focus on trigger-action
platforms, which is a popular type of integration platforms with plethora
of third-party connections, due to the generalizability of these platforms’
trigger-action style computational paradigm. We introduce eTAP, a privacy-
enhancing protocol that provides no plaintext access to the platforms.

3.1 Introduction
Trigger-action platforms (TAPs), such as IFTTT [26], Zapier [32], and
Microsoft Power Automate [20] are web-based systems that enable users to
stitch together their cyber-physical and digital resources (e.g., IoT devices,
GMail, Instagram, Slack) to achieve useful automation. TAPs provide
a simple trigger-compute-action paradigm and an easy-to-use interface to
program automation rules.

For example, using their smartphone, a user can setup a rule that
checks if an email contains the word “confidential” and, if so, sends an
SMS with the subject line and the sender’s address to a pre-specified
number (Fig. 3.1). Instead of an SMS, the rule could also blink a smart
light whenever a matching email arrives. To execute this rule on a TAP,
when an email arrives (trigger), the mail service (trigger service) sends the
email to the TAP that runs the string search (computation), which then
contacts an SMS gateway or a smart bulb service (action service) with
required information to perform the action. We refer to the combination
of trigger/action services and the TAP as a trigger-action system — a key
ingredient for fulfilling the promise of the IoT [146]. They provide a layer
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Figure 3.1: Overview of current trigger-action systems. The dataflow
for the example rule is illustrated in blue color: “IF I receive an email
containing the word ‘confidential’, THEN blink my desktop smart light.”

of abstraction that enables trigger and action services to develop APIs
independently without worrying about compatibility with each other.

These benefits unfortunately come at the high price of private data dis-
closure to the TAPs. Even the simple rule discussed above reveals the user’s
private emails to the TAP. As the TAP is the center of communication be-
tween triggers and actions, it can launch person-in-the-middle attacks by in-
visibly collecting private information on all of its users, similar to what has
already been happening on centralized ride-hailing platforms [114, 140].
Due to the highly compatible nature of TAPs, this data includes location,
voice commands, fitness data, pictures, files, etc. [120] and is limited only
by the variety of online services of users (e.g., IFTTT supports 600 ser-
vices [118]). Commercial TAPs do not provide any technical protections
for user data. For example, IFTTT’s terms of use explicitly state that they
collect personal data from third parties, and may pass it to other third
parties, partners, or any company that might acquire IFTTT [120].

Furthermore, because TAPs are widely-used centralized web services
(e.g., IFTTT has more than 20 million users [122]), they are attractive
targets for attackers. Breaches of cloud services are commonplace [18,
160, 165, 193]. Attackers sometimes even have continued access to the
compromised service for days, and even weeks before getting detected [86,
87, 159]. A similar breach will have disastrous consequences for TAP
users. Such privacy risks might discourage users as well as trigger/action
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services from using TAPs. Indeed GMail, due to security and privacy
concerns, pulled back some of its APIs from IFTTT [163].

In this chapter, we introduce eTAP, an encrypted trigger-action plat-
form that executes user rules without accessing the underlying user data
in plaintext. Thus, eTAP provides confidentiality even when the attacker
fully controls the TAP. Although this problem fits in the general framework
of secure function evaluation (SFE) [199,200], building a functional and se-
cure trigger-action platform with good performance requires overcoming
several challenges.

First, we desire confidentiality of user’s data and authenticity of com-
putation when the TAP is compromised and acts maliciously. While there
are protocols for SFE that provide security even if some parties act ma-
liciously [105, 142], these constructions are not yet practical [142, 166].
Second, using off-the-shelf protocols for SFE will require invasive changes
to the architecture of trigger-action systems that break the independence
between trigger and action services, making them less useful. Third, run-
ning arbitrary computations on the TAP using SFE will be inefficient.

We leverage the unique structure and threat model of trigger-action
systems to overcome these challenges. At a high-level, we create a trusted
generator of garbled circuits (GCs). This allows eTAP to use semi-honest
implementations of SFE coupled with a few efficient extensions, which
we contribute with security proofs, to achieve security against a fully
malicious circuit evaluator.

In our setting, the user’s smartphone, a standard component in TAP
design, plays the role of a trusted circuit generator that periodically gen-
erates and transmits garbled circuits to the untrusted TAP. The trigger
service garbles sensitive data when it is available and calls the TAP, which
then executes the circuit and contacts the action service with the (garbled)
results. The action service performs security checks and then executes
the action. We assume that the user’s phone is fully trusted, while TAP
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is malicious. An attacker interested in compromising a large number of
users is more likely to try compromising the TAP than the user’s phone. To
maintain the same level of trust as current TAPs provide, we treat the trig-
ger and action services as semi-honest — they follow the protocol but can
be inquisitive — and they should not learn any new private information
that they do not learn in the current setting.

To overcome the challenge concerning the efficiency of arbitrary com-
putations, we perform an analysis of the types of computations in popular
commercial trigger-action platforms. We show that the computations
supported by TAPs are stateless and use Boolean, arithmetic, or string
operations. Most GC libraries support Boolean and arithmetic operations
natively, but none support string operations out of the box. Existing work
contributes oblivious deterministic finite automata that can match regu-
lar expressions [151]. However, it does not support substring extraction
and replacements — a common operation in trigger-action systems. We
therefore introduce a novel approach to efficiently encode a subset of fixed-
length string operations as Boolean circuits. We then use the standard
GC approach to evaluate them securely on the TAP. Our approach also
has the advantage of unifying all the formal security properties of eTAP
rather than having a separate set of proofs for string operations. eTAP can
compute 93.4% of all rules published on Zapier that require computation
and 100% of the 500 most-used rules on IFTTT. (Of course, eTAP supports
all rules that do not require any computation.)

We formally prove the security of eTAP in the presence of a malicious
TAP (Section 3.6). We show that the malicious TAP can execute user
rules without learning the private data or tampering with the result of
computation. eTAP also provides mutual secrecy between the trigger and
action services.

eTAP is a clean-slate approach to building trigger-action systems and
lays a foundation for securing the data they handle. However, it does
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require some changes to current systems. First, the trigger/action services
need to understand our protocols. We provide simple shims that they can
use to upgrade their functionality while maintaining their independence
and RESTful nature. Second, the user’s client device takes on a more
prominent role because it generates garbled circuits. As efficient circuits
cannot be reused in general, the client has to periodically generate and
transmit these circuits to the TAP. We estimate that this process has a
modest impact: the trusted client is expected to transfer 61.7 MB of data
per day for an average user. This is equivalent to the data consumed by
uploading a one-minute of Full-HD video.

3.2 Background
We discuss background information on trigger-action systems and the
cryptographic primitives that we use.

Trigger-Action Systems

Trigger-action systems allow stitching together disparate online services us-
ing a trigger-compute-action paradigm to automate different tasks. There
are three main components of the system: trigger services (TSs), action
services (ASs), and a trigger-action platform (TAP). We also explicitly
mention another computing component: the user’s client device that they
use to interface with the trigger-action system. Fig. 3.1 shows the interac-
tions between different components.

Trigger and action services are online services for IoT or web apps.
There are a plethora of such services such as Instagram, Slack, GMail,
Amazon Alexa, Samsung SmartThings, and many others. These services
rely on REST APIs to send and receive data, and each service may support
several APIs to provide different functionalities. They typically support
the OAuth protocol [158], which is used to delegate authorization. With
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OAuth tokens, a third party, such as a TAP, can access APIs and execute
trigger-compute-action rules.

Commercial TAPs are compatible with hundreds of trigger and action
services, allowing each trigger or action service to focus on building their
own REST APIs without worrying about compatibility with each other.
Third-parties own a large majority of these services that integrate with
IFTTT (e.g., LG, Samsung, Google).1

Additionally, modern TAPs also allow performing non-trivial compu-
tation over the trigger data. The ability to modify the trigger data provides
great flexibility for TAPs to achieve compatibility between trigger and
action services (e.g., two calendar apps that use different date formats).
The TAP also uses operations to decide whether or not it should send
a message to the action service (e.g., does the email contain the word
“confidential”). TAPs serve as a computation and communication hub.
Zapier has explicitly supported computation on trigger data from the very
beginning [24, 25]. IFTTT has recently started to expose its computing
interface to end-users [121]. Thus, trigger-action systems are evolving to
be trigger-compute-action systems. We use these two terms interchangeably
throughout the chapter.

Users interface with trigger-action system through a client device, typi-
cally a smartphone. The user programs rules by selecting a trigger service,
then specifying a computation on that data using a library of functions,
and finally selecting an action to be run on the action service. As noted
before, the user also authorizes the TAP to access their online services
using the client device.

Privacy and authenticity risks in current TAPs. Commercial TAPs oper-
ate on sensitive trigger data of millions of users, making them an attractive
target for attackers. If the TAP is compromised, the attacker gains the

1As of Aug 2020, 417 out of 522 services on IFTTT are third-party that require a user
to login and authorize access to IFTTT.
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privilege of the TAP — unfettered access to user data and resources. The
types of data are limited only by the set of rules that users create and
the end-point services that the TAP supports. Commercial systems like
IFTTT support approximately 600 services currently [118]. The sensitive
information from these services can be emails (our earlier example), data
files, health information, voice commands, images, etc.

Fernandes et al. [102] first noted this problem with TAPs, and dis-
cussed a more appropriate threat model where TAP can act maliciously.
Under this model, they addressed a sub-problem: preventing a compro-
mised TAP from misusing overprivileged OAuth tokens. Their work adds
integrity to the rules, but it does not allow any computation over the trigger
data.

By contrast, we target modern TAPs that allow computation over the
trigger data. Beyond integrity, we also aim to protect the privacy of that data.
Our work provides a way for TAPs to compute on sensitive data without
seeing the plaintext, despite arbitrarily deviating from the protocol. We
believe such privacy risks might be preventing trigger-action systems from
achieving their true potential. Furthermore, we provide computational
integrity as well, thus subsuming prior work [102].

Cryptographic Primitives

Symmetric-key encryption scheme. Let E = (K, E, D) be a semantically
secure encryption scheme. The key generation function K(1κ) generates a
κ-bit uniformly random key k; the randomized encryption scheme E takes
a message x ∈ X and the generated key k as input and outputs a cipher
text ct←$ E(k, x); and the deterministic decryption function takes a cipher
text and the key k as input and outputs a message, x← D(k, ct), or ⊥ (if
decryption fails).

We use an authenticated encryption scheme [63] that achieves the IND-
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CCA security guarantee. This ensures both the privacy and authenticity
of plaintext.

Garbled circuits (GCs). This is a cryptographic technique for secure func-
tion evaluation (SFE) [63, 201]. Following Bellare et al.’s [64] notations,
a garbling scheme G is a tuple of four functions G = (Gb, En, De, Ev). Let
f : {0, 1}n → {0, 1}m denote the function to be evaluated securely. Here, Gb
is a randomized garbling function that converts the function f (represented
as a Boolean circuit) into a garbled circuit F. It also outputs encoding and
decoding information e and d needed for encoding inputs and decoding
the outputs. As such, (F, e,d)←$ Gb(1κ, f), where κ is the security param-
eter. The encoding function (En) encodes an input x ∈ {0, 1}n using the
encoding information e, which is the set of labels corresponding to the
value of each bit in x; X← En(e, x). The evaluation function (Ev) enables
evaluation of the garbled circuit F over the garbled input X to generate the
garbled output Y ← Ev(F,X), which is the set of labels corresponding to
the output wires. Finally, the decoding function (De) decodes the output of
the evaluation y← De(d, Y).

Garbling involves generating two random labels Lw1 and Lw0 for each of
its wires, representing the true and false value for the wirew. A number of
optimizations have been proposed to reduce the size of a garbled circuit.
One of them is the free XOR technique [130], which requires all wire labels
to follow the form Lw1 = Lw0 ⊕ er, where er is a string randomly chosen
by Gb. This allows XOR gates in the circuit to be computed with only the
input wire labels.

Typically, GCs are used for 2-party secure function computations where
two parties with their respective private inputs x1 and x2 run the protocol
such that, no party learns more than f(x1, x2) for a public function f. The
protocol works as follows. First, one of the parties, called the generator,
uses the garbling function to generate (F, e,d)←$ Gb(1κ, f). Next, it en-
codes its input as X1 ← En(x1, e). The other party, called the evaluator,
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receives F and X1 and also retrieves X2 ← En(e, x2) — encoding of its pri-
vate input x2 — using an oblivious transfer (OT) [164] protocol with the
generator. Following this, the evaluator runs the garbled circuit to obtain
Y ← Ev(F, (X1,X2)). Finally, either party can decode Y to obtain the final
output y← De(d, Y).

A secure garbling scheme provides the following security proper-
ties [64]: (a) Message obliviousness. Given (F,X), an adversary learns
nothing about x or y (beyond what is known from f). (b) Input privacy.
Given (F,X,d), an adversary learns nothing about x beyond what is known
from y and f. (c) Execution authenticity. Given a garbled input X, it is hard
to find Y ′ such that Y ′ 6= Ev(F,X) and De(d, Y ′) 6= ⊥.

We use these cryptographic primitives to design eTAP. In Section 3.3,
we analyze existing TAPs to understand what functions eTAP must sup-
port. We give the detailed protocol in Section 3.5, with its security proven
in Section 3.6.

3.3 Analysis of Current Trigger-Action Systems
We analyze two popular commercial TAPs, IFTTT [26] and Zapier [32]
with the following goals in mind: (1) understand the sensitive data that
TAPs compute on; (2) establish that although TAPs offer a variety of
operations on data, they are not arbitrary and will fit well in a garbled
circuit framework; and (3) derive an abstract TAP computational model
that will help ensure our system supports realistic functionality.

Types of sensitive information. The current trigger-action system design
gives the cloud-based TAP complete access to trigger data. To better char-
acterize the types of sensitive trigger data accessible to TAPs, we analyzed
the IFTTT dataset mentioned in [150], by mapping each of its 320,000
IFTTT rules to one of the three trigger sensitivity levels defined by Bastys
et al. [60] — public, private, and time-sensitive. Private triggers contain
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Figure 3.2: Breakdown of triggers, rules, and installed rules in IFTTT based
on their sensitivity levels.

information like emails and calendar events, whereas public triggers con-
tain information like news and weather reports. The time-sensitivity level
means that private information exists in the availability of the trigger mes-
sage. For example, considering the rule “IF I leave home, THEN turn off
the WiFi,” the TAP will learn whether the user leaves home depending
on whether it receives a message from the trigger service. Fig. 3.2 shows a
breakdown of sensitive trigger data according to how frequently they are
used.

We observe that although a significant percentage (15%) of triggers
and action APIs supported by IFTTT are time-sensitive, in reality, they
are rarely used — only 0.8% of all available rules in IFTTT (or 0.9% of
all installed rules) use a time-sensitive trigger. We also observe that, al-
though there are fewer private triggers than public ones, private triggers
are most frequently used — 61% of all installed rules contain a private
trigger API. These APIs return private information like emails, messages,
location traces, photos, sensitive files, medication lists, health informa-
tion, etc. Thus, we design eTAP to protect the vast majority of private
trigger information that people actually use in real-world rules. We do not
currently provide confidentiality for time-sensitive information, but we
outline possible approaches using standard techniques like cover traffic in
Section 3.9.

Operations on trigger data. IFTTT allows users to express computation
on trigger data using filter code — small snippets of TypeScript with some
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restrictions (e.g., no I/O operations) [23]. Zapier rules contain two com-
ponents: filters that compute a predicate on the trigger data, and formatters
that modify the trigger data. Multiple filters and formatters can be chained
together.

To understand the common operations in IFTTT, we again used the
dataset of Mi et al. [150]. We selected the 500 most popular rules (based
on user installation count) that are connected to private trigger APIs.
Unfortunately, a challenge is that filter codes for IFTTT rules are not public.
We therefore manually approximated the filter code for these rules by (1)
estimating the functionality of each rule based on their title and description,
(2) examining the corresponding trigger/action APIs, and (3) deducing
the operations that are required to convert trigger fields to action fields.

We also crawled the Zapier website for one day in October 2019 and
collected all the publicly available rules that require computations on
trigger data [24, 25]. We collected a total of 378 rules and extracted the
operations used in those rules.

The operations we found in IFTTT and Zapier are shown in Fig. 3.3.
Current garbled circuit libraries support a majority of these operations
natively. The main challenge is string operations, for which we contribute
a novel technique to convert deterministic finite automata into Boolean
circuits (Section 3.5).

Execution model of trigger-action systems. Based on our survey of IFTTT
and Zapier, we derive an abstract model of these trigger-compute-action
rules. During rule setup on the client, the user typically specifies two
functions — a predicate f1, and a transformation f2. These functions take the
trigger data and some additional user-provided constants as input. The
predicate function f1 tests the trigger data for a condition to determine
whether TAP should contact AS. The output of f1 is either true or false. The
transformation function f2 modifies the trigger data before sending the
result to AS. Both f1 and f2 run inside the cloud-based TAP.
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Type Operation Description

Bool
x | a x OR y
x & a x AND y
! x NOT x

Num
x < n Is x less than n?
x > n Is x greater than n?
x.mathop(n) Basic math ops. (+,−,×,÷)
x.format() Format x into a string

Str

x == s Does x exactly match the string s
x.contain(s) Does x contain the string s
x.startwith(s) Does x start with the string s
x.endwith(s) Does x end with the string s
x.split(d, i) Split x using delimiter string d

and select the i-th substring
x.replace(s, t) Replace all occurrences of s in x

with t
x.to_lowercase() Convert all characters in x to low-

ercase
x.truncate(n) Truncate x to size n
x.extract_phone() Extract the first phone number

found in x
x.extract_email() Extract the first email address

found in x
x.strip_html() Remove all HTML tags in x
x.html2markdown() Convert all HTML tags in x to

Markdown
m.lookup(x) Look up the value for the key x in

a user-provided map m

Any x == null Does x exist?
x.default(y) Set value of x to y if it does not

exist

Figure 3.3: Operations used in top 500 IFTTT rules with private triggers
and all Zapier’s function-dependent rules.

Let x ∈ X be the part of the trigger data on which TAP performs some
computation, and y ∈ Y be the action data TAP sends to AS, where X and
Y are the domains of the trigger and action data, respectively. Both x and
y can be data structures that contain multiple fields. We find that TAPs
do not modify some fields of trigger data such as large media files, but
only forward them to AS. We denote such trigger data as payload v. Let
c1, c2 ∈ C be the two user-provided constants for the functions f1 and f2,
where C is the domain of the constants. On receiving (x, v) from TS, TAP
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executes

“if f1(x, c1) = true, then send (f2(x, c2), v) to AS”

For simplicity, we assume the domains of f1 and f2 to be the same. So,
f1 : X× C→ {true, false}, and f2 : X× C→ Y.

TAPs operate in two modes: (1) polling mode, where TAP contacts TS at
a predefined frequency; (2) push mode, where TS sends a message to TAP
when an event occurs. While our protocol will work with both models, we
assume the push model in this work as it is more efficient in general.

Example rule. We show how our abstract model can instantiate our previ-
ous example rule: “IF I receive an email containing the word ‘confidential’,
then send me an SMS.” The SMS should contain the address of the sender
and the email’s subject. Assume that TAP provides an operation to search
over strings, called contain. The user sets up a rule by choosing its email
provider as the trigger service, that sends a copy of every new email to TAP.
The action service is an SMS provider that sends SMS to a user-provided
number. The user then specifies the contain function to check for the
string c1 =“confidential” on the email’s subject line, x. The transformation
function f2 creates the required data structure to send the SMS, for exam-
ple, setting the recipient address as the user-provided phone number c2

and the message body as the concatenation of the sender’s address and
the subject.

3.4 Design Considerations for Providing Data
Confidentiality in Trigger-Action Systems

Our goal is to protect the confidentiality of private data involved in trigger-
action rules even if they are run on a malicious cloud-based TAP. In this
section, we discuss our threat model, define our security and functionality
goals, and explore the design space.
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Threat Model and Functionality Goals

Fernandes et al. [102] first noted the security and privacy issues of a com-
promised TAP and the related attacker motivations. We adopt the same
attacker model — TAP is malicious. Specifically, the attacker: (1) can mon-
itor communications between TAP and the trigger/action services; (2)
can arbitrarily deviate from the communication protocol by manipulat-
ing, delaying, or dropping the messages; (3) can modify TAP’s internal
storage and code that includes manipulating and deleting garbled cir-
cuits; (4) knows API details of trigger and action services; and (5) knows
the functions that are being evaluated on TAP. As we use cryptographic
techniques for our security guarantees, we assume that the attacker is
computationally bounded.

We assume that the end-point services (trigger and action services)
like Samsung SmartThings, Google Calendar, etc. are semi-honest — they
will follow the protocol as specified, but try to glean more information
than what they are entitled to know. This is in line with the trust model
used by current TAPs. Also, if they are compromised, then the attacker can
achieve its goals of accessing and manipulating user data independently of
the trigger-action system. We also assume that TAP is not colluding with
TS or AS. As discussed in Section 3.2, third-parties own a large majority
of trigger and action services and thus collusion with TAP is unlikely (for
example, there is no incentive for LG or Google to collude with IFTTT
to reduce the security of their users). Enforcement of the non-collusion
condition can also be done via legal affidavits [108, 168] or techniques
that involve using a trusted mediator who monitors the communications
between the parties [46, 47].

Finally, we assume that the user trusts their client device. We observe
that the attacker is motivated to compromise TAP because it will simulta-
neously be able to attack all users of the platform. An attack on the client
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device is not scalable to all users easily, and therefore, is less attractive.

Security goals. Under this threat model, we want two security properties
for a trigger-action system:
Privacy: Each party should not learn other parties’ data in a trigger-action
rule. Specifically, TAP should not learn the trigger data (x, v), user-provided
constants (c1, c2), and results of the computation (beyond what they al-
ready know from the definitions of the functions); the trigger service (TS)
should not learn the user-provided constants (c1, c2); the action service
(AS) should not learn the trigger data x or user-provided constants (c1, c2)
beyond what is revealed to it after rule execution. Additionally, AS should
not learn the output of transformation function f2 or payload v when the
predicate function f1 evaluates to false.
Integrity: The attacker should not be able to modify any computations
on private trigger data without being detected by AS. That is to say, TAP
should not be able to trick AS into acting on illegitimate action data, such as
delayed, replayed, or tampered messages that are not the result of proper
evaluation of the rule. AS only accepts valid messages y = f2(x, c2), where
x is sent by TS within the last τ seconds (a configurable parameter).

Security non-goals. Denial of service is outside our scope. A compro-
mised TAP can indeed drop all messages it receives from TS and not trans-
mit any message to AS. Metadata and side-channel attacks are also outside
our scope. For example, even if messages are encrypted, the compromised
TAP can observe the timing of messages that arrive from a trigger service
or go to an action service. Coupled with semantic knowledge about the ser-
vices, this might enable the attacker to determine the sensitive data in the
rule even if it is encrypted. As discussed in Section 3.3, this involves time-
sensitive rules which are less used frequently in practice. eTAP protects
the vast majority of sensitive trigger data for which encryption achieves
strong security properties. Section 3.9 outlines standard approaches to
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protect metadata that we leave as future work.

Functionality goals. We want to achieve the security goals while respect-
ing the following functionality goals: (1) RESTful API for end-point services.
The end services should be able to design their APIs independently of
each other, as they do currently. These APIs should be RESTful, have
minimal computational overhead beyond running the API itself, and do
not need to store data or state specific to different trigger-action rules. (2)
Maintain trigger-compute-action paradigm. The design should run existing
user-created rules without any changes and should maintain the key ar-
chitectural aspects of current trigger-action systems. Notably, the rules
should execute without requiring the client device to be online.

Design Space Exploration

We explore a few potential solutions occupying different points in the de-
sign space and discuss why they do not meet our functionality or security
requirements.

Computation at the edges. The trigger service can run a user-supplied
function over its private data, encrypt the result, and forward that to TAP.
However, the trigger service has to support an execution infrastructure
similar to AWS Lambda, significantly increasing the complexity and over-
head of such services and exposing them to additional security risk due to
executing third-party code. Furthermore, sensitive data in user-supplied
constants (c1, c2) will be exposed in plaintext to the trigger service. For
example, consider rule R7 from Fig. 3.8, which converts Slack mentions to
Asana tasks (a project management tool). It requires users to provide a
lookup table of project names. These are sensitive information that should
not be revealed to Slack. Computation can also be moved to the action
service, but the same issues exist there as well.

Secure hardware. It is possible to use hardware-based trusted execution
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environments (TEEs) or hardware security modules (HSMs) for comput-
ing the trigger data on TAP, while preserving confidentiality [172, 206].
Yet besides requiring hardware changes to the TAP servers, current TEEs
suffer from fundamental security design issues [77, 154, 186].

Homomorphic encryption of the trigger data. During rule setup, the
client can specify a symmetric key between the trigger and action service.
The trigger service encrypts its data using this key before sending it to TAP.
This will provide trigger data confidentiality and allow the TAP to com-
pute directly on the encrypted data. However, only specialized schemes
like linear homomorphic encryption and “somewhat” homomorphic en-
cryption are practical [155], thus limiting expressivity. For reference,
TFHE [31], a state-of-the-art library for fully homomorphic encryption,
takes 4.45 seconds to compute an addition circuit, which is 3 orders of
magnitude slower than our system as evaluated in Section 3.7. Addition-
ally, protection against a malicious TAP would require zero-knowledge
proofs [110] of computation that would further reduce efficiency.

Off-the-shelf secure multi-party computation. Secure multi-party com-
putation (SMC) protocols allow multiple distrusting parties to compute a
function over their private inputs [199]. However, efficient off-the-shelf
SMC protocols do not fit our threat model — TAP is malicious, or archi-
tectural requirements — needing TC, TS, AS, and TAP to participate in a
multi-round protocol during rule execution. Therefore, we adopt a core
primitive of SMCs — garbled circuits — and modify it to our setting.

Secret sharing based SMC. Secret sharing is an alternative to garbled
circuits for doing SMC. However, secret sharing-based protocols require
intensive multi-round communication (e.g., for evaluating multiplication
gates). Additionally, in such protocols every party has to do an equal
amount of work, which will require invasive architectural changes to TS
and AS. This violates our functionality goal. Finally, the malicious versions
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of these protocols are not efficient.

3.5 Design of Encrypted Trigger-Action
Platform

In this section, we discuss eTAP’s core protocols and analyze how we
specialize garbled circuits to trigger-action systems. A high-level overview
of eTAP is shown in Fig. 3.4, and the pseudocode is given in Fig. 3.5. Like
a typical trigger-action system in Fig. 3.1, eTAP has four components:
trusted client’s device (TC), trigger service (TS), action service (AS),
and a trigger-action platform (TAP). We describe below how our design
modifies these four components while maintaining the trigger-compute-
action paradigm.

Decentralized trust model. In the current trigger-action system design,
users place all trust within a centralized cloud-based TAP. This design
leaves open a large-scale security and privacy risk — a single compromise
of the TAP will simultaneously compromise all users. To avoid this issue,
eTAP borrows a design element from DTAP [102] and designates the
user’s client device (smartphone) as the root of trust. Each user only trusts
their own smartphone and uses it to program trigger-compute-action
rules. As the eTAP protocols are open-source, we envision a community of
developers building client apps, much like we have apps for open protocols
like SFTP, Telnet, etc. Thus, the eTAP cloud component and the client
app are built and controlled by different entities. Therefore, the client app
can still be trusted, even when the TAP is compromised. eTAP bootstraps
its guarantees on top of this model. In eTAP, the trusted client (TC) is
beyond just an interface — it stores some state (as we describe below) that
is key to its operation.
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Figure 3.4: Overview of eTAP.

Rule Setup (occurs on trusted client)

Like in existing trigger action systems, the user can configure a trigger-
compute-action rule on the trusted client app (TC) using its click-through
interface. The user selects a trigger in a trigger service (TS), a predicate f1,
a data transformation over the trigger data f2, and an action in an action
service (AS). The user also specifies any constants c if required.

TC sends the rule descriptions to TAP and helps the TAP negotiate
OAuth tokens with TS/AS required for running the rule. In eTAP, unlike
existing TAPs, TC shares with TS and AS two uniformly-generated secret
keys kT and kA, upon successful authorizations. The key kT and kA are tied
to the specific trigger and action API for this user in TS and AS2. If a prior
rule has already been set up with the same trigger or action API, then the
corresponding OAuth authorization can be skipped and TC will reuse the
previously generated kT or kA. Once the rule is setup, TS and AS store the
shared key materials; TAP stores the OAuth tokens; and TC stores the rule
(f1, f2), the keys (kT ,kA), and the constants (c1, c2) provided by the user
for the rule.

2For better usability, current TAPs only acquire one OAuth token per service that can
access all APIs in it [102]. eTAP can adapt to this model by exchanging a service-level
key kTS,kAS, and derive the API-level keys kT ,kA from the hash value of kTS,kAS and API
URL, as required.
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CktGarbling((f, c), (kT ,kA, j)):
es ← H(kT‖j‖0)
er ← H(kT‖j‖1)∨ 0κ−11
kv ← H(kT‖j‖2)
e← (es, er)
(F,Lw0

0 , . . . ,Lwm

0 )← Gb ′(e, f)
d ′ ← (lsb(Lw1

0 ), . . . , lsb(Lwm

0 ))

h← H(Lw1
0 ‖ . . . ‖Lwm

0 )

s̃←$ E(Lw0
1 ⊕ kA, (j,kv, er,d ′,h))

h̃← HMACkA
(j‖Lw0

0 )

d̃← (s̃, h̃)
C← En(e, c)
Set j = j+ 1
Return j, F,C, d̃

TSExec((x, v), (kT , j)):
es ← H(kT‖j‖0)
er ← H(kT‖j‖1)∨ 0κ−11
kv ← H(kT‖j‖2)
X← En ((es, er), x)
t← CurrentTime()
ct←$ E(kv, (t, v))
Set j = j+ 1
Return j,X, ct

TAPExec
(
(j,X, ct), (F,C, d̃)

)
:

Y ← Ev(F, (X,C))
Return j, Y, ct, d̃

ASExec
(
(j, Y, ct, d̃),kA

)
:

Parse Y as (Lw0 , . . . ,Lwm)
(s̃, h̃)← d̃

z← D(Lw0 ⊕ kA, s̃)
If z = ⊥ then
h̃ ′ ← HMACkA

(j‖Lw0)
If h̃ ′ 6= h̃ then Return ⊥
Else Return false

(j ′,kv, er,d ′,h)← z

If j 6= j ′ then Return ⊥
y← De (d ′, (Lw1 , . . . ,Lwm))
g← ⊥
For i← 1 tom do

If yi = 0 then g← g‖Lwi

Else g← g‖(Lwi ⊕ er)
h ′ ← H(g)
(t, v)← D(kv, ct)
t ′ ← CurrentTime()
If t ′ > t+ τ or h 6= h ′ then

Return ⊥
Return y, v

Figure 3.5: Circuit generation and rule execution protocols for eTAP. Lw0
1

denotes the true label for the first output wire w0, Lw0
1 = Lw0

0 ⊕ er; τ is a
threshold parameter used to ensure the freshness of a trigger. CktGarbling
is run by TC asynchronous to the actual rule execution. The remaining
three functions are run by TS, TAP, and AS during rule execution.

Circuit Garbling (periodic, occurs on trusted client)

Once the user creates a new rule, TC has to generate garbled circuit to
enable secure evaluation of the functions on the (untrusted) TAP. TC
generates garbled circuits corresponding to f1 and f2 and the associated
encoding/decoding blobs. It uses the encoding blob to obtain the garbled
labels for user-supplied constants. The decoding blob allows AS to decode
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the garbled outputs and to decrypt the payload. To ensure TAP does
not learn or tamper with the decoding blob, TC encrypts it using kA. TC
sends the garbled circuits, encoded constants, and encrypted decoding
blob to TAP. TC identifies each instance of the garbled circuit using a
monotonically increasing counter j. The circuit id j is initialized to zero
if this is the first rule where the user uses the connected trigger API;
otherwise, TC queries TAP for the circuit id that the connected trigger API
is currently using. As garbled circuits cannot be reused, TC periodically
repeats the above process.

Although TC needs to transmit the garbled circuits and related infor-
mation prior to rule execution (Fig. 3.4), we design eTAP such that TC
does not need to be online during execution. TC generates and transmits
GCs in batches at times when the smartphone is not being used (e.g.,
when charging at night). Our evaluation (Section 3.7) demonstrates that
transmitting sufficiently many garbled circuits for a day generally takes
less bandwidth than backing up a 1-minute Full HD video to a cloud drive.
This achieves our design principle of keeping the client device offline
during rule execution.

Note that in our setting, the generator of the garbled circuit is the
smartphone client — a trusted entity. This is a key insight and design
element that is possible due to the nature of our setting. This allows
eTAP to use efficient semi-honest implementations of garbled circuits and
achieve security in the presence of a malicious TAP.
Cryptographic Details. Without loss of generality, we assume f1 : {0, 1}n×
{0, 1}n → {0, 1} and f2 : {0, 1}n × {0, 1}n → {0, 1}m. For notational sim-
plicity, we denote f : {0, 1}n × {0, 1}2n → {0, 1}m+1, such that f(x, c) =

f1(x, c1)‖f2(x, c2), c = (c1, c2) ∈ {0, 1}2n. Additionally, let H : {0, 1}∗ →
{0, 1}κ denote a cryptographic hash function. The pseudocode of the cir-
cuit garbling is given by the CktGarbling function in Fig. 3.5.
Encoding blob. The encoding blob contains the information required
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to encode the trigger data and encrypt the trigger payload. It can be
derived from the key kT and the garbled circuit id j. TC generates three
bitstrings (es, er,kv) ∈ {0, 1}3κ, using the hash of kT‖j. The false labels of
the input wires (as described below) are generated using a H with es
as the random seed, and er is used as a global offset for the standard
free-XOR optimization [130]. The least significant bit of er is set to 1
to enable the standard point-and-permute optimization [61, 204]. Thus
e = (es, er) constitutes the encoding information used for the garbling
scheme’s encoding function (En). The key kv is used to protect the payload
data v.
Garbled circuit. To generate the garbled circuit F for function f, the
labels for every input wire w are computed as Lw0 = H(es‖w) and Lw1 =

Lw0 ⊕ er (assuming wire index w is a fixed-length bitstring). The rest of
the computation (generating labels of the non-input wires and garbling
gates) proceeds as per standard techniques with optimizations, such as
row-reduction [156] or half-gate [204].
Encrypted decoding blob. The decoding blob consists of information
necessary for AS to decode the labels of output wires (that correspond
to the action data y) and to decrypt the payload. Let the output wires
be (w0,w1, . . . ,wm), where w0 corresponds to the output wire of f1, and
the remaining m wires correspond to those of f2. Following standard
practice [61], the decoding information d contains the least significant bits
(lsb) of the false label of each output wire (lsb(Lw0

0 ), . . . , lsb(Lwm0 )). In eTAP,
decoding information is slightly modified. First, the first bit, lsb(Lw0

0 ), of
d is dropped to create d ′. Second, the hash of all the false labels of f2’s
output wires h← H(Lw1

0 ‖ . . . ‖Lwm0 ) is computed. Third, a decoding blob is
created using d ′, h, the payload key kv, the XOR offset er, and the current
circuit id j. Next, the whole blob is encrypted using a symmetric-key
encryption scheme E with a key derived from both kA (the secret key
shared with AS) and Lw0

1 (the true label of f1’s output wire w0) to obtain



71

s̃←$ E(Lw0
1 ⊕kA, (j,kv, er,d ′,h)). Additionally, an HMAC [132] of the false

label of predicate f1 is computed using kA as h̃← HMACkA
(j‖Lw0

0 ). We use
d̃ to denote the tuple (s̃, h̃). We explain the rationale behind these changes
in Section 3.5.
Encoded user constants. Using the encoding information e, TC computes
the labels for constants c as C← En(e, c).

To accommodate the above customization, we derandomize the gar-
bling function Gb to Gb ′ that takes an encoding information e as an input
and returns the garbled circuit F, as well as the false labels of every output
wire. TC sends (j, F,C, d̃) to TAP and increments the circuit id j by 1.

Rule Execution (occurs on TAP; does not involve TC)

When new trigger data is available for a trigger API, TS will garble the input
data and encrypt any payload data, using the encoding blob it computes
fromkT and circuit id j (which is initialized to 0 when the API is first called).
It then transmits the ciphertexts to TAP, which will lookup any rules that
are connected to the trigger API (and user) and run the associated garbled
circuits. TAP finally transmits the output of the evaluation (garbled action
data) and the encrypted decoding blob to the corresponding API in AS,
which can decode to the plaintext result using kA (Fig. 3.4).

TS and AS only perform simple encoding and decoding of data — fixed
functionality independent of the trigger-action rule semantics, thus main-
taining their RESTful nature. We believe that TS and AS are well-motivated
to support these additional operations, in exchange for enhanced security.
Indeed, current end-point services are concerned about the privacy of user
data. For example, GMail recently removed their IFTTT triggers citing
security and privacy concerns [163].

In our setting, the full evaluation of the garbled circuit is split between
the untrusted TAP that executes the circuit to produce garbled output
labels and the semi-honest AS that decodes the plaintext result from the
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labels. This, in combination with the trusted generator, allows eTAP to
efficiently achieve the execution authenticity property of GCs using a hash
function (Section 3.5), even when TAP itself is malicious. We omit the
standard OAuth steps that occur during execution, which the reader can
refer to [30] for details.

Cryptographic Details. TS’s operations in the rule execution phase is
function TSExec in Fig. 3.5. TS recomputes the encoding information
e = (es, er) and the payload key kv from kT and j. It then encodes the
trigger data x using the garbling scheme’s encoding function, producing
X← En(e, x), and encrypts the payload v under a symmetric-key encryp-
tion scheme with the key kv to compute ct←$ E(kv, (t, v)) where t is the
current timestamp. Finally, TS forwards the message (j,X, ct) to TAP and
increments j by 1.

Upon receiving a trigger message (j,X, ct), TAP retrieves the corre-
sponding garbled circuit F, garbled constants C, and the encrypted decod-
ing blob d̃ using the trigger API and the circuit id j. Next, TAP evaluates F
to obtain the garbled action data Y ← Ev(F, (X,C)) and forwards the tuple
(j, Y, ct, d̃) to AS. Function TAPExec in Fig. 3.5 depicts this process.

After receiving a message from TAP, AS decrypts d̃ to obtain the de-
coding information, which will succeed only when f1 evaluates to true (i.e.
Lw0 = Lw0

1 ). If AS is able to decrypt the decoding blob, it uses (d ′,kv) to
obtain the final output (f2(x, c2), v) in plaintext. AS would terminate if
the message from TAP is malformed (i.e., hash of labels is inconsistent
or decryption fails) or stale (i.e., trigger timestamp is old). The function
ASExec in Fig. 3.5 depicts this process.

Rationale for Novel GC Protocol & Security Analysis

eTAP adopts a customized GC-based protocol tailored to the needs of
trigger-action platforms. This protocol is novel in the following ways: (1)
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By leveraging the structure and threat model of trigger-action systems,
we can use efficient semi-honest implementations of GCs to obtain secu-
rity against a malicious evaluator; (2) eTAP supports fixed-length string
operations including matching, extraction, and replacement — common
operations in trigger-action programs — using Boolean circuits only; (3)
eTAP contributes an efficient technique to ensure authenticity on the eval-
uator’s output (i.e., TAP) that requires only two hashes instead of the
existing standard approach that requires hashes for true and false labels
for every output wire.

Our setting has four parties: TC generates the garbled circuit via Gb ′

and then, both TC and TS use En(e, ·) to encode their respective inputs. On
the other hand, TAP evaluates the garbled circuit using Ev(F, ·) while AS
decodes the plaintext output using De(d ′, ·). Thus, TC and TS jointly act as
the “generator”, and TAP and AS jointly emulate the role of the “evaluator”
of a two-party computation setting. The evaluators (TAP and AS) in our
setting do not have any private input, therefore, eTAP does not require
any oblivious transfers. Trust assumptions of the constituent parties of
the generators and evaluators are asymmetric. Among the generators, TC
is fully trusted and TS is semi-honest; among the evaluators, AS is semi-
honest and TAP is fully malicious. Recall, TS and AS do not collude with
TAP. (See Section 3.4 for the motivations behind these trust assumptions.)

Next, we highlight the changes we introduce in two-party GC protocol
and the rationale behind those changes. We formally prove all security
properties of our protocol in Section 3.6.
(1) TC generates the encoding information deterministically from the
shared secret key kT and the circuit id j, so that TS can also generate it
without any communication with TC during rule execution. This achieves
our design goal of ensuring that TC can be offline during rule execution.
We note that this change does not violate the input privacy guarantees of
the GC (see Thm. 3.1, 3.3, 3.4, and 3.5).
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(2) Recall that the decoding blob (which contains information to decode
garbled action data and to decrypt payload) is encrypted using the bit-wise
XOR of kA and Lw0

1 as the key. Thus, TAP cannot learn the decoding blob (it
does not have kA, Thm. 3.1). Only AS can successfully decrypt s̃ if it gets
the true label of the output wire of f1, Lw0

1 , from TAP; which can happen
only when the predicate f1(x) evaluates to true. This meets our privacy
requirement that AS should not learn f2(x, c2) or vwhen f1(x, c1) = false.
We formally prove this in Thm. 3.4 and 3.5.
(3) eTAP ensures that the malicious TAP (evaluator) cannot tamper with
the results of evaluation. To achieve this we add the following information
to the decoding blob: h = H(Lw1

0 ‖ . . . ‖Lwm0 ), the XOR offset er, and H(Lw0
0 ).

Standard techniques to achieve this property require the hashes of both
true and false labels for every output wire [204]. However, in eTAP, AS
does not have access to the circuit F and the garbled inputs (X,C). This
makes it safe to disclose er to AS (Thm. 3.4, 3.5). Thus, AS can compute
Lw1

0 , . . . ,Lwm0 from the output labels (see ASExec in Fig. 3.5) and check
whether TAP has returned forged labels for the output wires correspond-
ing to f2. The HMAC h̃ is used to ensure the authenticity of the first output
wire corresponding to f1, when it evaluates to false. Because of this struc-
ture, eTAP achieves efficient authenticity verification with two hash values
(Thm. 3.2). This modification, combined with trusted generator, allows
us to use efficient semi-honest implementations of GCs while achieving
security against a malicious evaluator (TAP).
(4) We use a circuit id j to synchronize between different parties (TS, TAP,
AS) so that they evaluate the correct circuit. Malicious TAP can observe
the circuit id (in plaintext) and can tamper with it. eTAP ensures that
the AS will always be able to catch a lying TAP, and will never act on
an incorrect circuit id j. (See the proof in Section 3.6.) Metadata leaked
due to learning j is outside the scope of this work (Security Non-goals in
Section 3.4). We discuss a potential solution in Section 3.9.
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Supporting TAP-Specific Operations with Garbled Circuits

While in theory any arbitrary function can be converted into Boolean
circuits, and therefore can be computed using GCs, in practice they can be
expensive. Via an analysis of existing real-world rules (Section 3.3), we
found that they involve well-defined and relatively simple Boolean and
arithmetic operations — these are well-studied and efficiently supported
by existing GC libraries.

However, we also found that many rules use string operations, such
as matching regular expressions and extracting or replacing substrings.
The corresponding Boolean circuits of these operations, unless properly
designed, will be inefficient to execute using GC [152]. eTAP computes
these string operations by first translating regular expressions into deter-
ministic finite automatons (DFA) and then applying a novel approach
to convert DFA to Boolean circuits that can be efficiently evaluated using
GC and can be easily extended for substring extraction and replacement.
We next describe how eTAP utilizes this approach to perform regular
expression matching. Please refer to [75] for details of how to convert a
regular expression into a DFA.

Input and output representations. First, to avoid leaking the length
of the string, every string field in the trigger data (and the action data)
is padded to a fixed length bitstring. AS is responsible for removing the
padding as necessary. The string is encoded into a fixed-length bitstring
~x = (x1, . . . , xn) where xi ∈ {0, 1} before feeding into the encoding function
En. Let the operation of the string be defined using the DFA Γ , which is
represented as a five-tuple, Γ = (S,Σ, δ, s0, SF), where S is the set of states,
Σ is the set of alphabets, s0 is the initial state, and SF is the set of final states.
The transition function δ takes a state and an alphabet and returns the
next state; therefore, δ : S × Σ → S. Since every string is a bitstring, we
have Σ = {0, 1}. Let q = |S| be the total number of states. Without loss of
generality, we assume S = Zq = {1, . . . ,q}.
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Let ~δ be the aggregated transition function that takes the entire string
~x as input and outputs the final state of the DFA,

~δ(~x) = δ(. . . δ(δ(s0, x1), x2), . . . , xn).

If ~δ(~x) ∈ SF, then ~x is accepted by the DFA, which means that the string
matches the regular expression.

Converting DFAs into circuits. The main goal is to convert the tran-
sition function t = δ(s, x) into a Boolean circuit that uses as few AND
and OR gates as possible, to take advantage of the standard free XOR
optimization [130].

Since both the states s and t are integers between 1 and q, one can
choose to represent each state using log2 q bits and find the truth table for
δ. However, the resulting circuit would be hard to construct and minimize
automatically. Instead, we encode each state as a bit-vector of size q using
one-hot encoding. We use S to denote the encoding of a state s ∈ S, and
Si represents the i-the bit of S, where Si = 1 if i = s and 0 otherwise. We
can observe that when Si = 1 and x = 0, T j = 1 if and only if δ(i, 0) = j

holds; Similarly, when Si = 1 and x = 1, T j = 1 if and only if δ(i, 1) = j.
Therefore, the output of the DFA becomes

~∆(~x) = ∆(. . .∆(∆(S0, x1), x2), . . . , xn),

where ∆ is the transition function that operates on the one-hot encoded
states.

To represent the transition function ∆ as a Boolean circuit, we first
define two sets for each state s, Ps0 and Ps1 , where Psb = {i | δ(i,b) = j} for
b ∈ {0, 1}. It holds that T j = 1 if and only if either x = 1 and ∃i ∈ Pj1,Si = 1,
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or x = 0 and ∃i ∈ Pj0,Si = 1. That is to say, for 1 6 j 6 q,

T j = (x∧
∨
i∈Pj1

Si)∨ (¬x∧
∨
i∈Pj0

Si)

= (x∧
∨
i∈Pj1

Si)⊕ (¬x∧
∨
i∈Pj0

Si).

Because only one of the Si will be 1 at any time, therefore the inner OR
gates can also be replaced with XOR:

T j = (x∧
⊕
i∈Pj1

Si)⊕ (¬x∧
⊕
i∈Pj0

Si).

Note the above expression can be further simplified using the Boolean
algebra property (x∧ a)⊕ (¬x∧ b) = ((a⊕ b)∧ x)⊕ a. Therefore, each
bit in T requires at most one AND gate to compute. To run Γ over a string
of length n, we need to apply transition function (∆) n times, and thus
the resulting circuit contains at most nq AND gates. Finally, to check if
the final state is accepted by Γ , simply computing

⊕
j∈SF

Sjn is sufficient.

We can observe that the size of the entire garbled circuit is O(nqκ),
on par with the communication cost of the state-of-the-art non-GC based
customized approach [152]. However, being purely circuit-based, our
approach allows functional conjugation with other operations and retains
the same security properties of standard GC.

Extracting and Replacing Substrings with Garbled Circuits

We now discuss how eTAP extends the regular expression matching tech-
nique described above to extract and replace substrings.

Finding locations of matching substring. Given a regular expression
pattern p, the goal is to find the starting and ending positions of the
matching substrings.

Finding the ending positions can be achieved by applying the KMP
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algorithm [128] on the pattern p to convert it into a DFA (denoted by Γ), so
that Γ will output an accepting state at the end of each matching substring.
For example, if the pattern is ab, we will rewrite it as .*ab and convert the
new pattern into DFA. Then we use our matching protocol to run Γ on the
input string ~x. However, instead of only checking whether the final state
Sn is an accepting state, we check every state S1, . . . ,Sn produced by Γ . We
denote the resulting n-bit sequence as e1, . . . , en. If ei = 1, it indicates that
the i-th bit is the end of a matching substring.

Since a DFA can only report the end positions of matches end, we need
another DFA to find the starting positions. We therefore compute a DFA
Γ ′ on the reversed pattern p. If we run Γ ′ on the reversed input string, we
get the beginning of the matching substring. Then, like the previous step,
we run Γ ′ backward on ~x (by feeding from xn to x1) and check the type of
every state to generate bn, . . . ,b1. If bi = 1, it indicates that the i-th bit is
the beginning of a matching substring.

Finally, we can find the locations of all matching substrings. That is,
we need to compute another n-bit sequencem1, . . . ,mn wheremi = 1 if
and only if the i-th bit is part of a matching substring.

We can observe thatm1 = b1 and for any i such that 2 6 i 6 n,mi can
be calculated asmi = bi ∨ (¬ei−1 ∧mi−1).

Extracting matching substring. To extract the matching substrings, we
want to replace the characters in non-matching parts with the padding
character (0x00). Therefore, the output string ~y = {y1, . . . ,yn} is computed
by yi = mi ∧ xi.

Replacing matching substring. In our dataset, all replace(s,t) func-
tions are used with t set to empty string, so it is equivalent to removing
the matching substring, and thus the output string ~y = {y1, . . . ,yn} is
computed by yi = ¬mi ∧ xi.

However, for completeness, we will describe a protocol for the general
case scenario where |t| > 0, where t denotes the size of the string t. The
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output string size will be n × |s|
|t| since the TAP should not know which

substring is matched and replaced and should assume all substrings can
be replaced. When |s| � |t| the sizes of the resulting garbled circuits
will be unbearably large. Therefore, we purpose an alternative design
approach where the actual replacement is processed in the action service:
we replace the first character of each matching substring with some place-
holder character, say 0xff, and the rest with the padding character 0x00,
so the action service can invoke the following functions to complete the
replacement: y.replace("0x00", ""); y.replace("0xff", t); where
y is the decoded output string. Note the first replace() is required re-
gardless of our protocol, since it is needed for removing the padding from
the input string.

We argue this approach does not break our security goal, revealing
no additional trigger data that is not supposed to be revealed to the ac-
tion service. If the replacement string t is considered sensitive the client
can encrypt the replacement mapping with the 1 label of the output bit
corresponding to

∨n
i=1m

i, similar to how we protect d and k in Fig. 3.8.
Assuming an ASCII encoding and 0xff as the placeholder character,

we can compute the output string ~y using yi = si−(i−1 mod 8)∨ (¬mi∧ xi),
where the i− (i− 1 mod 8)-th bit is the first bit of the character that i-th
bit belongs.

Supported functions. By incorporating the above techniques, we can use
garbled circuit to efficiently compute common arithmetic operations, string
operations, and dictionary lookup, which cover all but three functions
listed in Fig. 3.3. We sketch the implementation details for each supported
function in Section A.2. Based on our analysis in Section 3.3, this set of
operations enables eTAP to support 93.4% of the function-dependent rules
published on Zapier and all of the 500 most popular rules on IFTTT.

It is possible to convert the remaining three unsupported functions
(format, strip_html, and html2markdown) to Boolean circuits, as well, but
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OblivetapA :(
f, (x0, c0, v0), (x1, c1, v1)

)
←$ A

Pick j ; kT ←$ {0, 1}κ ; kA←$ {0, 1}κ
b←$ {0, 1}
j, F,C, d̃←$ CktGarbling

(
(f, cb), (kT ,kA, j)

)
j,X, ct←$ TSExec

(
(xb, vb), (kT , j)

)
b ′←$ A(j,X, ct, F,C, d̃)
Return b = b ′

AuthetapA :
(f, (x, c, v)) ←$ A

Pick j ; kT ←$ {0, 1}κ ; kA←$ {0, 1}κ
j, F,C, d̃←$ CktGarbling ((f, c), (j,kT ,kA))
j,X, ct←$ TSExec ((x, v), (kT , j))
j ′, Y ′, ct ′, d̃ ′←$ A(j,X, ct, F,C, d̃)
y ′ ← ASExec

(
(j ′, Y ′, ct ′, d̃ ′),kA

)
Return (j ′, Y ′, ct ′, d̃ ′) 6= (j, F(X), ct, d̃)

∧y ′ 6= ⊥

Privetap,1
B :(

f, (x0, c0, v0), (x1, c1, v1)
)
←$ A

If f(x0, c0) 6= f(x1, c1) then Return ⊥
Pick j ; kT ←$ {0, 1}κ ; kA←$ {0, 1}κ
b←$ {0, 1}
j, F,C, d̃←$ CktGarbling

(
(f, cb), (kT ,kA, j)

)
j,X, ct←$ TSExec

(
(xb, vb), (kT , j)

)
j, Y, ct, d̃← TAPExec

(
(j,X, ct), (F,C, d̃)

)
b ′←$ A(j, Y, ct, d̃)
Return b = b ′

Figure 3.6: Security games for eTAP.

the resulting circuits will be very large (for example, we need to build a
full-blown parser to find HTML tags) and inefficient to evaluate. These
functions are only used for formatting and do not require any sensitive
user input. Thus, it is safe to run them on AS or TS directly with minor
modifications to their APIs.

3.6 Security Analysis of eTAP
In this section, we show that eTAP meets the security goals outlined
in Section 3.4 by providing concrete security definitions and proofs. We
assume the adversaries are probabilistic polynomial time (ppt) — they run
in time polynomial in security parameter κ. The garbled circuit protocol G
used in eTAP provides output privacy, message obliviousness, and execution
authenticity. The encryption scheme E is IND-CCA secure. We model the
hash function H as a random oracle [65]. Let negl(·) to be a negligible
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function.
We prove the security of each component of eTAP, namely TAP, TS,

and AS, separately. The security games are defined in Fig. 3.6.

Security against malicious TAP. Following our threat model, we assume
the TAP is compromised and malicious. The security definitions we expect
from eTAP are as follows.

Obliviousness. We define the obliviousness property of eTAP by the se-
curity game OblivetapA as shown in Fig. 3.6. Informally, A despite arbitrarily
deviating from the protocol should not know anything about the user-
provided constants c, the trigger data x, v, and the output of the function
y← f(x).

Theorem 3.1 (TAP Obliviousness). For any ppt adversary A, the probability
that A wins the OblivetapA game is negligible.

Pr [OblivetapA = 1 ] 6 1/2 + negl(κ) ,

Proof: The proof of this theorem follows directly from the message obliv-
iousness security guarantee of garbled circuits G [204] and the semantic
security of the encryption scheme E. As such, the attacker learns nothing
about (x, v, c) from (X,C, ct). First, note that the game OblivetapA is equiv-
alent to the game obv.simS [64] in [204]. Now, consider the simulator
S as presented in Fig. 3 in [204]. In our setting, S is used by TC and TS
to generate (F̂, X̂, Ĉ) which is then used for the rest of the computation.
Hence the obliviousness of (x, c) follows directly from the corresponding
proof (game obv.simS) presented in [204] assuming the random oracle
model for H [65]. The indistinguishability of ctb follows trivially from the
semantic security guarantee of the encryption scheme, thereby concluding
our proof.

We achieve security against a malicious TAP even with a GC imple-
mentation for the semi-honest model. Recall that the “generators” — the
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trusted client (TC) and the trigger service (TS) — in eTAP are at least
semi-honest. Hence, a valid garbled circuit for the correct function f is
always generated (as TC is trusted), and all inputs are correctly encoded
(since TS is semi-honest and the “evaluators” TAP and AS have no input).
Thus, the only way a malicious TAP can compromise the security of eTAP
is by forging an inauthentic output label or by replaying, delaying, or
dropping a message. We discuss eTAP’s resilience to such attacks next.

Authenticity. The security guarantee authenticity ensures that no ppt
adversary can create a garbled output Y ′ 6= Y such that AS acts on Y ′ (that
is to say ASExec outputs anything but ⊥ or false). The formal definition is
given by the security game AuthetapA as shown in Fig. 3.6.

Theorem 3.2 (TAP authenticity). For any ppt adversary A, the probability
that A wins the game AuthetapA is negligible,

Pr [AuthetapA = 1 ] 6 negl(κ) .

Proof: The proof follows from the non-malleability guarantee (IND-CCA)
of the encryption scheme E, execution authenticity of G [204], and the colli-
sion resistance of the hash function H. For the rest of the proof, consider the
simulator S in [204] which additionally returns h = H(Lw1

0 ‖ . . . ‖Lwm0 ), er
and Lw0

0 . TC uses this additional information to generate the decoding
blob d̃. Similarly, the function in De is changed to that of ASExec.
Case I - Authenticity of y1 = f1(x, c).
Note that s̃ is encrypted under a key derived from kA and Lw0

0 . Hence, from
the semantic security of the encryption scheme, TAP does not have access
to er since it does not know kA by design. Thus, in case y1 = false, TAP
has access only to the false label Lw0

0 and thereby cannot cheat AS. On the
other hand, if y1 = true, TAP can return some garbage value L ′ such that
D(L ′⊕kA, d̃) = ⊥. However, AS can detect this with the help of the HMAC.
Moreover, TAP cannot send any of the hitherto unseen HMACs because
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it cannot obtain the output labels without access to the corresponding X
(TS’s trigger data).
Case II - Authenticity of y2 = f2(x, c).
From the collision resistance of H, the only way TAP can cheat is by gener-
ating a label Lwi1−y2[i−1] for some wire i ∈ [1,m] where y2[i] denotes the i-th
bit of y2. However, as discussed above, TAP cannot compute any other
label other than the one obtained from Ev(F,X,C).

The rest of the proof follows an identical sequence of hybrids as the
proof of Theorem 1 in [204] assuming the random oracle model for H.

Protection from altering the timing of rule execution. An adversary can-
not forge a message that the AS will accept due to the strong authenticity
guarantee of eTAP protocol. However, it can alter the execution time of a
rule by deliberately dropping, delaying, or replaying messages. TAP can
successfully drop a message without being detected by AS. However, this
would fall under the denial-of-service attack which is beyond eTAP’s scope
(Section 3.4). eTAP also protects against replayed or delayed messages.

Every message from TS is timestamped as they are sent which AS can
check before performing any action. Therefore, AS will reject a message —
outputting ⊥— if the received message is delayed more than τ seconds (a
parameter set by AS) since the time it was sent from TS. (See the function
ASExec in Fig. 3.5.) We acknowledge that the TAP can replay any message
for which f1(x, c) = false without getting detected by the AS.

Nevertheless, this does not lead to any undesirable outcome in practice
because in this case AS performs no action. Note that the above attack
(replay of false labels) could have been prevented by keeping track of the
last seen circuit id of each rule at AS. However, maintaining such state
information would violate the RESTfulness of AS.

Tampering with circuit id j. The malicious TAP can modify the circuit
id j— a unique identifier given to every instance of a garbled circuit for
synchronization between TAP, TS, and AS — in whatever way they want to.
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But eTAP ensures AS will always be able to detect any such modification
and rejects the message from TAP (by outputting ⊥). This is done by
having TS include the circuit id j in the encrypted payload ct— that TAP
cannot modify. AS verifies that value against the circuit id forwarded by
TAP, and any mismatch results in execution termination. Though TAP
cannot tamper with jwithout being detected, it could learn the popularity
of certain rules by observing circuit id values (which are passed to TAP
in plaintext to help find corresponding garbled circuit F to execute). We
acknowledge that metadata attacks are a limitation in eTAP and we discuss
a cover traffic approach to address them (Section 3.9).

Security Analysis of TS and AS. We assume TS and AS are honest but
curious. We define security as follows.

Theorem 3.3 (PrivTS). TS does not learn anything about the user constants
(c1, c2).

Proof Sketch. TS only receives from the client kT and j, which it uses to
compute the seed e = (es, er). Thus, it can only learn the pairs of labels for
all the input wires (including the ones for user constants) to the garbled
circuit. TS, by design, does not have access to the client constants.

AS should not learn about the user constants and the trigger data
beyond what is revealed from the output of the function f. Let y1 = f1(x, c)
and y2 = f2(x, c). We also need to ensure that when the output of the
predicate function y1 = false, AS does not learn the output of the function
f2 and the payload v. We formally state these properties, using the theorem
below.

Theorem 3.4 (Priv0
AS). If y1 = false, then AS learns nothing about (x, c, v)

other than what is revealed from y1 = false.

Proof: To know the value of y2, AS needs access to the decoding table d ′

(from the obliviousness guarantee of garbled circuits in [204]). AS will be
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able to do this only if it has access to Lw0
1 (from the IND-CCA security of

the encryption scheme). Note, Lw0
1 is available to TAP, and subsequently

to AS, only if f1(x) = true [204]. In case TAP returns some garbage value
other than Lw0

1 , the decryption still fails. Additionally, v is protected by
the IND-CCA security of the encryption scheme.

Theorem 3.5 (Priv1
AS). If y1 = true, then for any ppt adversaryB, the probability

that B wins the game Privetap,1
B is only negligibly more than random guessing.

That is,

Pr
[
Privetap,1

B = 1
]
6 1/2 + negl(κ) .

Proof: The indistinguishability of ctb follows from the semantic secu-
rity of the encryption scheme. Now note that Privetap,1

B is equivalent to
prv.simS) [64] in [204]. The rest of the proof is based on the proof for
the corresponding game (prv.simS) in [204]). In fact in our setting, the
view of the A is a strict subset of that of the adversary presented in [204].
Specifically, our adversary A does not have access to the garbled inputs
Xb,Cb and the garbled circuit F. Note that in the above game, a malicious
TAP instead of outputting (Y, ct)← TAPExec ((X, ct), (F,C)), could gener-
ate some arbitrary message. However, from the obliviousness property of
garbled circuits (Thm. 3.1, we know that this message has to be completely
oblivious of (F,X, c) and hence the privacy guarantee is upheld trivially.

Proposition 1 (TAP Input Indistinguishability). For any ppt adversary A

with access to a circuit garbled with the scheme in [204], the probability that
A distinguishes between a valid garbled input and randomly generated input is
negligibly more than random guessing.

Proof Sketch. Following Fig. 2 in [204], it is clear that A cannot validate
inputs to XOR gates. For AND gates, the fact that at most one valid label
for each input wire is revealed to A and the correlated robustness of the



86

hash function ensures that F = (TG, TE) does not reveal information about
the valid inputs.

3.7 Evaluation of eTAP
We prototyped eTAP and showed that it is competitive in performance
with TAPs that do not provide any data privacy. We implemented the
garbled circuit protocols described in Section 3.5 using EMP toolkit [191], a
C++ library for multi-party computation. We build on EMP toolkit’s semi-
honest 2PC protocol. We use state-of-the-art optimizations (including free
XOR [130] and half gates [204]) for improving efficiency and bandwidth.
The security parameter is κ = 128. For other cryptographic operations
we use Cryptography.io [6]. We use SHAKE-128 (a member of SHA-3
family [157]) as a cryptographic hash function, and AES in CBC mode with
HMAC using SHA-256 as a semantically secure, non-malleable, robust
symmetric-key encryption scheme. To convert regular expressions into
DFAs we use the library dk.brics.automaton [153]. For all experiments,
we used n1-standard instances in Google Cloud Platform configured with
2 vCPUs, 7.5 GB memory, and 1 Gbps network connection.

Performance of Basic Operations

eTAP supports Boolean, (integer) arithmetic, and string operations (which
is sufficient to run most of the rules in Zapier and IFTTT). To evaluate the
performance of these basic operations, we picked a set of representative
operations from Fig. 3.3. For Boolean, we chose the AND operation since
our circuits only contain AND and XOR gates, and the XOR gate can
be computed without any encryption costs [130]. For numeric data, we
selected comparison and multiplication between two 32-bit integers. For
string operations, we divided them into two categories: operations that
need regular expressions (contain, replace, split, and extract_phone)
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Operation Computation time (ms) GC size # DFA
Client TS TAP AS (KB) states

Bool x & y 4.0 3.7 3.7 3.9 0.03 –

Numx > n 4.0 3.9 3.8 3.8 0.96 –
x * n 4.0 3.7 4.0 3.7 31 –

Str

x == t 4.0 3.7 4.0 3.8 25 –
m.lookup(x) 4.2 3.6 4.1 3.8 31 –
x.split(d,0) 5.7 3.7 5.3 4.1 78 16
x.contain(s) 7.8 3.9 7.4 3.9 123 47
x.replace(s,"") 10.7 3.8 10.5 4.6 278 40
x.extract_-
phone()

24.7 3.6 25.5 4.1 2191 108

Figure 3.7: Execution time of different basic operations at the client (TC),
the trigger service (TS), the action service (AS), and the TAP. We record
the size of the garbled circuit sent from TC to TAP and the number of
states in the DFA if applicable.

and those that do not (lookup and ==). We set the input x as a 100-character
(800 bit) string, except for lookup, where we set x to a 10-character string.
In the function m.lookup(x), we set m to be a key-value store with 10 entries,
where each key and each value is 10-characters long. For x.replace(s,
"") and x.contain(s), we set the s to a 4-character string. For x.split(d,
0), we set d to be a single character.

While measuring the costs for above basic garbled circuit operations, we
do not consider the overhead of other components like payload encryption,
as they are independent of the operation. Fig. 3.7 shows the time required
for each operation.

The circuit generation (at TC) and circuit evaluation (at TAP) take
roughly the same amount of time for each operation, which is expected
because they require roughly similar operations. Most of the Boolean,
arithmetic, and some string operations (such as string equality or lookup)
execute in less than 4 ms on the TAP. Complex string operations are also
fast (takes less than 25 ms) under some reasonably sized inputs. TS and
AS can encode/decode inputs in less than 5 ms.

We record the size of the garbled circuit (|F|) for each operation in
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# Rule description Functions performed GC size Data transfer (KB)
(KB) →TAP TAP→

R1 Share your Tweets (exclud-
ing replies) in Slack

! x[Text].startwith("@") 0.2 43 20

R2 Get Slack notifications for
new Twitter followers with
more than 5,000 followers

x[FollowerCount] > 5000 1.0 29 3

R3 Copy New Events from
Google Calendar into iOS
Calendar

x[StartTime] - x[EndTime] 1.0 33 32

R4 Blink your lights when you
receive email from a specific
address

x[Sender] == c 5.8 29 3

R5 Send SMS messages for new
Shopify orders

x[Phone] != null;
x[Phone].replace(" ", "")

9.0 27 3

R6 Add new inbound emails as
contacts in Ontraport

x[SenderName].split(" ", 0);
x[SenderName].split(" ", 1)

30.5 34 13

R7 Create Asana tasks when
new Slack messages start
with $request

x[Text].startwith("$request");
x[Text].replace("$request");
c2.lookup(x[Channel])

92.4 29 4

R8 Save new liked Tweets with
links to Pocket

x[Text].contain("http") 173.4 43 20

R9 Send SMS reminders for
upcoming Google Calendar
events

x[Description].extract_-
phone()

4,668.9 51 28

R10 Upload new videos in
Google Drive to YouTube

x[Filename].endwith("...") 12.1 32,133 32,108

Figure 3.8: Selected real-world rules for our experiments from both IFTTT
and Zapier.

the second-to-last column of Fig. 3.7. The garbled circuit F needs to be
periodically transferred from the client to TAP and the size of the circuit
changes significantly for different operations. Although for Boolean AND
the circuit is only 31 bytes, the circuit size for a complex regular expression
extraction, which is one of the most expensive operations we found, is quite
large (2.2 MB). The size of garbled circuit increases with the number of
states in the DFA and the length of the input string. The string replacement
circuits (replace) are larger, about 2.25x, than their equivalent matching
circuits (contain), even though the required DFA is larger for the latter
operation. The lookup circuit is small (31 KB).
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Performance of Running Complete Rules

Next, we measure the performance of eTAP on real-world rules. We first
picked ten rules from the combined IFTTT and Zapier dataset we collected
in Section 3.3. These rules handle sensitive data of different sizes and
cover a wide variety of operations (as noted Fig. 3.3). We list the rules
with simple descriptions in Fig. 3.8. The first eight rules (R1-R8) involve
frequently used functions, while the last two rules represent two rare
but extreme scenarios. R9 requires a rarely-used extract_phone function,
which appears only three times in our dataset and requires a complex
regular expression to be evaluated over a long text, thus making it the
most expensive rule to compute in our dataset. R10 is connected to a
trigger that might have a large payload (videos), so its performance is
more dependent on network bandwidth and latency.

For comparison, we built a skeleton version of each service following
the current TAP model, where only plaintext data is exchanged and com-
puted, as a baseline. We refer to this as PlainTAP. We used Python library
Flask for the cloud component of TAP, as well as two RESTful servers that
mimic the APIs provided in current trigger and action services. Two US-
west instances hosting TS and AS, and two US-central instances for hosting
TAP and the (simulated) TC. The network latency between US-west and
US-central is 39 ms.

Latency. The end-to-end execution latency measures the time between
a trigger event (trigger data and payload are available to TS) and AS
receiving plaintext output (Fig. 3.9). The latency, except R9 and R10, is
below 260 ms. When compared to PlainTAP (Fig. 3.9, top), the execution
latency for eTAP is 55% more on average. The majority of the latency
overhead is due to the higher amount of data transfer in eTAP between
TS and TAP (27-51 KB) and between TAP and AS (3-32 KB), which is
nearly 128x more than what it would require in PlainTAP. We show the
data transfer in the last two columns in Fig. 3.8. Given that TS, AS, and
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Figure 3.9: Latency (top) and throughput (bottom) for running each of
the rules (X-axis) in eTAP and PlainTAP.

TAP are cloud-based services with high-bandwidth network links, the
increase in data usage is reasonable. In addition, we list the time spent by
TC to generate and upload a single circuit (as the red bar in Fig. 3.9, top).
TC needs less than 12 ms to generate and transfer one circuit for most rules
(except for R9, in which case it takes 172 ms). This metric represents the
setup time for a new rule before it can be executed. In practice, TC can
generate and upload circuits in bulk periodically at its convenience.

Throughput. We measured the throughput as the maximum number of
executions per second by eTAP. We used Apache Bench [1] to compute
the throughput, which simulates sending concurrent trigger messages to
eTAP. We pre-computed the trigger labels to eliminate the bottleneck on
TS. We gradually increased the concurrency level until the throughput
saturated. We reported the maximum throughput of eTAP and PlainTAP
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in Fig. 3.9 (bottom). eTAP is capable of executing 65-90 rules of type R1-R8
per second on a single server. Compared to PlainTAP, for all but one (R9)
rule, eTAP provides around 41% throughput of PlainTAP. In the worst
case, when executing R9, eTAP’s throughput reduces to 11% of PlainTAP.

Large-scale Evaluation

To better characterize the performance of eTAP under realistic workloads,
we performed a large-scale evaluation where we randomly sampled 100
rules from our combined IFTTT and Zapier dataset. Out of the 100 sampled
rules, 55 require computations on the trigger data. For rules with no
computations, we simply treated the trigger data as payload and encrypted
them inside ct.

Computation overhead on TC. In eTAP, the trusted client TC has to peri-
odically generate and distribute the garbled circuits F, associated garbled
constants C, and encrypted decoding blobs d̃ to TAP. For simplicity, we
will use the term garbled circuit to denote the set (F,C, d̃). On average it
takes 4.1 ms to generate one garbled circuit. Based on prior work [89],
we assume that an average user has 26 rules installed and that each rule
will be executed once every 15 minutes, which is the default interval used
by IFTTT to contact its trigger services [150]. Therefore, we estimate that
the TC of an average user needs to spend 10.2 seconds per day to gener-
ate 2, 496 circuits. Since the average circuit size is 25.3 KB, the estimated
amount of data that TC has to send to TAP per day is 61.7 MB, which is
less than the data required to back up 25 high-res photos or a 1-minute
HD video (1920x1080 px @30 fps) to a cloud service [92, 116], a common
task executed daily by modern smartphones.

Storage overhead. TAP needs to store all circuits uploaded by TC until
they are executed. Based on the dataset in Section 3.3, there are 12.4 million
rules (counted by number of installations) running in IFTTT that are
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connected to private triggers. If we assume, conservatively, that all of
them require computations, that each rule will be executed once every
15 minutes, and that each rule on average requires 25.3 KB of storage per
execution based on the sampled rule set, the total storage overhead for
using eTAP would be 28 TB. Given that cloud storage is inexpensive [48],
the overhead is manageable. eTAP introduces little storage overhead to
AS, TS, and TC. TS and AS only need to store a 16-byte key (kT and kA)
and the current circuit id j (4 bytes) for each user. TC needs to store the
circuit id j and the keys for each service connected to the user’s installed
rules, since it can delete the circuits it generated after uploading them to
TAP.

Latency and throughput. We first measured the end-to-end latency of
running each rule individually and computed the average. The average
latency of eTAP is 139 ms, which is similar to PlainTAP (110 ms). The
increase in latency should be tolerable, considering the delays in current
trigger-action systems are usually 1 to 2 minutes [150]. Then, we issued
concurrent requests to trigger every rule at the same time and recorded the
maximum throughput. The throughput of eTAP is 96 requests per second
(RPS), which is 45% of the throughput of PlainTAP (211 RPS). Overall,
we have shown that eTAP can run real rules with a modest performance
impact.

3.8 Related work
A few studies have investigated the security issues in IFTTT-like systems.
Most closely related is the work of Fernandes et al. [102] where they first
introduce the compromised TAP model, and then built DTAP, a system
to prevent the misuse of stolen OAuth tokens. They focus only on the
integrity problem. By contrast, our work subsumes DTAP by provid-
ing confidentiality to the private trigger data passing through TAPs and
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adding authenticity of trigger-compute-action rule execution.
Chiang et al. [84] recently propose Obfuscated TAP that handles meta-

data attacks. They propose techniques to hide trigger data arrival patterns
and the types of trigger and action services from the untrusted TAP. Their
work also performs end-to-end encryption of trigger data but cannot sup-
port computations. In contrast, eTAP focuses on protecting sensitive trig-
ger data while allowing computation — a common use-case in real-world
rules (e.g., filter codes in IFTTT).

Bastys et al. [60] classify the sensitivity of IFTTT’s trigger and action
services and show that 30% of IFTTT’s apps may violate privacy by ex-
filtrating private information to a third-party. Xu et al. [198] analyze
how much private data can be harvested by TAPs. They demonstrate
that IFTTT has access to more data than necessary. For example, IFTTT
monitors devices even if they do not trigger actions. This motivates our
work in protecting all information from a malicious TAP.

A popular line of work investigates the semantics of rules and how
they violate security policies or interfere with each other. Surbatovich
et al. [180] present an empirical study of IFTTT apps and categorize the
apps with respect to potential security and integrity violations. Wang et
al. [190] design iRuler that uses SMT techniques to discover inter-rule vul-
nerabilities. This work is orthogonal to ours as it deals with rule semantics
and the TAP is considered trusted. By contrast, our work protects trigger
data from a malicious TAP.

Cryptographic techniques for secure computation. There is a large body
of work on privacy-preserving outsourced computation. Garbled circuit
is a particularly popular approach [70, 117, 131, 133, 176]. However, most
practical approaches tend to be application-dependent [67,129]. Since our
setting differs from a generic multi-party setting (as discussed in Section
3.5, we needed to develop a customized protocol).

For evaluation of string operations in a secure two-party computation
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setting, Mohassel et al. [152] introduced Obliv-DFA, a custom non-GC
based protocol that only supports regular expression matching. Extending
Obliv-DFA to substring extraction and replacements would not be possible
without drastically changing the protocol and incurring significant over-
head. eTAP, on the other hand, supports string operations through a novel
and efficient purely circuit-based approach. This allows functional com-
position with other operations such as substring extraction/replacements
and simple transfer of security properties of GC.

3.9 Discussion and Limitations

Security against metadata leakage. Some rules reveal sensitive infor-
mation just because they are executed. For example, consider the rule:
“IF I leave home, THEN turn off the WiFi.” TS sends a message to AP
only when the user leaves the home. In our threat model, TAP knows
the rule semantics. Therefore, when TAP observes a message from this
particular TS, it will learn that the user has left the home. Such metadata
leakage from side-channels is hard to prevent cryptographically. Recent
work [84,198] has applied cover traffic to protect time-sensitive information
in trigger-action rules by hiding the real trigger events among fake-but-
identical ones. We discuss a simple modification to eTAP that uses cover
traffic without requiring TC to generate new (fake) circuits.

TC generates a set of circuits and transmits them to TAP, as before. Let
J denote circuit indices in this set. TS also internally keeps track of the set
of circuit indices J ′ that have been used with real data. To send real data,
TS picks random j ∈ J \ J ′, updates J ′ ← J ′ ∪ {j}, and continues as before
(Section 3.5). To send fake data, it picks random j ∈ J, and then sets the
garbled trigger data to random bits. TAP executes the chosen circuit ID as
before and sends output to AS. When fake data is evaluated on a circuit,
the decryption at the AS will fail with very high probability and thus, it
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will ignore the message. We present an example to illustrate this approach.
Assume TC generates two circuits with ids J = {j1, j2} and TS has to send
five events e1, e2, . . . , e5, among which only e2 and e3 are real. Following
the scheme above, it transmits the following sequence of circuit ids to TAP:
j1, j1, j2, j1, j2. We see that j1 is used multiple times: first for e1, then for e2,
and finally for e4. TAP will notice that j1 circuit was executed thrice, but it
cannot distinguish which of these executions was on real data.

This approach is secure due to two reasons: (1) TAP cannot distinguish
between executions on real or fake data due to the garbling procedure
we use in eTAP [204] (see Proposition 1 for a proof-sketch); and (2) TAP
cannot learn anything from circuit usage statistics because of how TS
selects j. In addition, circuits can be executed multiple times but at most
only one of them will be on real data. Such re-evaluation of circuits on
random data does not affect GC security properties [64].

Integrating with existing Trigger-Action Systems. We contribute a clean-
slate redesign for trigger-action platforms providing data confidentiality
from the ground up. As such, it is not immediately backward compatible.
However, eTAP’s design attempts to minimize these required changes as
follows:

First, we create a new TC, a mobile app that users must install on their
phones to interact with eTAP. The app mimics the user experience that
trigger-action platforms like IFTTT or Zapier currently offer. For example,
the user clicks on buttons in a wizard-style user interface to program a
rule. TC transparently generates keys and GCs in the background and
shares them with TS, TAP, and AS (accordingly) — the user does not have
to take any additional action.

Second, the existing TS and AS need to adapt to eTAP protocol. Specif-
ically, both need to communicate with TC to receive keys (kT ,kA). Addi-
tionally, TS has to send encoded labels to TAP instead of plaintext trigger
data, and AS has to run the decoding function on circuit output (Fig. 3.5).
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We have built a library that trigger/action services can use to upgrade
their APIs to perform the above operations.

Third, TAP has to evaluate GCs. It also has to cache circuits it receives
from TC. We observe that TAP is already setup to perform these tasks —
executing code at large scale and managing user-specific data. Although
this incurs a resource cost, we believe that it is acceptable given the strong
confidentiality and integrity guarantees our work provides.

Rule semantics. A malicious TAP can learn about a user’s automation
patterns using its knowledge of rule semantics. Although we encrypt the
trigger data, TAP can still observe the source endpoint of the trigger data
and the destination of the encrypted result. As future work, we envision
using results from anonymity networks like Tor [97] to hide the sources
(trigger service) and destinations (action service) of messages.

Circuit id synchronization. eTAP requires TC and TS to synchronize on
the circuit id j. TAP in eTAP cannot execute a rule if the j specified by
TS is not present in its database of GCs sent by TC. This can happen, for
example, if TC fails to generate circuits for a certain day due to technical
glitches, but TS continues to generate trigger data. We do not want TS to
support additional APIs to inform TC about its current circuit id j. Instead,
we can rely on TAP to provide this information. TS attaches an encrypted
(using kT) blob containing the circuit id and the timestamp to TAP along
with other data during rule execution. TAP forwards that blob to TC on
request from TC. Thus TC can learn the current value of j and can detect
if TAP sends a stale message.

Loss of the trusted client (TC). TC in our setting is the “root” of trust
for generating garbled circuits. TC can be an app running on user’s
personal mobile device. However, the app has to store a number of
important states necessary for continued execution of a rule, such as
kT ,kA, OAuth tokens, j, f, c, etc. Therefore, the states on the trusted client
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must be preserved in case the device is lost. We can use standard cloud-
based solutions to back up the states. For example, the states can be
encrypted under a user’s password and backed up in a cloud drive. The
client can recover the states and continue to operate on a new device once
the user connects their cloud drive accounts.

Circuit usage feedback. Different rules execute at varying rates. TAP can
monitor rule execution frequency to make predictions about future circuit
usage and optimize the number of circuit generations and transmissions.
TAP can lie about these statistics; however, it does not affect on the security
of eTAP. We leave its implementation to future work.

3.10 Summary
Trigger-action platforms allow users to connect independent web-based or
IoT services to achieve useful automation. They provide a simple interface
that helps end-users create trigger-compute-action rules that pass data
between disparate Internet services. Unfortunately, TAPs introduce a large-
scale security risk: if they are compromised, attackers will gain access to
sensitive data for millions of users. To avoid this risk, we propose eTAP, a
privacy-enhancing trigger-action platform that executes trigger-compute-
action rules without accessing users’ private data in plaintext or learning
anything about the results of the computation. We use garbled circuits as
a primitive, and leverage the unique structure of trigger-compute-action
rules to make them practical. We formally state and prove the security
guarantees of our protocols. We prototyped eTAP, which supports the
most commonly used operations on popular commercial TAPs like IFTTT
and Zapier. Specifically, it supports Boolean, arithmetic, and string op-
erations on private trigger data and can run 100% of the top-500 rules of
IFTTT users and 93.4% of all publicly-available rules on Zapier. Based on
ten existing rules that exercise a wide variety of operations, we show that
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eTAP has a modest performance impact: on average rule execution latency
increases by 70 ms (55%) and throughput reduces by 59%.
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4 mintap: minimizing data access in
trigger-action platforms

In this chapter, we present minTAP, another design solution to tackle the
privacy problems in trigger-action platforms. Compared to the eTAP
protocol we introduced in the previous chapter, minTAP offers a differ-
ent tradeoff. Instead of providing zero access to plaintext data, minTAP
does allow the trigger-action platforms to learn a subset of attributes in
the data, but only to the amount that is necessary to perform the plat-
form’s functionality, thus achieving least privilege. Meanwhile, minTAP
achieves significantly better performance and requires no modification to
the platform.

4.1 Introduction
The core privacy issue in Trigger-Action Platforms, or TAPs, is that they
receive more data than they need to execute user-created rules. Specifi-
cally, there are two key design flaws in TAPs that can cause data privacy
problems. (1) Attribute-level overprivilege allows exploiting the APIs de-
signed by third-party services to send significantly more data attributes
than what is necessary to execute the rule. (2) Token-level overprivilege of
the OAuth tokens that TAPs receive from the third-party services allows
exploiting the tokens to use various APIs on the service, even if they are
completely unrelated to the rule. While Fernandes et al. [102] consider
token overprivilege for integrity, we point out that, when combined with
attribute overprivilege, these tokens also permit TAPs to read more sensi-
tive information than needed, thus creating more opportunity for privacy
violations.

Considering the rule in Fig. 4.1. The rule connects Outlook email with
Slack — an email arriving at the user’s inbox from bank@xyz.com will trig-
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Trigger-Action Platform

Automation Rule

Filter Code

if Time before 9am / after 5pm:
skip action

Office 365: New Email from …

bank@xyz.comFrom

Slack: Post to channel …

bobChannel

Received an email 
from Sender:Subject

Message

Compatibility Layer

Action Service

Compatibility Layer

Trigger Service

Post to channel …

Channel bob

Message Received an email from 
Bank XYZ: Bank Statement

Attributes
Sender: Bank XYZ
Subject: Bank Statement
Body: Your salary is $...
Time: 2020/11/20 12:00

New Email from …?

From bank@xyz.com

Rule Setup Phase Rule Execution Phase

Program and save rule to TAP

Figure 4.1: An example automation rule in trigger-action platforms. The
boxed fields represent various information that the user needs to specify.

ger the rule that performs the action of sending a Slack notification with
the email sender’s address and subject line if the email arrives between
9 am and 5 pm (otherwise, no action is performed). For this rule, the
TAP only needs the email sender and subject line, and only for emails that
arrive between 9am and 5pm. However, currently the TAP will receive all
email data from that sender at all times. A fundamental design choice in
TAPs is to favor ease-of-use for third-party services and end-users. Coarse-
grained APIs and tokens avoid frequent permission requests, saving users
from going through the authentication prompts multiple times. Unfor-
tunately, this comes at the cost of privacy — it violates the principle of
least-privilege [170]. It can also create friction with legal frameworks like
the General Data Protection Regulation (GDPR) [107] and the California
Privacy Rights Act (CPRA) [22]. These frameworks stipulate data min-
imization, a principle restricting data collection to “what is necessary in
relation to the purposes for which they are processed” [107].

Motivated by the above, we explore improving user data privacy on
TAPs, a largely unexplored area in trigger-action platforms [59]. We
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contribute to the design and implementation of minTAP, a system that
follows the principle of data minimization to ensure that the TAP only
receives the user data it needs to execute user-created trigger-action rules.
Specifically, our techniques automatically detect and withhold unnecessary
trigger data. There are two challenges in achieving this property: (1)
Determine the amount of data a trigger-action rule needs. (2) Mitigate
privacy issues in a practical way that does not require changes to the TAP
while only negligibly impacting user interaction.

Automatically determining the amount of data that a rule needs is
challenging because that amount can vary depending on the rule seman-
tics. IFTTT rules may contain user-created code snippets (called filter code
in IFTTT terminology) where the set of required data depends on code
behavior. In our running example, if the time is outside of the 9am to 5pm
window, then the rule needs no data. Inspired by recent work on language-
based data minimization [54], we leverage program dependency analysis
to enforce data-minimality in rules. Our approach demonstrates how to
construct lightweight static and dynamic minimizers, which take as input
a rule and output the information needed by the rule while sanitizing
unused data (Section 4.5). We also provide guidance to trigger service
developers on what types of minimizers would best suit their needs and
the related trade-offs (Section 4.9).

For the second challenge on remaining compatible with existing TAPs
and not burdening end-users, we decouple trust in rule creation and ex-
ecution steps. On current systems, these steps occur on infrastructure
provided by the TAP vendor (e.g., rule creation occurs on a webpage that
IFTTT hosts while rule execution occurs in the IFTTT backend). This im-
plies that a user has to trust this entire stack. Per our threat model, the TAP
is untrustworthy, and thus, rule creation must occur elsewhere (otherwise,
the TAP can simply modify a rule to request all information independently
of the user’s needs). Inspired by recent work on decentralizing trust in
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TAPs [102], we introduce a trusted client application that helps a user
create rules. Thus, rather than trusting the TAP to correctly help a user
create rules, each user in the system only trusts their client application.
The minTAP client transparently rewrites user-created rules with program
dependency information and then stores that information on the TAP
with cryptographic integrity protection. We demonstrate this technique
on IFTTT without requiring any cooperation. Finally, minTAP requires
a small modification to the trigger service’s existing IFTTT-compatibility
layer. We build a portable Python library that services can use to update
their compatibility layer and perform data minimization based on the
program dependency information when a rule executes.

We evaluate the privacy benefits of minTAP on 34, 419 real-world IFTTT
rules that operate on sensitive data — it correctly identifies and removes a
median of 4 sensitive attributes that IFTTT does not need for rule execution.
Examples include users’ emails and downloadable links to private files.
We also find 376 filter codes inside these rules and detect that 84% of them
may lead to the skipping of actions: when skipped, minTAP will remove a
median of 5 attributes.

4.2 Filter Code in Trigger-Action Platforms
In trigger-action platforms, connected web services can create triggers that
will notify the TAP about an event (e.g., “new email arrived” or “door
unlocked”) or actions that allow the TAP to issue operations (e.g., “send a
message” or “turn on the light”). For each trigger and action, the services
host APIs to handle the communication with the TAP. Trigger APIs feed
trigger data containing a number of attributes,1 such as Sender, Subject,
Body, and Time in the context of our example rule in Fig. 4.1.

1Different TAPs may use different terminologies. For example, in IFTTT, rules are
called applets and attributes are called ingredients.
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let str = Office365Mail.newEmail.Subject
if (str.indexOf('IFTTT') === -1) {

Slack.postToChannel.skip()
} else {

Slack.postToChannel.setMessage('Email ' +
Office365Mail.newEmail.Subject + ' just received!')↪→

}

Figure 4.2: Example filter code.

A rule connects a trigger to an action. The service providing the trigger
is referred to as trigger service, and the service providing the action as action
service. Each trigger and action can provide multiple user-configurable
fields. These fields represent the parameters that the TAP appends to its
API call to the corresponding services. In Fig. 4.1, the trigger has a From
field which can be used to customize which email address can trigger the
rule. Similarly, Channel and Message are the action fields that customize
the API call that the TAP sends to Slack. The user may also specify the
values of action fields with the trigger attribute names.

A rule can do further processing of trigger attributes using filter code.
On IFTTT, filter code is a JavaScript code snippet that may customize the ac-
tion fields based on trigger data. Filter code may also skip the action event
altogether based on some condition. Fig. 4.2 shows an example of filter
code that sends a Slack message only when a new email containing the key-
word “IFTTT” is received [21]. The variable Office365Mail.newEmail is an ob-
ject that holds the trigger attributes, such as Subject, and Slack.postToChannel
provides a list of functions, such as setMessage(), to set the values for differ-
ent action fields. When one of these functions is called, the original value
of the corresponding action field is overwritten. The skip() is a special
function: upon invocation, rule execution aborts.

For interoperability with third-party services, popular TAPs like IFTTT
and Zapier specify a compatibility layer that the participating services must
implement to host TAP-specific APIs and translate the service’s original
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authorization and data APIs into a format that the TAP understands [123,
205].

4.3 Data Privacy in Overprivileged
Trigger-Action Platforms

Prior work [102] has examined the integrity issues that overprivilege
causes. We provide a first look at the data privacy issues that result from
overprivilege. This motivates the design of our data minimization frame-
work.

Attribute-level overprivilege. Typically, each trigger API contains multi-
ple attributes. Unfortunately, under the current practice, the trigger service
transmits all these attributes to the TAP regardless of whether the rule needs
them. These unneeded attributes can contain sensitive information, lead-
ing to attribute-level overprivilege. Consider the example rule in Fig. 4.1,
the trigger service provides four attributes (i.e., Sender, Subject, Body, and
Time) in the trigger data sent to the TAP. However, one of the attributes
(i.e., Body) is never accessed in the rule’s execution. We give three example
IFTTT rules in Fig. 4.3 showing that many sensitive attributes are being
sent to IFTTT even though they are not required for rule execution. Users
of TAPs can further customize the behavior of a rule by writing filter code
that can access trigger attributes and modify action fields. Thus, based
on the execution path of the filter code, the set of attributes a rule uses
can change. Consider the filter code in Fig. 4.2. When the condition in the
if statement holds, the entire action will be skipped and hence no trigger
attributes are required; otherwise, the TAP only needs the email’s Subject
to correctly execute the rule.

Token-level overprivilege. Privacy concerns on TAPs extend beyond at-
tribute overprivilege. As noted in Section 4.2, TAPs acquire OAuth tokens
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with a broad scope for enhanced usability, so that users can enter their
password for a trigger/action service only once even if they create multiple
rules using them. These tokens enable TAPs to execute a large number
of APIs on behalf of the user. If an attacker obtains such a token (either
by compromising the TAP, or by tricking a user), they can use the token
to get unfettered access to all of the user’s sensitive trigger data serviced
by the APIs that are in the scope of the token, even if these data are not
required for any of the TAP’s supported rules. While this issue was first
identified by Fernandes et al. [102] our experiments confirm that it is yet
to be addressed by current TAPs. Although finely-scoped tokens could
mitigate this overprivilege, they will drastically hamper usability as users
will have to authenticate to services every time they create a rule.

From overprivilege to minimization. The constraints of usability and
functionality that lead to attribute- and token-level overprivilege are fun-
damental to the design of trigger-action platforms. Nevertheless, such
overprivilege violates the principle of data minimization that mandates
sharing only necessary user data [22, 107] and puts users’ privacy at risk
should the TAP (or the tokens intended for the TAP) be compromised. Our
work identifies a sweet spot in the design space that mitigates attribute-
and token-level overprivilege while respecting the usability and function-
ality constraints, with negligible change to the user’s experience and no
modifications on the TAP.

4.4 Threat Model and Design Goals
Our goal is to ensure that trigger services release the minimal amount of
data that user-created rules need without modifying the trigger-action
platform or requiring significant changes to the existing user experience.
We first discuss the threat model under which we want to achieve these
goals and then outline the design requirements of the solution. Finally, we
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IFTTT rule description Trigger Trigger attributes (unused ones
shown in bold italics)

Get notification before your next
event starts [9]

Google Calendar:
Any event starts

Title, Description, Where, Starts,
Ends, EventUrl

Automatically save in Pocket the
first link in a Tweet you like [3]

Twitter: New liked
Tweet by you

Text, UserName, LinkToTweet,
FirstLinkUrl, CreatedAt, Tweet-
EmbedCode

Payments over ___ send you a
phone call [14]

Square: New pay-
ments over a specific
amount

Merchant, ID, TotalCollected-
Money, DeviceName, Paymen-
tAt, RecordURL

Figure 4.3: Examples of IFTTT rules, where several sensitive attributes of
trigger data are not used by a rule but still sent.

discuss a few potential approaches and point out why they do not meet
our security or functionality goals.

Threat Model

In line with prior work on security and privacy of TAPs [80, 84, 102, 172,
198, 206], we assume that the TAP is untrustworthy, meaning that it may
deviate from the protocols with the goal of stealing user data that it should
not know about (i.e., user data that is not involved in any user-created
rules). It can, for example, try to modify the user’s installed rules or
impersonate the user. Action integrity attacks (e.g., changing or dropping
the action of a rule) are orthogonal to this work and are addressed in
complementary approaches [84, 102], which we envision will compose
well with minTAP. Denial of service is also outside of our scope. Therefore,
our focus is on privacy issues arising from overprivilege and how the TAP
can take advantage of this fundamental flaw.

We assume that the third-party trigger services, which are the origina-
tors of user data, are trusted and do not collude with the TAP. For example,
services like Outlook and Dropbox are the source of sensitive user data
and have no incentive to collude with the TAP to reduce the privacy of
their users. These services have a TAP-mandated compatibility layer to
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host APIs that communicate with the TAP. We also assume that the users
who create trigger-action rules never act against the interests of their own
data privacy, but they might be malicious towards the data of other users.
For example, an attacker can sign up to the TAP as a user with the goal of
trying to steal other user data from trigger services.

As noted earlier, users interact with the trigger-action platform via an
app running on a smartphone or computer. We assume that the client
device and the app they use to interface with the TAP are trusted and
not compromised. We adopt this decentralized trust model from existing
work [80, 84, 102]. Unlike the current setting where all users trust a single
entity (i.e., IFTTT), in our design, each user only trusts their own device
and the apps running on it.

Design Goals

Security. Our primary goal is to ensure that the TAP is correctly privileged
at both the token- and attribute-level, so that it can only obtain the data that
is absolutely necessary for executing the user-created automation rules.
This security goal is in line with the data minimization principle. Therefore,
the trigger services should only send the necessary amount of user data to
the TAP. Such information may vary dynamically based on the attributes
of trigger events for different executions of user rules. In addition, the
design must not open up new vulnerabilities in the trigger/action services.

Functionality. The approach to reducing overprivilege in TAP must abide
by the following functionality goals: (1) It must be compatible with exist-
ing trigger-action platforms, such as IFTTT, Zapier, MS Power Automate,
etc., without any modification. In our case, we prototype with IFTTT, a
widely popular TAP with 20 million users [122]; (2) It should support
current real-world trigger-action rules that can include filter code; (3)
User experience should remain similar and any security-relevant changes
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should be handled transparently; (4) The trusted client that users use
to set up rules should not be required during rule execution; (5) All
changes to the trigger service should be contained within its existing
IFTTT-compatibility layer; (6) It should transparently support consumers
of trigger APIs that are not minTAP-aware (e.g., users who do not want
privacy preserving features, non-TAP consumers of trigger APIs). These
functionality goals are necessary to ensure we preserve the characteristics
of trigger-action platforms that made them popular among users and
trigger/action services.

With the threat model and design goals set, we show why naive solu-
tions do not fulfill our security and design goals.

Potential Solutions and Challenges

A trigger service could create rule-specific APIs to reduce attribute-level
overprivilege and API-specific tokens to reduce token-level overprivilege.
However, the former will require the trigger service to know the rules that
users create with their services (a challenge on its own). The latter will
require recurring updates to trigger APIs to provide desirable functionality
in the face of changing user demands, increasing API maintenance burden.
The API-specific tokens will also create a usability burden as users will
then have to authorize the TAP every time they create a new rule.

Another potential solution could be to run the rules on the trigger
service and communicate the results to the action service directly, without
requiring the TAP. However, this will break the independence between
trigger and action services, a key property that allows them to evolve
independently of each other. For example, there is no reason for an email
service provider to know the API details of a chat room. With this naive
solution, the trigger service will be required to learn the API details of every
service for which the user creates automation rules. TAPs provide a critical
layer of abstraction that permits cross-service automation without the
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services knowing about each other. Thus, a practical solution to mitigate
privacy issues resulting from overprivilege cannot require changes to
how the ecosystem functions. A variant of this potential solution is to
run the rule on the trigger service and only transmit the results of rule
execution to the TAP which then simply forwards the results to the action
service. However, this, in addition to the problem stated above, requires
modifications to the TAP, violating our design goals.

We therefore take a different approach and build minTAP that operates
with existing TAPs and enable trigger services to apply data minimization
to their trigger APIs. During rule creation on the client device, minTAP will
create a data minimizer for the rule and store that on the TAP as a trigger
parameter. The trigger service will receive the parameter during rule
execution, apply the minimizer, and send only the minimized trigger data
to the TAP. The minimizer ensures all but the attributes necessary for the
rule execution are replaced with some default values (e.g., empty strings).
Next, we discuss how to generate such practical minimizer functions
in Section 4.5, and how we design minTAP to use minimizers without
modifying IFTTT (Section 4.6).

4.5 Data Minimization Model
Data minimization reduces the set of trigger attributes sent to TAPs by
only transmitting the ones necessary for rule execution. For rules without
filter code, we can identify the minimized trigger attributes as the ones
that are used in the action fields. For rules with filter code, we develop a
practical minimization model that uses data-flow dependency analysis.

Language-based data minimization. We draw on the recently proposed
theory of language-based data minimization [54]. Intuitively, a minimizer is
a function that reduces the inputs to a rule without changing the rule’s
behavior. An optimal minimizer removes all redundancy from the inputs.
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In an ideal scenario, we want to construct an optimal minimizer for a given
TAP rule. Unfortunately, finding it is undecidable [54]. Prior work on
building minimizers either resorts to verification [54] relying on manual
intervention or testing value coverage [161] to produce meaningful results.
Automatically building practical minimizers is an open problem.

We propose an automatic approach to building practical minimizers for
TAP rules. As confirmed by our experiments from Section 4.8, filter code
consists of small code snippets not written with adversarial intent [21].
This makes static and dynamic code data-flow analysis of filter code feasible
and thus opens up opportunities for building practical minimizers that can
protect sensitive user data from unnecessarily being exposed to the TAP.

Data Minimization Model

From Preprocessing to Data Minimization

An abstract setting [54] that allows us to model the essence of data min-
imization, modeling rules functions from input to output. This matches
the setting of TAPs where the rules correspond to functions initialized by
the ingredients and conditions from the fields in the user interface and
computing the action ingredients by running the filter code. IFTTT’s filter
code is batch-job, with no allowed I/O [121], which justifies its model as a
function from input to outputs without side effects.

Informally, a minimizerm for a function f is a function that can reduce
the input to f without changing the behavior of f. Let f be a function
computed by a given rule. Without loss of generality assume f : I 7→ O,
mapping inputs (i1, . . . , in) to output o, such that f(i1, . . . , in) = o, or
f(i) = o for short. We recall the definition of preprocessor by Antignac et
al., where ◦ denotes function composition:

Definition 1 (Function preprocessor [54, 161]). A function m : I 7→ I

with the same domain and range as f is a preprocessor for f iff f ◦m = f and
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m ◦m = m.

Intuitively, a preprocessor is an idempotent function that, when run
ahead of the main function, does not change the behavior of the main
function. A preprocessor property is useful to reason about the correctness
of data minimization. Indeed, reducing the input to the function must not
changes the behavior of the function. The idempotence property ensures
that all the redundant input is reduced all at once. For example, dropping
a redundant input/attribute (by replacing it with a default value) is a valid
preprocessor. Indeed, the default value for the redundant input would
not change the value of the function.

To be able to reason about individual runs, we generalize this definition
to value-sensitive preprocessor, which we call a run preprocessor. A run
preprocessor allows us to tune minimization depending on the input data
at hand.

Definition 2 (Run preprocessor). Functionm is a run preprocessor for f on
input i iff f ◦m (i) = f(i), andm ◦m = m.

Note that while being a preprocessor is a necessary correctness con-
dition for a data minimizer, not all preprocessors actually minimize data.
For example, the identity function is a valid preprocessor for any function
and yet it does not reduce the input.

Minimization by (In)dependency Analysis

We now discuss a basic principle for creating practical minimizers. Our
key insight is to identify input attributes that have no impact on the rule
functionality, so that they can be dropped by the minimizer. A function
is independent of a subset of input attributes if the function output never
depends on what values those attributes take. That is varying the values
of that subset of attributes will not affect the function’s result. This relates
to the well-studied notion of noninterference [109]. For our purposes, we
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term this regular independence. If the independence is specific to particular
values certain attributes take, then we call it run independence. Under run
independence with respect to a particular subset of attributes, varying the
input values of the remaining attributes will not affect the function’s result.
Let i|J denote projection of input tuple k to the subset restricted to indices
J.

Definition 3 (Run independence). Assuming J ⊆ {1, . . . ,n}, a function f on
input tuple i is independent of input indices J if for all input tuples j whenever
j|D = i|D then f(j) = f(i) where D = {1, . . . ,n} \ J.

Definition 4 (Regular independence). Assuming J ⊆ {1, . . . ,n}, a function
f is independent of input set J if for all input tuples i ∈ I, the output of f on i is
(run) independent of J.

Regular and run independence open up possibilities for building prac-
tical minimizers. This is achieved by static and dynamic program analysis
to track whether a given input is used in computing the output of the rule.
Recall the example rule from Fig. 4.1. By statically analyzing the rule, we
conclude that the body of the email is never used in the output. Therefore,
the rule is regularly independent of the email body. A minimizer can thus
withhold the email body (e.g., by replacing it by the empty string) without
changing the functionality of the rule. Similarly, when invoked outside
the working hours, the rule run is independent of all inputs in which case
no data needs to be sent to the TAP.

The following two theorems establish the correctness of the minimizers
in the sense that a dynamic minimizer that enforces run independence is a
correct run preprocessor and that a static minimizer that enforces regular
independence is a correct function preprocessor.

Theorem 4.1 (Dynamic minimizer). If the output of the function f on i is
independent of J, then the functionm, defined bym(i1, . . . , in) = (j1, . . . , jn), is
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a preprocessor for f on i, where

jk =

default, if k ∈ J

ik, otherwise

Proof: By Definition 2, we need to show that f◦m (i) = f(i) andm◦m = m.
Clearly, f ◦m(i) = f(i) because replacing independent inputs in J with
default values default will not be reflected on the output of f by Definition 3.
In addition,m is idempotent by construction, and so we havem ◦m = m.

Theorem 4.2 (Static minimizer). If a function f is independent of J then
functionm is a preprocessor for f, defined bym(i1, . . . , in) = (j1, . . . , jn) where

jk =

default, if k ∈ J

ik, otherwise

Proof: By Definition 1, we need to show that f ◦m = f and m ◦m = m.
Regular independence on I entails f◦m = f because replacing independent
inputs I by default values by m will not reflect on the output of f, as
guaranteed by Definition 4. Furthermore,m is idempotent by construction,
and so we havem ◦m = m.

Practical data minimizers for TAPs.

We contribute practical minimizers that use data-flow analysis. We define
a practical minimizer to be a function that takes as input the trigger data
DT and some auxiliary informationm computed based on the rule r, and
outputs modified trigger data where values of the unused attributes in
rule r are removed. minTAP supports two types of minimizers: static
and dynamic. A static minimizer computes the list of required trigger
attributes by statically analyzing the rule (including the filter code), lever-
aging regular independence. A dynamic minimizer computes the list of
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required trigger attributes for rule execution by running an instrumented
version of the filter code that tracks trigger attribute usage, leveraging run
independence.

Generating auxiliary information for minimizers. The auxiliary infor-
mation assists the minimizers in computing the set of required trigger
attributes. Algorithm GenMinimizerInfo in Fig. 4.4 presents the algorithm
for generating the auxiliary information. It takes a rule r = (T ,A, f) where
T is the set of trigger attributes (e.g., Sender and Subject in the example
rule in Fig. 4.1), A consists of the value of each action field (e.g., Channel
and Message), and f represents the filter code.

This algorithm first computes the dependency set T ′, which includes
Tai , the set of trigger attributes required by each action field ai ∈ A, and
Tf, the set of trigger attributes appearing in the filter code f. In addition, it
also transforms f into f ′ by (1) adding data-flow tracking logic to track the
access of trigger attributes and action fields, (2) replacing skip() with an
empty return, and (3) replacing action API calls with stubs. The last mod-
ification serves two purposes: to track which action fields are overwritten
and anonymize the action API semantics because we do not want to leak
them to the trigger service. We name f ′ as the transformed filter code
and, along with the dependency set T ′, they form the minimizer auxiliary
informationm.

Executing data minimizers. Once the minimizer information is generated,
the trigger service can choose to run one of the minimizers on trigger data
DT , which contains the trigger attributes and their associated values. In
case of static minimization (SMinimizer), the trigger service simply crosses
off the value (e.g., replaces with some default value ⊥) for attribute in DT
if it does not belong to any of the sets in T ′. In case of dynamic minimizer
(DMinimizer), the trigger service executes the instrumented filter code f ′

on the current trigger data DT , which, during the course of its execution,
records the set of trigger attributes accessed (Tf ′) and set of action fields
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GenMinimizerInfo (r = (T ,A, f)):
for ai ∈ A do
Tai
← {t | t ∈ T ∧ t appears in ai}

Tf ← {}

for stmt ∈ AST(f) do
Tf ← Tf ∪ {t | t ∈ T ∧ t is accessed by stmt}

T ′ ← (Ta1 , . . . , Tan
, Tf)

f ′ ← transform(f)
Return m = (T ′, f ′)

SMinimizer (DT , m = (T ′, f ′)):
/* f ′ is not used */
(Ta1 , . . . , Tan

, Tf)← T ′

Ta ←
⋃
ai∈A Tai

for (t, v) ∈ DT do
if t /∈ (Ta ∪ Tf) do

DT [t]← ⊥
Return DT

DMinimizer (DT , m = (T ′, f ′)):
(Ta1 , . . . , Tan

, Tf)← T ′

/* Tf is not used */
(Tf′ ,A ′)← f ′(DT )
Ta ←

⋃
ai∈(A\A′) Tai

for (t, v) ∈ DT do
if t /∈ (Ta ∪ Tf′) do

DT [t]← ⊥
Return DT

Figure 4.4: Generating the auxiliary information required for running static
and dynamic minimization is shown at the top, and how this auxiliary
information is used is shown in the bottom two procedures. For a rule r,
T is the set of trigger attributes, A is the values of action fields, f is a filter
code, DT is the trigger data.

overwritten (A ′). If an action field ai is over-written by f ′, the minimizer
adjusts T ′ by removing Tai . Then, similar to static minimization, the
dynamic minimizer replaces all the values for attributes that do not belong
to any dependency sets.

4.6 minTAP Framework
We discuss the design of the minTAP framework and show how it uses
the minimizers from the previous section to ensure that the TAP only
receives the necessary amount of sensitive attributes it needs to execute
user-created rules. This tackles both the attribute- and token-level over-
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Figure 4.5: minTAP Framework. The blue-shaded background represents the
components of minTAP: a client application and a modification to the existing
IFTTT-compatibility layer of trigger services. The user creates a rule r, which is
then transformed by the client into r ′ that contains minimizer information (m)
with integrity protection (σ). During rule execution, the TAP contacts the trigger
service with (m,σ). The trigger service returns minimized data by removing
attributes not needed for rule execution. All of this works transparently to users
and the TAP.

privilege privacy issues. We also discuss how the design achieves the
functionality and security goals from Section 4.4. We integrate minTAP
with IFTTT due to its wide user base [122]. minTAP ensures that real-
world rules run with the minimum amount of trigger attributes they need
without changing IFTTT or the rules themselves. Thus, it is a practical
technique that privacy-conscious trigger services can use with lightweight
changes to their infrastructure.

Design Overview. minTAP framework consists of two components (Fig. 4.5):
a compatibility layer (or shim) that trigger service installs on top of its
existing IFTTT-compatibility layer, and a client for each user in the form
of a trusted browser extension. Together, they ensure that IFTTT is cor-
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IFTTT Service

1. Authorization Request
{Client id, Scope, Callback URL, …} 2. Authorization Request*

{Client id, Scope, Callback URL, …,
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3. Authorization Code
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6. Access (+ Refresh) Token 
for IFTTT

6*. Access (+ Refresh) Token 
for Client

Client

Login + 
authorize

Figure 4.6: minTAP authorization phase: The non-bold text represents
the original OAuth 2.0 authorization code flow used between IFTTT and
the service, while the bold parts highlight the changes introduced by
minTAP’s trusted client.

rectly privileged at the attribute- and token-level without requiring any
co-operation from IFTTT. At a high level, when the user configures a rule,
the client will read the information on the rule setup interface to gener-
ate the minimizer auxiliary information, based on the algorithm described
in Section 4.5, as well as a signature, which ensures the rule’s integrity.
During rule execution, these information will be forwarded to the trigger
service, which will apply the minimizer (either statically or dynamically)
and filter out unused attributes.

We organize the following discussion around the life-cycle of a trigger-
action rule in the case of IFTTT: (1) Authorizing IFTTT to trigger/action
services; (2) Setting up rules; and (3) Rule execution.
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Service Authorization Phase

The trigger service has to verify that the information it receives from IFTTT
is authentic and not modified. Our design achieves this by signing the
information. Thus, the trigger service needs to receive the public key
of the client for signature verification. This client’s key is service- and
user-specific. Although the client could upload this key by initiating a
separate OAuth session with the user and trigger service, it hinders the
usability. Therefore, we integrate the OAuth Proof Key for Code Exchange
(PKCE) protocol [17] into the current OAuth protocol that runs during
the service authorization phase to simultaneously authorize both IFTTT
and the client.

Before a user can create a new trigger-action rule, they must authorize
IFTTT to access their data on the trigger and action services through the
standard OAuth 2.0 authorization code flow. This is a one-time operation
that occurs the first time the user programs a rule with a new service.
Subsequent rules involving the same services do not go through the au-
thorization process — this is a key usability trade-off in IFTTT. Our work
maintains this trade-off while mitigating the negative privacy effects.

During service authorization, minTAP’s client, deployed as a browser
extension, intercepts and transparently modifies the first two steps of the
OAuth sequence, namely, the authorization request and code response.
This is possible because these steps are implemented through browser
redirects. The client also creates a service-specific key pair (sk, pk). Fig. 4.6
shows the extended OAuth flow. When the client encounters an authoriza-
tion request from IFTTT to a service (Step 1), it generates a large random
string and computes its cryptographic hash value. We refer to this string
as code verifier and to its hash value as code challenge. The client appends
the code challenge to the authorization request (Step 2). After the user suc-
cessfully logs into the account and approves the requests, the service will
redirect the browser to the callback URL, which is an endpoint of IFTTT,
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with the authorization code appended (Step 3-4). The client records this
authorization code silently for later use. Then, in the background, IFTTT’s
server will post a request for the access token using its client secret (Step
5). The service will reply with a special access token (Step 6), which can
access the service’s APIs only when accompanied by a valid signature.

Concurrent to IFTTT’s token request, the client will also issue a token
request with its code verifier and public key pk (Step 5*). Upon checking
that the code verifier is consistent with the code challenge, the service will
accept and store the public key pk. Finally, a special token is returned to
the client (Step 6*), which can be used to revoke a public key or upload a
new one if desired.

We note that our protocol combines both the current OAuth autho-
rization code flow and the PKCE flow, and thus inherits their security
properties (see Section 4.7 or more details). Finally, all protocol-level ex-
tensions occur transparently to IFTTT and the end-user, thus achieving
our goals of not creating changes to the user’s experience or to how IFTTT
works.

Rule Setup Phase

In this phase, minTAP achieves two main goals. First, it generates the
auxiliary information for minimizing user-created rule that can be used by
the trigger service to filter out unused attributes. Second, it computes a
digital signature to ensure the authenticity and integrity of the information,
preventing the attacker (i.e., IFTTT) from modifying it. The signature, in
combination with the access token that IFTTT acquires from the service
authorization phase, serves as a logically-fine-grained token that uniquely
identifies the rule and prevents token-level overprivilege. If IFTTT tries to
invoke a trigger service API, it must always present a valid token and a
valid signature — any other requests are automatically denied.

Fig. 4.7 shows the workflow of the setup phase. The user creates a
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Figure 4.7: Rule setup phase. The left part represents a high-level ab-
straction of IFTTT’s rule setup interface. The right part details the steps
performed by the client (as a browser extension) in the background.

new rule (or modifies an existing one) through the interface provided
by IFTTT (Step 1). This involves selecting a trigger and an action from
the appropriate services, specifying trigger and action fields, and option-
ally writing the filter code. We define the combination of all these data
to be the rule information. Before the user saves the rule to IFTTT, the
client transparently and atomically captures the rule information. It then
computes the auxiliary informationm required for the static and dynamic
minimizers (Step 2-4) as instructed in Fig. 4.4.

This information is needed by the trigger service during rule execution
to apply the minimizer. As the trusted client might not be online during
execution (functionality requirement, Section 4.4), we store the minimizer
as part of IFTTT’s rule information. To achieve this, minTAP’s compatibility
layer registers an additional trigger field with IFTTT to hold this special
minimizer parameter. This appears as an additional user-configurable
trigger field in the rule setup interface. The client will automatically fill in
the value of this new trigger field with the minimizer information (Step 5).

Because IFTTT could tamper with the minimizer information before
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sending it to the trigger service, the client sets up another user-configurable
trigger field to hold a signature σ. We additionally observe that even if
IFTTT does not modify the minimizer information, it can still modify other
trigger fields to request unauthorized data — in our running example
(Fig. 4.1), IFTTT can change the From field to get the email from another
person. Therefore, in addition to the minimizer, the client signs all of the
original trigger fields as well as the identity of the trigger. The client also
automatically fills in the signature value (Step 6). Once the user hits save,
all this data is persisted inside IFTTT.

The trigger, trigger fields, and minimizer information define the amount
of data the user wants IFTTT to access. Together with the signature guar-
anteeing integrity and authenticity, this forms a correctly-privileged fine-
grained token that mitigates privacy issues from overprivilege.

Rule Execution Phase

When a rule executes, IFTTT contacts the trigger service to obtain data at-
tributes [123]. This HTTP request from IFTTT bundles all the trigger fields
as query parameters, including the auxiliary information of minimizer m
and the signature σ. Upon receiving this information, the trigger service
will first verify the integrity and authenticity of the request, which includes
checking if the access token is valid (per standard OAuth procedure) and
if the signature is correct using the public key pk corresponding to that
user.

Once verified, the trigger service will use the minimizer information
(m) to apply the minimizer on the trigger attributes to sanitize unused
values. As mentioned in Section 4.5, minTAP provides two minimiz-
ers — static and dynamic — with varying levels of precision and per-
formance overhead. The trigger service can run one of the two functions
SMinimizer or DMinimizer (in Fig. 4.4) on the trigger data DT . While running
SMinimizer is straightforward, running DMinimizer could require executing
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Figure 4.8: Figure shows the rule execution steps with dynamic minimiza-
tion at the trigger service. IFTTT queries the service with the minimizer
auxiliary informationm = (f ′, T ′) and the signature (σ). The trigger ser-
vice applies DynamicMinimizer on the trigger data m, and responds with
the sanitized trigger data to IFTTT.

untrusted client/user-provided code f ′. We show the dynamic execution
flow in Fig. 4.8. Based on our threat model, a malicious user could use
this opportunity to violate the security of the trigger service or its other
users. Therefore, we deploy an isolated JavaScript container with strict
security policies to prevent the code from affecting anything outside the
container. We provide more details on how to configure the container and
integrate it into our system in Section 4.8.

The static minimizer is straightforward to deploy, requiring no addi-
tional computing infrastructure on the trigger service. However, static
minimizers are inherently conservative because they do not have access to
the actual values of trigger data. On the other hand, dynamic minimizers
can benefit from knowing the trigger data when minimizing the set of nec-
essary attributes. For example, if the filter code hits a skip, then no action
will be performed and hence no data will be sent to IFTTT. This provides
significant privacy benefits if the rule executes only in very specific condi-
tions, such as the example shown in Fig. 4.1 and 4.2. Section 4.9 provides
a set of guidelines to help trigger services decide which minimizer to run.

We note that the trigger service can continue to support IFTTT users
who do not use minTAP: if the request does not come with the mini-
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mizer information, the trigger service will reject the request if the user has
uploaded its public key (indicating IFTTT maliciously drops the informa-
tion), and accept otherwise (indicating the user does not use minTAP).
In addition, while a user can connect to a mixture of minTAP services and
non-minTAP services, all rules they create with minTAP service must be
minTAP-compatible, since the attacker (per our threat model, an untrust-
worthy IFTTT) will gain access to all user data in this service through
token- and attribute-level overprivilege even when just one rule is not
minTAP-compatible.

We provide a security analysis of minTAP’s protocol in Section 4.7,
where we show that it upholds three security invariants: (1) only the
user’s client obtains the client access token, (2) the trigger service only
accepts the public keys from the client, and (3) any modifications to the
original rule configuration or the information generated by the client will
be detected by the trigger service. Together they ensure that the attacker
cannot tamper with the protocol to request unwarranted data.

4.7 Security of minTAP
We consider an adaptive attacker (per our threat model, an untrustworthy
TAP) who, given knowledge of how minTAP works, tries to circumvent its
protections. minTAP enforces three security invariants: (1) only the client
should obtain the client access token, (2) the trigger service should only
accept the public keys from the client, and (3) the attacker cannot modify
the user’s intended rule configuration or minimizer information without
being detected. We consider each phase of a trigger-action rule’s lifecycle
and discuss how minTAP maintains the invariants despite the attacker’s
actions without introducing new security vulnerabilities.
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Service Authorization Phase

This phase has to ensure the first two security invariants: only the user’s
client can obtain the client token and successfully upload its public key
to the trigger service. As the attacker is not a global network attacker
and has not compromised the victim’s browser, it cannot manipulate
communication between the client and the trigger service (Step 2-3, 5*-6*).
However, it can try to trick the trigger service by impersonating the user’s
client in the following ways:

Directly request client token. The attacker could try to directly request
a client token for a specific victim user by initiating the OAuth protocol
in the background. However, this requires either the user’s credential for
the trigger service account or the code verifier generated by the client —
neither is accessible to the attacker per our threat model.

Interfere with ongoing authorization. IFTTT could try to tamper with an
ongoing authorization session (e.g., by appending its own code challenge).
However, per our threat model, the client is trusted (and in the case of our
implementation, the client is an extension that is protected from IFTTT by
the browser security model), thus preventing IFTTT from manipulating
this process — the client extension will always intercept any redirects
pertaining to OAuth.

Modify OAuth parameters. If the attacker modifies any OAuth parame-
ters (e.g., scope or redirect URL), it will deviate from the original OAuth
code authorization flow and result in an authorization failure, amounting
to a denial of service (outside the scope of our work).

Upload its own key. As mentioned in Section 4.6, the access token ac-
quired by IFTTT in Step 6 does not have the permission to upload new
public keys to the trigger service — only the client token has such permis-
sion. As we have shown above, the attacker cannot obtain the client token
under our threat model. Therefore, the second invariant holds.
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Rule Setup Phase

The attacker could try to manipulate the rule and any support information
that minTAP generates. We discuss how minTAP detects any manipulation
during this phase. At a high level, the client only retrieves a trusted
list of triggers and actions directly from service endpoints and directly
communicates the entire rule and signature information to the IFTTT
backend.

Modify trigger and action fields. The attacker may present false infor-
mation to the user client during Step 1. For example, it may add a fake
action field, tricking the user to use more trigger attributes. As discussed,
minTAP’s compatibility layer provides an API for the client to directly
retrieve a trusted set of triggers and attributes.

Modify user’s inputs. This is not possible because the user only interacts
with the client that is isolated from the IFTTT frontend code by the browser
security model. The client eventually communicates the programmed
rule and its signature directly to the IFTTT backend. At that point, the
attacker can attempt to manipulate the information, but that will violate
the signature, as we show next.

Rule Execution Phase

Finally, we discuss how minTAP prevents the attacker from changing its
request to the trigger service, which consists of the rule configuration
and the minimizer-signature tuple, to access unwarranted user data. This
completes the analysis and fully ensures the third security invariant.

Modify trigger fields. This will cause the signature verification to fail,
since all of the original trigger fields are among the information signed
during Step 5 of the rule setup phase.

Modify minimizer-signature tuple (m,σ). Dropping the (m,σ) tuple
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for users who have uploaded their public keys will lead to a denial of
service. As ensured by the second security invariant, the attacker cannot
upload its own public key to the trigger service and thus cannot forge
the signature. However, it may attempt to swap the correct (m,σ) tuple
of this rule with another tuple, (m ′,σ ′), from a different rule. If (m ′,σ ′)
is generated by another user, σ ′ will not match the current user’s public
key. If (m ′,σ ′) is generated by the same user but for a different trigger
provided by the same service, it will also lead to a signature mismatch,
as the trigger info (trigger name and trigger fields) is also among the
information signed. If (m ′,σ ′) is generated by the same user and for the
same trigger but more overprivileged (i.e. requires more trigger attributes
compared to the one in question), this request will be accepted but the
attacker cannot gain any new information, as it may also acquire this
information by honestly executing that overprivileged rule (which is just
another valid rule created by the user). Finally, the attacker can send
(m,σ) for a rule that was previously deleted — this attack will not work
because deletion would trigger a change in the signing key, invalidating
older signatures (Section 4.9).

4.8 Evaluation
To evaluate minTAP, we have collected a large-scale dataset of publicly
available IFTTT rules, which includes the detailed configurations (such
as filter code) of each rule (Section 4.8). Then, we analyze the privacy
benefits of minTAP on this dataset in Section 4.8. Finally, we discuss our
implementation and evaluate its performance overhead in Section 4.8.

Dataset

Existing IFTTT datasets [150, 185] do not support our evaluation, due to
the absence of crucial information like filter code and configurations of
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trigger/action fields. These internal configurations of the rule are neces-
sary to determine the auxiliary information of the minimizer. To better
evaluate the privacy benefits and performance overhead of minTAP, we
have crawled IFTTT2 and curated a dataset of 59,009 trigger-action rules
that are publicly published on IFTTT. To the best of our knowledge, this
is the first large-scale dataset that collects the internal configurations (in-
cluding the configurations of trigger/action fields and filter code) of each
rule.

Data collection. IFTTT’s developer platform provides an API for access-
ing the rule configurations for all public rules by their IDs. We obtained the
59,009 valid rule IDs by analyzing the URLs in IFTTT’s public sitemap in
April 2021. All rules in our dataset are accessible by search engines. They
can be installed by IFTTT users and their configurations can be inspected
by IFTTT users. For each rule in the dataset, we thus obtained its general
information, such as title, description, and the connected trigger/action
service, as well as its configuration, which includes the configurations of
trigger/action fields and filter code (when available). Out of these rules,
554 contained filter code.

Rules with private triggers. We are only interested in the rules that can
access sensitive trigger attributes. Based on the classifications proposed by
Bastys et al. [60], we find 34,419 (58%) rules that are connected to private
triggers (such as emails, documents, and locations, as opposed to public
triggers like news reports). In addition, out of the rules with filter code,
376 (68%) are connected to private triggers. For the rest of the section, we
will use these private-trigger rules and filter code to evaluate minTAP.

2Legal counsel at our institution has confirmed this is considered as fair use under
DMCA and does not violate IFTTT’s terms of use.
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Figure 4.9: CDFs showing the percentage of rules that have at least x total
/ unused / unused-and-highly-sensitive attributes.

Privacy Benefits

We study the extent to which minTAP mitigates the privacy issues arising
from attribute- and token-level overprivilege in IFTTT. The presence of
the signature in minTAP’s design (Section 4.6) ensures that IFTTT’s token
can only be used to query data from the connected trigger API, preventing
any token-level overprivilege. Therefore, we measure the privacy savings
of minTAP in terms of the following two metrics that measure the degree
of reduction in attribute-level overprivilege: (1) The number of unused
attributes for each rule that would not be transmitted to IFTTT; and (2)
When filter code is present, the estimated frequency of skips, resulting in
no attributes being transmitted.

Rules without filter code. If a rule does not contain filter code, minTAP
will apply the static minimizer: each trigger attribute that does not appear
in the rule’s default action fields will be labeled as unused. Across the
34,419 rules that are connected to private triggers, we find that a median
of 4 trigger attributes (or 3.7 on average) are unused. The orange line in
Fig. 4.9 shows a cumulative distribution of rules based on the number of
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Sensitivity Resource Type: Example Attributes % Attr % Rule

Low
Timestamp: CreatedAt, OccurredAt 26.7% 84.0%
Access-controlled link: PublicUrl 2.2% 7.2%

Total 28.9% 86.2%

High

Event description: EventName, About 23.0% 43.7%
User info: FullName, Email, Number 13.0% 32.7%
Location: Longitude, Latitude 9.0% 19.1%
Downloadable link: PhotoUrl, Mp3Url 6.5% 16.9%
Bookmark: Article, Website 5.3% 4.7%
Message: Body, Subject, Message, Text 3.3% 9.4%
Other: SensorValue, Duration, List 4.7% 10.9%

Total 60.7% 79.4%

Unknown
Generic link: Url, Link 5.0% 15.3%
Misc name: SheetName, ChannelName 3.5% 11.1%

Total 8.5% 20.5%

Figure 4.10: Breakdown of unused attributes by sensitivity. Each row
represents a category of attributes. The third column denotes, out of
all occurrences of unused attributes, the percentage that contains this
category’s keywords and the fourth column denotes the percentage of
rules that have at least one unused attribute with such keywords.

unused attributes. We find that more than 90% of rules have at least two
unused attributes. With minTAP, all these unused attributes will not be
transmitted to the TAP.

We also examine the sensitivity of the unused attributes in these rules.
Even if the trigger is considered a private source, not every attribute rep-
resents a sensitive resource. We conducted a case study by first randomly
sampling 10% out of the 3,255 unique unused attributes and grouping
them into different categories based on the types of resources they repre-
sent (second column of Fig. 4.10). Then, we picked out the attributes that,
when leaked, do not grant IFTTT access to any additional information. We
labeled the attributes based on the following sensitivity criteria.

• Low: This attribute does not carry sensitive information or represents the
event’s timestamp. We specifically label timestamps as low since IFTTT
can infer them by observing the arrival time of the trigger service’s
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messages.

• High: Exposing this attribute to IFTTT will reveal sensitive information,
including personal identifiable information or private files. In some
cases, the value of an attribute may be publicly available, such as web-
sites, but the user’s access to it can be sensitive. These information is
also labeled High. In Fig. 4.9, the green line shows the distribution of
unused High sensitive attributes in our rule dataset.

• Unknown: Given this attribute’s name alone, we cannot distinguish its
sensitivity. For example, if an attribute is named URL, it can be either a
downloadable link to a private file or an access-controlled link that does
not reveal any information without user’s login credential, depending
on the corresponding service’s implementation.

Finally, we observed the typical keywords appearing in the attribute’s
names for each category (the detailed criteria are listed in Section A.3)
and estimated the prevalence of each category in the entire dataset based
on the occurrences of these keywords. In summary, we found that 60% of
the unused attributes are labeled as highly sensitive and 79% of the rules
contain at least one highly sensitive attribute (Fig. 4.10).

Rules with filter code. We show the CDFs of unused attributes for the
376 rules with filter codes in Fig. 4.9. Most of these rules contain very
simple snippets with a few lines of code (left part of Fig. 4.11). 315 (84%)
rules include conditions that lead to the skipping of actions. For these
rules, trigger service can choose to use either static or dynamic minimizers.
The main benefit of dynamic minimizer is that it can determine when a
rule needs to be skipped, leading to maximum privacy savings. These
315 rules have a median of 5 attributes — all of which will be sanitized
if the rule skips, compared to the median of 3 attributes sanitized by the
static minimizer. Even when the skipping does not happen, we still find
three rules where the dynamic minimizer is more precise than the static
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Figure 4.12: Evaluation results of minTAP. (left) The average execution
time for the client during the rule setup. The rules are separated into
different groups, based on the lines of code. (middle) CDF of the filter
code’s execution times in the trigger service’s isolated environment. (right)
The throughput of the trigger service for using static or dynamic minimzer,
or baseline (i.e., w/o modification to the compatibility layer).

one, sanitizing 1.7 attributes more on average. In addition, we found 201
(54%) rules compute their skip conditions purely based on the trigger
timestamp. If we assume that their triggers occur uniformly throughout
the week, then these rules on average will skip 62% of the time (right part
of Fig. 4.11).



132

Performance Evaluation

We evaluate the performance of two components of minTAP, namely the
client-side browser extension and the modified compatibility layer on the
trigger service. To simulate a trigger service with minTAP additions, we
build and deploy an IFTTT-compatible trigger service for testing. The ser-
vice is hosted on n1-standard-2 instance with 2 vCPUs and 7.5 GB memory
on Google Cloud. We install the client on a Macbook Pro with a 2.2 GHz
6-Core CPU and 16 GB memory running Chrome version 87. We mea-
sure the performance of minTAP based on the execution latency, service
throughput, and memory overhead. Across the board, we find these im-
pacts are modest and acceptable. We did not observe any noticeable effect
in the performance of TAP rules due to minTAP.

Implementation Notes. We implement the client as a Chrome extension
that monitors the user’s interactions with the IFTTT webpage by analyzing
the endpoints being visited. For example, it will launch the authorization
phase if the user visits URLs like ifttt.com/[service]/redirect_to_
connect. The shim on service’s compatibility layer consists of two pieces:
(1) A Python library that will upgrade the trigger service’s APIs so that
they can engage in minTAP’s protocol, and (2) A runtime environment that
can securely execute transformed filter code for dynamic minimization. We
use Isolated-VM [137] to provide a restricted execution environment. For
efficiency, our implementation maintains a pool of 4 warmed-up Isolated-
VMs and routes each incoming request into a new sandboxed execution
context created inside the VM with least memory usage. We also compile
moment.js, a library used by IFTTT for advanced date parsing [121], into
the execution context if required. All Isolated-VMs are configured with an
explicit timeout of 15 sec and a memory limit of 128 MB to further protect
the trigger service’s infrastructure.
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Latency of the Client

The client’s overhead consists of the time it takes to hash the OAuth PKCE
code verifier during service authorization phase and the time to compute
and sign the aux. minimizer info during the rule setup phase. Hashing
for computing the PKCE code verifier takes less than 0.15 ms, and is thus
negligible. We setup all the rules in our filter code dataset and report the
average latency for setting up each rule. The rule setup time varies with
the size of the filter code, measured in lines of code (LoC). The latencies
for filter codes of different sizes are shown on the left of Fig. 4.12.

We observe that the client takes approximately 39 ms to compute the
minimizer information and its signature when no filter code is present.
For the most complicated filter code in our dataset (with more than 40
LoC), it only takes 128 ms. This overhead has a negligible impact on user
experience because it hides within larger latencies introduced by the UI —
it takes approximately 6000 ms for the browser to fully load the rule setup
page and 800 ms to save a programmed rule.

Overhead of the Modified Compatibility Layer

During rule execution, minTAP requires the trigger service to apply (static
or dynamic) data minimization of the trigger data. We examined how it
affects the overall throughput and latency of the trigger service. For static
minimization, we randomly sampled 50 rules from our no-filter-code
dataset. For dynamic minimization, we randomly sampled 50 rules from
filter code dataset and manually prepared input trigger data to ensure the
longest path in each filter code is executed.

Latency. We compute the latency overhead of minTAP as the relative
increase in the request serving time with respect to the unmodified trigger
service (that does not support data minimization). On average, the latency
increases by 5.5 ms when dynamic minimization is used, and only 0.45 ms
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when static minimization is used. Since the end-to-end latency of a trigger-
action rule in IFTTT is more than two minutes on average [150], the extra
latency caused by minTAP’s compatibility layer is not noticeable in practice.
We further looked into the time to execute the transformed filter code inside
the Isolated-VM, to understand the impact of different filter codes on the
latency of dynamic minimizer. In the middle of Fig. 4.12, we show the
CDF of execution times for different filter codes. We observe that execution
is efficient: 96% of the filter codes take less than 1 ms.

Service throughput. We measured the throughput of the trigger service
as the number of requests handled per second under concurrent requests.
We gradually increase concurrency levels until the throughput saturates
(and latency increases). We measure throughput in three conditions: (1)
baseline (without minTAP modification to the compatibility layer); (2)
with dynamic minimizer; (3) with static minimizer. The throughput for
different settings is shown on the right of Fig. 4.12. Overall the compatibil-
ity layer is lightweight, throughput is only reduced by less than 50% when
dynamic minimizer is used, and by less than 20% when static minimizer is
used. Prior work has characterized trigger rates on popular services and
determined that the most popular one executes approximately 1,702,353
times, while IFTTT contacts the trigger service every 15 minutes [150],
which translates to an average of 1,892 requests per second. With minTAP
enabled, the trigger service can handle 1,404 requests per second with
dynamic minimizer or 2462 requests per second with static minimizer
even on our basic test setup. Considering that many rules do not contain
filter code and, therefore, no need to use the dynamic minimizer, even
with very limited computational budgets, it will be easy for trigger service
to use minTAP modifications on their existing IFTTT compatibility layer.

Memory and storage overhead. With a pool of four Isolated-VM, we
recorded a maximum memory usage of 341 MB under the peak throughput
(with dynamic minimizer enabled). minTAP’s compatibility layer imposes
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little storage overhead on the trigger service that only needs to store one
public key for each user. Considering IFTTT already requires compatible
services to store the data of the past 50 events and recommends them to
store a unique trigger id [119] for every rule, the additional overhead of
minTAP is negligible.

4.9 Discussion
Adopting minTAP. Trigger services who wish to protect their user data
(and possibly reduce friction with legal frameworks) can use minTAP as a
lightweight method to mitigate data misuse. They obtain these benefits at
the minimal cost of upgrading their existing IFTTT-compatibility layers
to include minTAP improvements. As described in Section 4.2, this layer
hosts a number of APIs that follow IFTTT’s specifications for authorization
and data querying, and handles all communications between IFTTT and
the service. We provide minTAP as a portable Python library that enables a
seamless upgrade. The service provider could potentially increase its com-
putational capacity for the modest performance overhead (Section 4.8),
however, existing elastic services might handle this automatically. Finally,
we note that other parts of the service’s infrastructure do not need to be
changed. The technique of minTAP also applies to other commercial TAPs
(e.g., Zapier) with slight adjustments in implementation.

minTAP-Client usage. Each end-user trusts only their minTAP-client and
it serves as the main contact point between users and the TAP. While the
client can take many forms (e.g., mobile or desktop app), we prototyped it
as a browser extension for ease-of-use. Once the client is installed, the user
does not need to perform any extra operations to create minTAP rules. The
client only has permission to interact with ifttt.com and send requests
to compatible services authorization APIs. It does not save any personal
data except OAuth tokens and cryptographic keys using local storage. As
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mentioned in Section 4.6, these tokens cannot be used to request user data
from the services. We envision that the client and the cloud-based TAP
will be separate entities adhering to the minTAP protocol (e.g., similar to
the current diversity of Telnet, FTP, SSH client and server software). A
user can switch between multiple clients (e.g., if a client device is lost) if
they support encrypted cloud backups of the keys and tokens. We leave
implementing this as future work.

Deleting/modifying rules. If a user deletes or modifies a rule, the mini-
mizer and signature for the old version should be invalidated — a problem
similar to certificate revocation. minTAP-client creates a new signing key-
pair during a rule-update operation and sends the public key to the trigger
service using its special OAuth token. It also transparently updates the
signature on existing rules in a background page.

Static vs. dynamic minimizer. minTAP offers the trigger services a
choice of whether to run static or dynamic minimization. Recall that static
minimization determines necessary attributes at rule setup time, whereas
the dynamic minimizer instruments filter code during rule setup and
then requires the trigger service to run the instrumented version to learn
about necessary attributes. We outline a few considerations to help trigger
services make an informed decision.

The advantages of static minimization are: (1) Lower overhead on
trigger services; (2) No additional security challenge of sandboxing filter
code; and (3) Possibility to run distributed minimizers [54]. Distributed
minimizers focus on minimizing data that is provided by multiple sources.
This is relevant to IFTTT’s emerging feature of queries [124] that allow
pulling data from multiple trigger services. A static extension to handle
queries is straightforward: based on the filter code, the client can determine
the set of used attributes and pass this information to the relevant trigger
services. Note that queries are a challenge for the dynamic approach
because the trigger service has no access to data from the other services
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that is required to run the filter code.
The advantages of dynamic minimization are: (1) High precision be-

cause the set of used attributes may depend on runtime values passed to
filter code (static analysis approximates these values). In some extreme
cases, the imprecision of JavaScript’s static analysis may also in theory
deem a used attribute as redundant, although we have not encountered
such imprecision in our evaluation due to the non-adversarial nature of
filter code. (2) Precise modeling of skips and timeouts. When filter code
reaches a skip or times out, there is no need to send any attributes to
IFTTT. Predicting skip and timeout reachability is particularly hard for
static analysis.

Encrypting trigger fields and attributes. The OTAP system encrypts
trigger attributes and fields when no filter code is present [84]. We sketch
a simple approach to extend minTAP to fully integrate OTAP’s approach.
During the service authorization phase, minTAP’s client exchanges an
additional symmetric encryption key with the trigger and action services.
During rule setup, the client encrypts the trigger fields with this key and
stores them in the TAP. During rule execution, the trigger service receives
the encrypted trigger fields, obtains the minimized trigger data, encrypts
the trigger data using the same key, and sends them to the TAP. Thus,
minTAP can support OTAP guarantees when no filter code is present.

Performance benefits of minTAP. We remark that in addition to the
privacy benefits, minTAP collaterally brings some performance benefits.
While there are performance penalties incurred by minTAP’s additional
computation, minTAP liberates trigger services from generating and send-
ing redundant attributes. The results of the privacy evaluation from Sec-
tion 4.8 are thus encouraging not only for boosting privacy but also for
reducing communication overhead.

Data-specific minimization. The precision of dynamic minimizer can
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be further improved by incorporating symbolic execution to achieve data-
specific attribute minimization. Symbolic execution allows for automated
exploration of the program control-flow graph, precise program state
reasoning, and generation of the input that leads to a given program
point. For example, if a string attribute is used only in a condition for
substring matching, we can replace this attribute with just the substring.
Currently, as shown on the left of Fig. 4.11, only a small fraction of filter
codes that have non-time-based conditions can benefit from such symbolic
analysis. However, rules in other types of trigger-action settings (such as
Node-RED [37] and OpenWhisk [34]) where more complicated program-
ming paradigms are required may benefit from symbolic execution. We
leave this for future work, bearing in mind that when filter codes contain
nested conditions symbolic analysis may become inefficient due to path
explosion [144].

4.10 Related work
We refer the reader to the recent work [45, 59, 72] outlining the state-of-
the-art on securing TAPs. Our work is inspired by the principles of least
privilege and need-to-know [170].

Privileges on TAPs. Prior work has shown that TAPs obtain overprivi-
leged access to trigger/action APIs [102] allowing them to harvest private
information without the user knowing [198] and opening for malicious
rule makers to exploit TAP’s privileges [43, 60]. This motivates our work.

The DTAP system protects the integrity of rules under a malicious
TAP [102]. By contrast, we address the orthogonal question of data pri-
vacy. In addition to mitigating the privacy issues that arise from token-level
overprivilege, minTAP goes further and addresses the attribute-level over-
privilege. DTAP relies on extending the OAuth protocol with so-called
XTokens to express fine-grained privileges and requires modifications to



139

existing TAPs for deployment, whereas minTAP is fully compatible with
existing unmodified TAPs.

The OTAP system uses encryption and cover-traffic schemes to protect
the confidentiality of data while it transits through an untrusted TAP [84].
This approach can protect data end-to-end, but it does not allow computa-
tions (i.e., filter code) — a primary feature on TAPs. By contrast, minTAP
only releases the attributes that rules need, supports computations on data,
making it practical and readily deployable. OTAP and minTAP occupy
different points in the design spectrum but can be unified and supported
in a single framework leveraging the minTAP infrastructure.

The eTAP system (Chapter 3) uses garbled circuits for rule execu-
tion [80]. It provides strong confidentiality and integrity guarantees, but
at the price of requiring extensive architectural changes to the TAP, sup-
porting a limited subset of filter code and higher overhead. By contrast,
minTAP works with unmodified TAPs and supports more expressive filter
code with minimal overhead.

Filter-and-Fuzz analyzes how events from a smart home can be sani-
tized to ensure that IFTTT does not learn more information than neces-
sary [198]. It relies on textual analysis to identify unnecessary events. By
contrast, minTAP uses program analysis to identify unused data attributes.
minTAP can benefit from hiding statistical patterns of sensitive events by
composing them with the Fuzzing piece of Filter-and-Fuzz.

Secure hardware. Recent efforts leverage secure hardware for protecting
users’ data from TAPs. Hardware-based trusted execution environments
(TEEs) enable computing over the trigger data on the TAP, while preserv-
ing the confidentiality [172, 206]. Besides requiring hardware changes to
the TAP backends, current TEEs suffer from fundamental security design
issues [77, 154, 186].

Language-based data minimization. Data minimization is a principle
restricting data collection to “what is necessary in relation to the purposes
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for which they are processed” [107]. Antignac et al. [54] formalize the
notions of monolithic and distributed minimization for programs with sin-
gle and multiple sources of information, respectively. They reason about
best minimizers that remove all redundant information before passing the
data to the data processor. They demonstrate that although computing
the best minimizers is in general undecidable, it is possible to approximate
data minimizers by symbolic execution techniques. Unfortunately, these
techniques require coming up with invariants for programs with loops, a
long-standing challenge in program verification [103]. Pinisetty et al. [161]
utilize testing techniques to improve the precision of minimizers for pro-
grams and leave synthesizing minimizers as future work. Drawing on the
work by Antignac et al., we contribute a lightweight data minimization
technique that focuses on the attributes used by programs. We generalize
the definition by Antignac et al. to be sensitive to individual program runs
and show that a simple (and fully automatic) dependency analysis can be
used for data minimization by ruling out unused attributes in program
runs.

Minimum exposure. Related to our ideas is the line of work on minimum
exposure in data collection by authorities. Anciaux et al. [49–51] focus
on the case of collecting forms (like tax forms) for governments. They
consider the number of inputs to withhold for the privacy of the applicants
and discuss data-dependent minimum exposure. However, the compu-
tational model is that of assertions on particular shapes of formulas that
represent form collection logic, making their algorithmic solutions less
applicable to scenarios of general programs. By contrast, our approach nat-
urally extends the language-based approach to data minimization which
applies to arbitrary (runs of) programs.
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4.11 Summary
We have presented minTAP, a framework for practical data access mini-
mization in trigger-action platforms. We study two levels of overprivileges
that are common on TAPs: attribute-level overprivileges, e.g., sending to
the TAP the content of emails even if the rule only involves the headers,
and token-level overprivileges, e.g., granting the TAP full access to cloud
services. To address both types of overprivilege, we put language-based
data minimization to work and demonstrate how dependency analysis
can identify redundant attributes. We deploy minTAP on IFTTT, showing
how to minimize trigger data before it is sent, thus boosting privacy while
preserving the functionality. We evaluate the security and performance
of minTAP on a set of realistic benchmarks to conclude that minTAP on
median sanitizes 4 sensitive trigger attributes per rule, with a tolerable
performance overhead.
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5 mohito: scalable metadata-hiding for iot
platforms

In this chapter, we shift our focus to another type of online integration
platforms – smart-home platforms. Smart-home platforms can be deemed
as a specialized version of the trigger-action platforms we discussed in
the previous two chapters. However, instead of triggering on events from
third-party services, smart-home platforms act on commands directly
from users.

5.1 Introduction
IoT devices, ranging from smart home appliances, such as thermostats and
security camera systems, to fitness trackers and medical equipment, have
become integral to the daily lives of many individuals. These IoT devices
are connected to backend servers operated by their manufacturing ven-
dors, enabling users to remotely interact with them through smartphones
or browsers. Such interactions however allow vendors to accumulate
extensive data about the activities of their devices and users.

Studies [85, 209] have shown that users are generally concerned about
the privacy implications of data collected from IoT devices, as it can be
utilized to infer sensitive aspects of users’ lives. For example, health
and fitness trackers can record users’ physical activities or sleep patterns,
and may even expose details about users’ overall health, daily routines,
and potential medical conditions. Such information can be exploited
for targeted advertising and surveillance. The privacy risks associated
with IoT data call for a robust privacy protection mechanism that hides
interactions between users and devices from IoT servers.

To enhance the data privacy of IoT systems, recent works [79, 84] have
proposed encrypting data that is communicated through the systems.
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However, the mere existence of communication with (encrypted) data
can still pose privacy risks. Consider a scenario where the server sees a
message from a user to a smart door lock. Even if it does not know the
content of the message, it may still deduce what the user is sending, as
the types of the command are typically limited to locking and unlocking.
Indeed, researchers [57, 177] and governments [27, 28] have warned that
IoT metadata can be utilized to infer user data and therefore must be
protected. For example, the Office of the Privacy Commissioner of Canada
issued guidance to IoT vendors stating that, to adhere to Canada’s federal
privacy law, vendors should categorize metadata as personal information
for privacy protection [27].

Thus a major challenge in designing privacy protection mechanisms
for IoT systems is metadata privacy. Although a long line of works have
proposed anonymous communication systems that provide metadata pri-
vacy [135, 136, 138, 184, 187, 194], their system model and assumptions
do not work for the IoT setting. These general-purpose systems typically
assume that servers are pairwise connected, but in modern IoT systems,
vendors do not share a direct line of communication. Instead, they all
connect to a centralized service known as the integrator service. Integrator
services, such as Amazon Alexa [2], Google Home [11], and IFTTT [26],
are cloud-based IoT platforms that serve as a bridge between users and
vendors by collecting commands from users and forwarding these com-
mands to the corresponding vendors. Integrators play an essential role
in modern IoT ecosystems, as they unify the heterogeneous communica-
tion interfaces of different vendors and streamline device management.
Therefore, a privacy-preserving IoT system should abide by the communi-
cation structure that centers around the integrator. This structure presents
challenges for hiding metadata, as we must ensure that the integrator can
relay messages between users and vendors efficiently and accurately, while
never allowing it to learn the identities of message senders and receivers.
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In addition, an IoT system typically supports millions of devices de-
ployed worldwide and generates a significant amount of concurrent traffic.
This extensive data flow requires an efficient protocol that emphasizes
high throughput. However, the cryptographic primitives used in many
metadata-hiding systems are not designed to handle messages in large
batches [91,95,100], making them less compatible with the demands of our
setting. Furthermore, the majority of such IoT traffic is generally caused by
devices belonging to a few large vendors. The number of devices operated
by smaller vendors is only a fraction of what larger vendors have [150].
We should assume that these smaller vendors only have infrastructure
capable of supporting traffic for their own devices. Many general-purpose
metadata-hiding protocols split the system processing load evenly across
all servers; if we were to apply such protocols in an IoT system, it would
overburden smaller vendors. Hence, one must ensure that a vendor’s
operational cost scales with its number of devices.

Motivated by the above challenges, we propose Mohito, a privacy-
preserving IoT system that hides user/device interaction metadata from
vendors and from the integrator service. In Mohito, users transmit com-
mands to devices through the IoT cloud servers, and devices respond with
status updates. In addition to preventing the IoT servers from deciphering
the contents of commands or responses, Mohito ensures they do not learn
the metadata, i.e., which user is interacting with which device. Specifically,
the integrator does not know the destination of each user’s command,
while the vendor does not know the source of the command each device
receives (and vice versa for responses).

Mohito achieves high throughput by leveraging the centralized struc-
ture of IoT systems. At a high level, we organize communication into
rounds and, in each round, the integrator gathers commands from users
into a batch. Then the integrator utilizes an oblivious key-value store
(OKVS) [106, 162], a cryptographic primitive that allows efficient and
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private batch-encodings without decoders learning which key-value pairs
are encoded. For each batch of commands, the integrator processes and
encodes them into several OKVSs based on the destination vendor of
each command. These OKVSs are forwarded to the corresponding ven-
dor, which decodes the commands and sends them to the target devices.
Our protocol ensures that the vendor does not learn the source of the
commands they have decoded.

Mohito also protects metadata information from an honest-but-curious
integrator. We achieve this by first ensuring our privacy guarantee holds
in a single round, and then we prevent cross-round attacks. For the first
step, Mohito instructs vendors to shuffle commands for the integrator. By
outsourcing the shuffling process to a vendor, we ensure that, within each
round, the integrator cannot trace a command back to its user.

Like other communication systems, IoT systems are susceptible to cross-
round attacks, also known as intersection attacks. In an intersection attack,
the servers observe traffic patterns over multiple rounds of communication
to infer relationships between message senders and receivers [93,127,148].
Defending against intersection attacks is integral to protecting metadata.
Specifically in an IoT system, the integrator observes two pieces of informa-
tion: (1) which users send a command and (2) how many commands are
sent to each vendor. By recording this information over multiple rounds,
the integrator can infer which users communicate with which vendors,
breaking our privacy goal. Therefore, in Mohito, when a vendor shuffles
the commands, it also injects a number of fake commands to hide the traf-
fic pattern. We design the injection protocol in a way that the integrator
cannot learn how many commands each vendor actually receives in each
round, even if the integrator controls a small number of users and devices.

We implement and benchmark Mohito. As our main performance goal
is to handle highly concurrent traffic, we are primarily interested in the sys-
tem’s throughput. We estimate that our proof-of-concept implementation
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can handle 24,000 commands per second. For comparison, Express [100],
the state-of-the-art general-purpose metadata-hiding system, can handle
only 40 messages per second under similar settings.

5.2 Background & Motivation

IoT Ecosystems and Privacy Concerns

The widespread adoption of IoT devices has led users to own multiple
devices from various manufacturing vendors, each specializing in a par-
ticular product category or functionality. For example, a user of smart
home devices may have bought a smart light bulb from Phillips Hue, a
smart thermostat from Nest, and then a smart oven from LG. Such diverse
device provenance presents challenges in terms of device management,
interoperability, and user experience To address these challenges, users
often leverage integrator services. An integrator service – e.g., Amazon
Alexa, Google Home, IFTTT – is a centralized platform that allows users to
remotely interact with their devices through a unified interface, regardless
of the device vendor and communication protocol. Therefore, integrator
services have become an essential part of modern IoT ecosystems. Fig. 5.1
depicts the dataflow in these systems.

Privacy concerns. Whenever users remotely interact with their IoT de-
vices, they inadvertently expose their activity data to the corresponding
vendors. For example, a vendor that manufactures smart home security
systems can collect the entry and exit times of every person in the user’s
home. Due to the nature of many IoT devices, such information can be
sensitive, as it can reveal details of the user’s lifestyle and habits, including
sleeping patterns, child behaviors, medical information, and sexual activi-
ties. Therefore, many users are worried about the privacy implications of
interacting with IoT devices [85, 209].
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Figure 5.1: Overview of IoT Ecosystem. Users communicate with an
integrator, which communicates with various vendors. Each vendor com-
municates with its own devices.

Integrator services, while providing many benefits to users, pose even
greater privacy concerns. To allow unified access to devices, integrator
services require device permissions. Users typically provide permissions
via login credentials, authorizing the integrator service to interact with
devices on their behalf. Then, when a user issues a command to a device
through the integrator service, the integrator service uses its permissions
to forward the command to the vendor associated with the device. There-
fore, the integrator service gains unfettered access to all of a user’s IoT
activities, allowing it to accumulate a more comprehensive view of the
user’s personal life.

Towards a Privacy-Preserving IoT System

The above privacy concerns motivate the design of IoT systems that provide
quality user experience while also preserving user privacy. In a privacy-
preserving IoT system, neither the vendor nor the integrator service should
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learn of the user’s interaction with their devices. There are three main
challenges in designing such system.

Metadata-hiding. One challenge in privacy-preserving IoT is that it does
not suffice to simply encrypt messages. The mere existence of messages
from a user to a vendor can compromise privacy. Consider a scenario
where a user owns a smart door lock manufactured by August. The system
could try to hide from the integrator service the user’s interaction with the
lock by using end-to-end encryption. Nevertheless, the integrator service
can still observe that the user sends a command to August. In this case, Au-
gust – like many other IoT vendors – manufactures only one type of device,
so the integrator implicitly knows the user is communicating with a smart
lock. By viewing the existence of a message in context (e.g., the user sends
the command in the evening), the integrator service can piece together
troubling information about the user (e.g., the user is likely unlocking
their door as they come home from work). Therefore, such metadata infor-
mation can lead to privacy leakage. Indeed, both researchers [57,177] and
government regulations [27,28] have issued warnings that metadata in IoT
systems can reveal sensitive personal information and deserves privacy
protection.

Scalability. A key characteristic of IoT system is the scale of data. With
millions of IoT devices deployed worldwide, they collectively generate a
significant amount of traffic in every second. Therefore, it is crucial for
our system to focus on the challenge of scalability first to accommodate
the continuous growth of devices in the IoT landscape. We note that there
are many works [91, 100] on anonymous communication systems that
share similar security goals, but they mostly focus on single message per-
formance, whereas we need to efficiently handle a number of concurrent
messages in batches and achieve high throughput.

Load-balancing. In many anonymous communication systems, all server



149

nodes are assumed to have similar processing powers. However, we can-
not make the same assumption for vendors in an IoT system. Based on the
dataset in [150], the top 20 vendors in IFTTT on average have 3,130 times
more connected devices than the bottom 20, which means that smaller ven-
dors may not have the resources prepared to handle the overhead caused
by larger vendors’ traffic if we were to split the load equally. Therefore,
we need to ensure the overhead of each vendor scales proportionally to
the number of devices it owns.

5.3 Designing a metadata-hiding IoT system
We present Mohito, a privacy-preserving system tailored to the IoT setting.
In this section, we describe our security goals and the architecture of
Mohito’s design.

System Model

We model an IoT ecosystem as a set of IoT cloud services connected to vari-
ous users and IoT devices. The cloud services consist of a single integrator
service and many device vendors.

Vendor. A device vendor provisions IoT devices. Each vendor may provi-
sion multiple types of devices, and it periodically communicates with its
devices.

Integrator. The integrator service is authenticated to connect to various
vendors and issue commands on behalf of users. All communications
between users and vendors pass through the integrator.

User. A user owns the devices in their home purchased from different
vendors and controls those devices using an integrator-provided interface
(e.g. a web interface or phone app). For simplicity, we consider the user
and the interface as a single entity. We do not expect users to be always
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online; they only participate in the system when they wish to send a
command.

Device. Each device is owned by a single user and must be set up by the
user before it comes online. Once set up, the device starts communicating
with its vendor. We assume each device has a globally unique id, such as
a MAC address, that is also known to the device’s user and vendor (but
not to the integrator).

We model the interaction between the user and its device as a single
operation: the user first sends a command to its device and then receives
a status update from the device as a response. This interaction is achieved
as follows: the user sends the integrator a message, which is forwarded
to the appropriate vendor and then the device; similarly, the device’s
response goes through the vendor first, then the integrator, and finally the
user. Our model enforces this specific communication graph (as shown
in Fig. 5.1), since it is common in today’s commercial IoT systems. We
believe this operation is generic enough to cover all basic functionalities in
an IoT system. For example, if the user needs to check the current state of
a device, they can issue a “read” command that tells the device to report
its state in the status update response.1

We do not allow communication between vendors. It is not realistic to
assume that each vendor knows all other vendors, nor that a particular
vendor should build infrastructure compatible with other vendors.

We model the system to proceed in a round-based fashion. That is,
the integrator gathers all messages from users participating in the current
round, processes, and delivers them to the corresponding vendor, before
advancing to the next round. This round-based assumption closely follows
the API design of today’s commercial integrator service [29], as they
require vendors to handle messages in batches.

1In certain scenarios, it might be desirable to let a device actively push a message to
its user. We discuss how our system can support this operation at the end of Section 5.6.
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Threat Model

In our threat model, IoT services (i.e., the integrator and vendors) are
honest-but-curious, but users and devices can be malicious. In practice, IoT
services are regulated such that they cannot deviate arbitrarily from a
protocol. Even in cases where these services are attacked by an adversary,
the attack often causes data breaches, rather than ceding control of the
service. Users and devices are more vulnerable, and they might be fully
compromised by an adversary.

Since it is unlikely for an adversary to compromise two IoT services
at the same time, we assume that the integrator and the vendors do not
collude. However, it is reasonable to assume that an IoT service may
register accounts with other services or buy devices from other vendors
to help it gain information about its competitors. Therefore, we do allow a
number of users and devices to collude with an IoT service. Specifically,
the number of messages that can be generated by these colluding users
and devices in each round is at most δ.

We assume that when two parties communicate, they learn each other’s
identity (for example, through the IP address or an authentication process).
For example, when a user contacts the integrator, the integrator learns
the identity of the user. We believe this assumption is necessary, as real-
world services often rely on user identities to implement rate limiting or
to prevent denial-of-service attacks.

We assume IoT services exist within a public key infrastructure. Each
service has its own key pair, and anyone can verify the public key of each
service.

Note that prior works have shown that the size of IoT messages can
be used to infer device activities [58]. To prevent this, messages can be
padded to some fixed size. Padding messages efficiently is an important,
albeit orthogonal, research problem [55, 56, 58]. In this work, we assume
that messages generated by users and devices are padded to some fixed
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length, such that it is not possible to identify a user or device based on the
size of a message.

Security Goals

Our goal is to support a privacy-preserving IoT system such that IoT
services learn minimal information about users. Commands/responses
should be hidden, and IoT services should not learn which user communi-
cates with which device. In more detail, our system provides the following
properties:

1 Data privacy. No party – other than the intended recipient – learns the
content of a particular message.

2 Metadata privacy. We hide the communication pattern between users
and devices from IoT services. No IoT services should be able to learn
which user is interacting with which device. Specifically,

• For the integrator, each time it receives a message from a non-colluding
user, it should not learn which vendor is the target of this user’s mes-
sage.

• For a vendor, it should not learn which non-colluding devices receive
a command in each round. We enforce this requirement for vendors
because if it learns a device has received a command from user, it
also learns the identity of the device and therefore the user that sends
the command (per our threat model).

The metadata privacy must hold even when an IoT service can observe
the communication for an arbitrary number of rounds.

3 Data integrity. Although we assume IoT services are honest-but-
curious, a malicious user or device can attempt to corrupt the integrity
of messages intended for other users/devices. We ensure that the mes-
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sage sent by a benign user or device cannot be tampered with by another
user/device.

We provide a more formal definition in Section 5.7.

5.4 Overview of Mohito Architecture
We now start delving into the design of Mohito. First in this section, we
outline the building blocks of Mohito that allow it to achieve our security
goals within a single round. Then we show how to extend the protocol
to prevent cross-round attacks in Section 5.5 and finally provide the full
detailed protocol in Section 5.6.

One of the fundamental building blocks of Mohito is an Oblivious
Key-Value Store (OKVS) [106]. Section 5.4 reviews the OKVS primitive
and discusses how it helps protect metadata in our system. However,
using OKVS alone cannot satisfy our design goals. In the following two
subsections, we discuss how we can overcome the drawbacks of a naïve
OKVS approach by incorporating shuffling (Section 5.4) and ephemeral ids
(Section 5.4).

For simplicity, we focus only on the part of the protocol where users
send commands to devices and omit the part where devices send responses
back, since the latter can generally be achieved by reversing the process of
the former. We detail the latter in Section 5.6.

Oblivious Key-Value Stores

Background. A key-value store is an encoding of a set of key-value pairs,
and is defined by two algorithms:

• Encode takes as input a set of key-value pairs {(k1,ν1), . . . , (k,νn)}
and outputs a store S;
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• Decode takes as input a store S and a key k, and outputs a value ν.

A key-value store is oblivious if it hides the keys when the values are
random. When invoking Decode on some key ki used to generate S, the
result is the corresponding νi; for any other key, the result is a value that
appears to be random. Therefore, an observer seeing calls to Decode cannot
tell whether a particular key is in S or not. More formally, consider two
OKVS structures encoding random values where the first structure has
keys K0 and the second has keys K1. The key-value store is oblivious if it
is infeasible to distinguish these two structures.

One classic OKVS construction uses a polynomial P satisfying P(ki) =
νi. The coefficients of P represent the encoded values, and we can de-
code key k by simply evaluating P(k). However, this approach is com-
putationally expensive, as encoding and (batch) decoding of n items re-
quire polynomial interpolation, requiring O(n log2 n) operations. Recent
works [106, 162] construct cuckoo-hash-table-based OKVSs that achieve
encoding and decoding at cost O(nλ), where λ is the security parameter.

Strawman approach with OKVS. We describe a naïve design for a metadata-
hiding IoT system based on OKVS. We assume the system proceeds in a
round-based fashion. In each round:

1. Each user who wishes to send a command to their device encrypts
the command with a key shared only between the user and the device.
The user sends messagem = (id, cmd) to the integrator, where id is
the device id and c is the encrypted command.

2. The integrator, after collecting messagesm1, . . . ,mn from users par-
ticipating in this round, encodes the messages as an OKVS S, where
device ids are keys and encrypted commands are values. The inte-
grator sends S to every vendor.
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3. Each vendor decodes from S the encrypted commands belonging to
its devices, and it forwards these commands to the corresponding
devices.

4. Each recipient device decrypts its command.

It is easy to see that this strawman approach satisfies the metadata privacy
property, as long as the device ids are randomly chosen and cannot trace
back to their vendors. From the integrator’s view, it cannot learn which
user’s message ends up in which vendor, because the same OKVS is sent
to every vendor. From the vendor’s view, it cannot learn which devices
actually have incoming commands due to the obliviousness property of
OKVS, so it calls Decode on every of its device ids; hence, devices that have
no incoming command will still receive a message from their vendor, but
this message will appear random to the vendor and indistinguishable from
the real messages (i.e., encrypted commands that also appear random).

However, this strawman approach comes with a huge communication
cost. Indeed, each vendor receives an OKVS that encodes all commands,
effectively multiplying the amount of traffic by the number of vendors
and making the bandwidth overhead unbearable. Additionally, small
vendors must process an OKVS that consists mostly of commands for
other large vendors, violating our load-balancing goal. Still, this OKVS-
based strawman serves as an excellent starting point to build a privacy-
preserving IoT system, and we show how to extend this approach to design
Mohito, which retains the same security but with significantly improved
efficiency.

Chosen Vendor as Shuffler

To make the protocol more practical, we must ensure that each vendor’s
cost scales only with the number of commands intended for this vendor,
not the total number of commands. Hence, instead of sending the same
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OKVS to each vendor, the integrator should send to each vendor a distinct
OKVS, encoding only the commands intended for that vendor. The chal-
lenge here is to efficiently construct these OKVSs, given that the integrator
should not learn the target vendor of each user’s message (as stated by
the metadata privacy goal in Section 5.3).

Mohito handles this problem by introducing the notion of a shuffler. At
the beginning of each round, the integrator chooses one vendor to play
the shuffler. We discuss the practicality of the shuffler and the strategy
the integrator can use to choose the shuffler in Section 5.9. The shuffler
functions similarly to a node in a typical mix-net — it receives a list of user
messages from the integrator, shuffles them, and sends the shuffled list
back to the integrator, so that the integrator no longer knows which user
sent which message in the shuffled list.

To prevent the integrator from learning the permutation used for shuf-
fling by connecting identical messages in the two lists, users encrypt each
message with the shuffler’s public key, and the shuffler decrypts them
before shuffling. More precisely, in each round, the user first attaches the
id of their command’s destination vendor v to its message m and then
performs a two-layer encryption to computem ′ = enc(pkV∗ , enc(pkI,m) ),
where m = (id, v, cmd), and pkV∗ and pkI are the public key of the shuffler
and integrator respectively. The purpose of the inner encryption with pkI
is to prevent the shuffler from learning device ids in plaintext; otherwise,
the shuffler, which is also one of the vendors, will learn which of its devices
receive commands, violating our goal of metadata privacy.

At the end of the shuffling process, the integrator obtains the shuffled
list of messages, each consisting of a device id, a vendor id, and an en-
crypted command, so it can group the device id and commands based on
the vendor ids and encode them into separate OKVSs.

By outsourcing the shuffling process to the shuffler, we break the link-
age between the commands and the users. The integrator can now learn
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the target vendor of each command without compromising the metadata
privacy, as it no longer knows which user sent which command. Therefore,
we are able to construct smaller OKVSs, each encoding only the commands
intended for a specific vendor, greatly reducing the bandwidth cost of the
protocol.

Ephemeral Command ID

The downside of allowing the integrator to learn the target vendor of
each command is that it also learns which vendor owns which device
id. Combined with the fact that the integrator can infer the relationship
between users and device ids over time (e.g. by observing which user
always participates in the rounds where a particular id appears), the
integrator can use the device ids as identifiers of users and therefore
deduce the user to vendor mapping — a violation of the metadata privacy.

To overcome this problem, Mohito creates a unique one-time id for each
new command. Instead of attaching the static device id to the command,
the user generates a fresh id which appears random and is tied to the
current round. We refer to this id as an ephemeral id. More precisely, we
use the device id as a seed to generate a key k for some PRF F and compute
the ephemeral id z = Fk(r), where r is a unique identifier that represents
the current round. By this scheme, the user and the vendor can compute
the ephemeral id for each device in a given round, but the integrator cannot.
Each ephemeral id is globally unique; messages from the same user to the
same device will have different ephemeral ids in different rounds, so that
ids no longer serve as a way to identify users.

Security. We now briefly discuss that the Mohito protocol we have shown
so far achieves our goal of metadata privacy within a single round. Against
a curious integrator, the security reduces to (1) the uniform shuffle, (2)
the security of the PRF F, and (3) the security of the public-key encryption
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scheme. Together they ensure that guessing which vendor a particular
benign user is sending command to is equivalent to guessing which in-
dex in the shuffled message list this user’s message lands, of which the
adversary has no better strategy than random guessing. Against a curious
vendor, the security reduces to (1) the obliviousness property of OKVS,
and (2) the the security of the public-key encryption scheme. They ensure
the vendor cannot tell whether a command it decodes is from a real user
or not and therefore cannot learn which devices have actually received
commands. We provide a more formal security analysis in Section 5.7.

5.5 Preventing Cross-Round Attacks
One major challenge of designing a metadata-hiding system is to prevent
cross-round attacks. Specifically, in a communication system, if the adver-
sary can observe the traffic patterns across multiple rounds, it can make
statistical inferences about the relationship between message senders and
receivers. This type of attack is often referred as intersection attack or
statistical disclosure attack [93, 127, 148].

Although intersection attacks affect many anonymity systems, they
become more difficult or even impractical to carry out as the size of the
anonymity set increases. As a result, these anonymity systems often choose
to employ large anonymity sets to make them less vulnerable [91]. We
note that Mohito may appear to belong to one of these systems, as it is
designed to support IoT systems where there is usually a huge amount
of concurrent traffic in every round and therefore a large anonymity set;
however, there are certain scenarios common in the IoT settings that can
break this assumption. Section 5.5 gives an example attack, illustrating
how intersection attacks in Mohito may lead to privacy leakage; Section 5.5
outlines Mohito’s defense.
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Intersection Attacks in IoT Systems

Recall that in Mohito we consider two types of adversaries: a semi-honest
integrator and a semi-honest vendor. In the first case, the adversary shares
the view of the integrator and can learn two things2:

1. the set of users who participate in each round, and

2. the number of commands received by each vendor in each round.

By accumulating such information over multiple rounds, it can deduce
which user is more likely to communicate with which vendor, violating
our metadata privacy security goal.

We give one simple example to illustrate how the attack may work.
Suppose that in round i, there are three users, UA,UB, and UC, that send
a message to the integrator, while vendors VA, VB, and VC receive 1, 2, and
0 messages respectively; then in round j, the participating users become
UA and UD, while vendors VA, VB, and VC receives 1, 0, and 1 messages
respectively. By intersecting the information from these two rounds, we
can observe that onlyUA is in both rounds and only VA receives a message
in both rounds. Hence, we can infer UA is communicating with VA (for
simplicity, assuming each user only uses a single vendor). Conversely, we
can also compute the difference of the information, and observe that UD
appears only in round j and causes VC to receive an additional message.
We note that this latter type of scenario is common in IoT systems, as it
corresponds to the event when a new user joins the system, making the
Mohito protocol that we have discussed so far vulnerable to this attack.

We note that the second type of adversary (where it shares the view of
a vendor) does not benefit from intersection attacks. The Mohito protocol
forces the vendor to send a message to every device it owns in each round
but does not allow it to learn which of these messages represent real

2While the adversary also learns the ephemeral ids and encrypted commands, they
appear random to the adversary.
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commands. Therefore, this adversary cannot learn the set of devices that
actually participate in each round by eavesdropping on the vendor, so it
cannot perform an intersection to narrow down the set of devices, similar
to how the first type of adversary narrows down the set of users.

Defending against Intersection Attacks

To prevent intersection attacks, we must prevent the integrator from learn-
ing either 1) the set of participating users or 2) the number of commands
each vendor receives. Hiding the first information is a well-studied prob-
lem in the literature, and the two common approaches are anonymous
credentials [62, 69, 173] and client-side cover traffic [55, 58, 148, 195, 198].
We note that these approaches either have inherent downsides (e.g. anony-
mous credentials still leak IP addresses) or do not align with our system
model (e.g. client-side cover traffic often requires users to be always on-
line). Nonetheless, should the situation fit, they can be plugged directly
on top of Mohito and we briefly discuss them in Section 5.9.

Therefore, we focus on hiding the second information, namely the
number of commands each vendor receives. To achieve this, Mohito injects
cover traffic from the shuffler.

Server-side cover traffic. At a high level, we instruct the shuffler to add
fake commands such that, in each round, the integrator finds that the
number of commands delivered to each vendor is always equal to some
pre-determined number. Let, C be a vector of size |V|, such that Cv denotes
the number of messages expected by vth vendor. If vth vendor actually
receives Av commands, then the shuffler should inject Bv = Cv − Av fake
commands for the vth vendor. In this way, the integrator never learns the
number of “real” commands received by a particular vendor.

Specifically, assume that the integrator and users agree on an ordering
of vendors. Suppose a user wants to send a command to a device belonging
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to the v-th vendor. This user prepares a vector ev of length |V|, where ev
denotes a standard-basis vector (all-zeros vector with a one at the index v),
and where |V| denotes the total number of vendors. The user then splits
this vector into two additive shares x1 and x2 such that x1 + x2 = ev. The
user encrypts the two shares in such a way that x1 will be delivered to the
integrator while x2 will be delivered to the shuffler (using the two-layer
encryption approach we discussed in Section 5.4).

Next, the integrator accumulates and sums up all shares it receives
from users in this round. Let the accumulated share is X1. It then computes
Y← C − X1, The integrator sends Y to the shuffler, which computes

B← Y − X2

where X2 is the shuffler’s accumulated share3. It follows that, B = C−X1 −

X2− = C − A. Therefore, the shuffler can simply add Bv fake commands
for the vth vendor to the shuffled list of messages before returning them to
the integrator.

In this way, the integrator now sees that vendor vth receives Cv com-
mands respectively. However, it does not know how many of these com-
mands are from the users and how many of them are fake commands
from the shuffler, namely, Ai and Bi. As a result, the integrator can no
longer perform an intersection attack, as it only knows the senders of the
messages but learns nothing about the receivers.

Traffic bursts. One downside of setting a pre-determined Ci for each
vendor is that there might be a burst of traffic in some rounds where
Aj > Cj for some vendor j. In these rounds, the shuffler will observe that
Bj < 0 for vendor j. To account for this, we do not add any fake commands
for vendor j, but for every other vendor, we add |Bj| fake commands to

3We do not want to reveal the number of actual commands received by each vendor
(A) to the shuffler. Vendors may be commercially competing with each other and
therefore such information should not be leaked to a potential competitor.
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each of them. In this way, the integrator does not know which vendor
is responsible for the traffic burst, as it just sees every vendor uniformly
receives |Bj| additional commands.

Choosing C.
The optimal choice of Cv for a vendor v depends on how many real

commands this vendor usually receives in each round, or more precisely,
the distribution of this vendor’s Av. For example, if Av follows the normal
distribution N(100, 20) and there are 100 vendors in the system, then
Fig. 5.2 shows how the number of fake commands we need to inject changes
as Cv changes and the number reaches minimum when Cv is around 147.
Setting Cv too small will cause traffic bursts to happen more frequently,
while setting it too large will lead to more fake messages generated when
there is no traffic burst. We note that in some scenarios where we do
not even want the shuffler to learn the distribution of Av, we can draw a
new Cv from some pre-determined distribution in every round, instead of
setting Cv to a constant value.

In addition, recall that our threat model permits the integrator to col-
lude with a small number of users and may generate up to δ commands in
each round. To account for this, we should add δ to the optimal choice of
Cv discussed above to ensure that, no matter how many commands these
colluding users generate, they cannot cause a traffic burst and manipulate
the number of commands returned to the integrator.

5.6 Mohito Protocol
In this section, we formalize the full Mohito protocol. Each device in
Mohito must be first properly set up before it is ready to receive commands.
Users send commands to their devices in synchronized rounds through
the Mohito servers, consisting of one integrator and a number of vendors.
Devices respond to the commands with status update messages.



163

100 120 140 160 180 200
0

200

400

600

800

C

B

Figure 5.2: Number of fake messages B, assuming a total of 100 vendors
and A follows N(100, 20).

For simplicity, we omit the user setup phase and assume each user
has already registered an account with the IoT servers and obtained an
access token for sending commands to the integrator through standard
authorization protocols like OAuth.

Notation. We denote the integrator as I and the set of vendors, users,
and devices as V,U, and D respectively. Each device D ∈ D has three
attributes: (User, Vendor, ID), denoting the user that owns the device, the
vendor that manufactures the device, and a string that globally identifies
the device, respectively. We assume the ID of a device can be used to derive
a globally unique key for some PRF F. For simplicity, when a message
m is encrypted under someone’s key, such as pkA that is owned by party
A, we simply denote the resulting ciphertext as 〈m〉A. In addition, when
calling enc or dec on a vector, say m, we are encrypting or decrypting each
individual element in the vector.
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U.IssueCommand(cmd,D, j, t,V∗)

kD←$ KGen(D.ID)

z← FkD(j‖t)
v← D.Vendor.ID
x1, x2←$ JevK
m← (z, v, 〈c〉D)
m ′ ← (〈〈m〉I, x2〉V∗ , x1)

sendm ′ to I

I.EncodeCommands
(
m ′, C1, C2, . . . , C|V|

)
m ′′, (x11, . . . , x1k)← m ′

X1 ←
∑
i x1i

Y← (C1, . . . , C|V|) − X1

m←$ V∗.ShuffleCommands (m ′′, Y)

z, v, 〈cmd〉D ← dec(m)

for V ∈ V do
kv← {(zi, 〈cmd〉Di) | vi = V .ID}

S← Encode(kv)
send S to V

V∗.ShuffleCommands (m ′′, Y)

m, (x21, . . . , x2k)← dec (m ′′)

X2 ←
k∑
i=1

x2i

B← Y − X2

for V ∈ V do
i← V .ID
if Bi < 0 then

for V ′ ∈ V \ {V} do
add |Bi| fake messages for V ′ to m

else
add Bi fake messages for V to m

〈z〉I, 〈v〉I, 〈〈cmd〉D〉I ← m
π←$ Π

send π (〈z〉I) ,π (〈v〉I) ,π (〈〈cmd〉D〉I) to I

V .DecodeCommands (Da, t,S)

for D ∈ Da do
kD ← KGen(D.ID)

for j = 1 . . .q do
z← FkD(j‖t)
mj ← Decode(S, z)

sendm1‖ . . . ‖mq to D

Figure 5.3: Mohito protocol for command sending phase. Each procedure
is executed by different entities: user’s mobile phone app (U), integrator
(I), shuffler vendor (V∗), and the device vendor (V).

Device Setup Phase

In Mohito, a deviceDmay come online after it has been successfully set up
by a user U. This setup phase is mandatory in almost every modern smart
home system. A common device setup phase incorporates two steps: first
D establishes a private communication channel withU (usually through a
local Wi-Fi hosted byD), and thenU tellsD how to connect to the Internet
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(usually by sharing their home Wi-Fi’s SSID and password) so that D can
directly communicate with its vendor V . In Mohito, we extend the setup
phase by additionally instructingD to exchange the following information
with U and V :

1. Share the device’s ID D.ID with both U and V . This ID will later be
used to generate a PRF key.

2. Generate a symmetric encryption key kD and share it with U. We
will use kD to ensure end-to-end encryption between D and U, and
we assume kD is used with an authenticated encryption scheme.

We note that such private communication channels between device
and user are often short-lived and require active human inputs to establish.
Therefore, similar to today’s smart home systems, Mohito only performs
the device setup phase once at the beginning of each device’s lifecycle.

Command Sending Phase

Once a user has successfully set up one or more devices, they may start
sending commands to their devices through Mohito servers, which consist
of an integrator and a number of vendors. We list the pseudocode of our
protocol in Fig. 5.3.

We design Mohito to proceed in a round-based fashion. The integrator
gathers all commands from users that participate in the current round and,
together with the vendors, distributes them to the devices. We discuss the
appropriate setting for round duration in Section 5.8.

Round initialization

At the beginning of each round, the integrator I chooses a unique round
identifier t for this round and shares t with each user participating in this
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round as well as with each vendor. In addition, it selects a vendor V∗ that
is in charge of shuffling the commands for this round and shares V∗ with
the users participating in this round. We refer to V∗ as the shuffler.

Users issue requests

When a user U wants to issue command cmd to device D, they invoke
the function IssueCommand and send the output to the integrator I. This
includes the following operations:

(a) Generate an ephemeral id z for this command using a PRF F that is
keyed by the device’s ID and takes as input the current round identifier t.
We additionally append a command counter j to the input to F to allow U

to send multiple commands in the same round. A command counter of j
means that the current cmd is the j-th command that U sends to D in this
round.
(b) Construct the message blobm as (z, v, 〈cmd〉D), where v is the ID ofD’s
vendor and 〈cmd〉D is the ciphertext by encrypting the command cwith
the symmetric encryption key kD (which is obtained during the device
setup phase of D).
(c) Compute the additive shares x1 and x2 as described in Section 5.5.
(d) Encrypt with the public keys of the integrator I and the shuffler V∗ to
compute the final messagem ′ as (〈〈m〉I, x2〉V∗ , x1).

To prevent replay attacks, we require each command cmd to include a
unique command identifier and the current timestamp as its attributes. In
addition, we restrict that each user can send at most q commands to their
devices in each round, so that 1 6 j 6 q. This restriction is reasonable as
many real-world servers already enforce similar rate-limiting techniques
in their APIs.
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Servers shuffle and encode requests

Once the integrator I has gathered all commands in a round, it processes
them with the help of the shuffler V∗. Assume that, in a given round,
I receives kmessages m ′ = (m ′1, . . . ,m ′k) (ranked chronologically) from
users that participated in this round. Integrator invokes I.EncodeCommands
to compute the OKVS stores for each vendor using the following steps:

(a) I collects its shares x11, . . . , x1k from m ′ to compute Y, and then sends
the remaining part of user messages to V∗.
(b)V∗ adds the fake messages based on the scheme described in Section 5.5
and returns the messages to I after shuffling (V∗.ShuffleCommands). It
should also store the shuffle permutation π as well as the indices in the
message list that correspond to fake messages for later use.
(c) I groups the resulting messages by the vendor id v attached in each
message, encodes each group into an OKVS S using the ephemeral id z
as key and the encrypted commands 〈cmd〉D as value, and sends S to the
corresponding vendor.

Vendors decode commands

Finally, each vendor V invokes the function DecodeCommands, which takes
as input the set of currently active devices Da (i.e. devices that have
ongoing connection with the vendor), the current round’s identifier t, and
the OKVS S received from I, and computes the message to be delivered to
each device D ∈ Da.

Since V does not know which devices actually receive a command from
their user, it will compute all possible ephemeral ids for each active device
D ∈ Da in this round, try to decode each of these ephemeral ids from
S, and send the decoded values to D. As a result, in Mohito, we force
each active device to communicate with their vendor in each round. As
existing smart home devices in the wild are already constantly chatting
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with their vendors even when they are idle [58, 208], we believe that this
extra communication is still practical in real-world settings.

Finally, each active device D ∈ Da receives a message from V and
tries to decrypt the message using its own symmetric encryption key kD.
Each device that actually receives a command from its user successfully
recovers the command; each device that does not observes a decryption
error.

Device Response Phase

After a device D receives a message from its vendor, it must reply with
a status update r, which represents the result or the new device status
after executing the user command. Each active device in Da sends its
own r to V regardless of whether it successfully decrypted a command;
otherwise V will identify which devices actually received commands by
observing which devices reply. In the case thatD does not actually receive
a command, r is a random string.

We note that the protocol in this phase is essentially the reverse of
the protocol in command sending phase. That is, the roles of encoder
and decoder are switched and the shuffler now reversely shuffles of the
integrator’s message list.

This phase starts after a device has received a command from its user
and is ready to make a response r. We list the pseudocode of the protocol
in Fig. 5.4.

Devices issue responses

The device D performs an onion encryption on its response r by using
first D’s own symmetric encryption key kDD, then the public key of the
shuffler V∗, and finally the public key of the integrator I. The ephemeral
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D.IssueResponse(r, j, t,V∗)

kD ← KGen(D.ID)

z← FkD(j‖t)
send (z, 〈〈〈r〉D〉V∗〉I) to D.Vendor

V∗.ShuffleResponses (r ′)

// π and m is the internal variables
// from V∗.ShuffleCommands

r ← π−1 (dec (r ′))
for ri ∈ r do

if i-th element in m is a fake message then
remove ri from r

send r to I

V .EncodeResponses (r ′′)

send Encode (r ′′) to I

I.DecodeResponses (S,V)

// z and v are the internal variables
// from I.EncodeCommands
for i = 1 . . . ‖z‖ do

if V .ID = vi do
r ′′i ← Decode(S, zi)

else
r ′′i ← ⊥

r ′′ ← (r ′′1 , . . . , r ′′‖z‖)
r ′ ← dec (r ′′)
r←$ V∗.ShuffleResponses (r ′)
return r

Figure 5.4: Mohito protocol for device response phase.

id associated with the original command is also recomputed and attached
to the encrypted response.

The outer encryption layer with pkI is necessary, because otherwise the
vendor that acts as the shuffler in this round would learn which of devices
actually receive commands by checking whether the device’s response
is in the response list it received from I during the future decoding step
(V∗.ShuffleResponses).

Vendors encode responses

The vendor V , after receiving responses from each of its active devices,
encodes them an OKVS S and sends S to I. Note that we cannot send
responses directly to I without the OKVS encoding; otherwise I would
learn which commands it receives from V∗.ShuffleCommands are fake by
comparing the ephemeral ids attached to the responses with the ones
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attached to the commands.

Servers decode and reverse-shuffle responses

Once the integrator I receives an OKVS S from a vendor V , it iterates
through the list of ephemeral ids z that it used to encode the OKVS for V
during I.EncodeCommands and tries to decode values from S. Next, I sends
the list of decoded values to the shuffler V∗, which then shuffles the list
using the inverse of the order that V∗ used during V∗.ShuffleCommands.

In this way, each entry in the final resulting list r ′ represents the re-
sponse to the command that has the same index in the list m ′ that I received
in the beginning of I.EncodeCommands. That is, r ′i is the response to m ′i.

The user U who initially sent m ′i can be easily traced back by I. For
example, Umay still have the TCP connection with I open and awaiting
for a response.

Device-initiated messages. In some cases, we may want the system to
allow devices to actively push messages to their users. To support this
operation, we can switch the order of Mohito’s command sending phase
and device responding phase. The only difference is that the users who
are online and ready to receive push messages should submit a list of their
ephemeral ids to the integrator.

5.7 Security of Mohito

Data privacy. The privacy of the Mohito protocol is ensured via end-to-
end encryption. Specifically, each user command and each device response
is encrypted using a symmetric encryption key kD, which is generated
during the device setup phase and is shared between only the user and its
device.

Data integrity. Since we assume IoT servers are semi-honest, the only
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party that can tamper with the integrity of data is a malicious user or
device. To do so, the malicious user or device must guess the ephemeral id
generated by an honest user or device. However, since the ephemeral id is
the output of a PRF and the key of the PRF is not known to the malicious
user or device, the probability of correctly guessing the ephemeral id is
negligible.

Metadata privacy (integrator). We model the adversary AI as a party
that passively corrupts the integrator and actively corrupts a small subset
of users and devices, as discussed in Section 5.3. In each round, it receives
the following information during the command sending phase: 1) a list of
users and their messages to the integrator, and 2) a list of messages from
the shuffler. We formalize the definition of metadata privacy by specifying
a simulator algorithm that, given the list of honest users in this round as
well as the list of messages generated by malicious users controlled by AI,
produces an output that is computationally indistinguishable from the
information listed above.

Intuitively, this means that AI learns nothing in each round, as every-
thing (apart from the messages generated by AI itself) it observes can
be simulated by an algorithm that has no knowledge of the honest users’
commands.

Claim. There exists an algorithm SimI that takes as input the list of honest users
and a list of messages generated by the adversary-controlled users in a round and
simulates the view of the adversary AI.

Proof Sketch. The algorithm SimI simulates messages from honest users
by encrypting random values. These simulated messages are indistin-
guishable from real messages due to the security of the encryption scheme.
Next, SimI plays the role of the shuffler. When the integrator requests
to shuffle the messages, SimI decrypts the adversary-generated messages
and places them in random slots of the return list. The rest of the return
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list is filled with random values encrypted by the integrator’s public key.
This list is indistinguishable from the list returned by a real shuffler, as
the adversary does not know the random permutation used for shuffling.
Note that the adversary does learn a partial permutation, corresponding
to the adversarially chosen messages, but this does not reveal any other
parts of the permutation.

Metadata privacy (vendor). Similar to the metadata privacy of integrator,
we model the adversary AV as a party that passively corrupts a vendor
and actively corrupts a small subset of users and devices and show that a
simulator algorithm exists to simulate the view of AV . In particular, we
assume that this vendor is also acting as the shuffler.

Claim. There exists an algorithm SimV that takes as input the list of honest
users and a list of messages generated by the adversary-controlled users in a round
and simulates the view of the adversary AV .

Proof Sketch. The algorithm SimV first simulates messages that the shuf-
fler receives by encrypting random values with the shuffler’s public key
and attaching them to the list of messages generated by the adversary-
controlled users. Then SimV generates a list of random values and encode
them (along with the commands generated by the adversary-controlled
users) into an OKVS with random keys. The resulting OKVS is sent to AV .
Due to the obliviousness of OKVS and the fact that all encoded values ap-
pear random, AV cannot distinguish this OKVS from an OKVS generated
from real users’ commands.

5.8 Implementation and Evaluation
We build a proof-of-concept implementation of Mohito. We benchmark
our implementation to discuss how to appropriately set round duration
and show that, when compared to prior general-purpose metadata-hiding
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Figure 5.5: Execution graph of our Mohito implementation. Message
streaming is used to reduce system idle time.

system, we can achieve 600×more throughput.

Implementation

We prototype the Mohito protocol in Go and choose PaXoS [162] as the
underlying implementation for OKVS. We use grpc to handle communica-
tion between IoT servers and apply its message streaming functionality
when possible. For example, at the beginning of each round, the inte-
grator forwards each user message to the shuffler as soon as it comes in;
hence, the shuffler can start its decryption process immediately, instead of
waiting for the integrator to collect all user messages in this round. The
execution graph of our system during the command sending phase is
shown in Fig. 5.5. This strategy allows the servers to execute the protocol
concurrently and greatly reduces their idle time.

In addition, the shuffler does not shuffle messages in memory, as this
would be costly. Instead, it computes the permutation only and uses it
to determine the order in which the messages are streamed back to the
integrator. However, we do ensure the shuffler has received all messages
in the current round before starting to send them back; otherwise, the
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integrator would learn that some messages rank lower than others in the
permutation.

We also pre-generate enough fake messages for the shuffler, as these
fake messages only require the public keys of the integrator as input, so
that the shuffler does not need to compute them on the fly.

Experiments and Evaluation

For all experiments, we deployed Mohito on three AWS c5d.2xlarge servers,
two of which are running the integrator and the vendor/shuffler while the
remaining one simulates the users and the devices collectively. Each server
is configured with 8 vCPUs and 16 GB of memory. They are connected
with 10 Gbps network.

Communication Cost

For the command sending phase, there are three parameters that deter-
mine the communication cost between the integrator and vendors in each
round4: the number of commands sent by users, the size of the command,
and the number of fake commands injected by the shuffler. Since cost
scales linearly with command size, we set the command size to 1 KB and
show the results in Fig. 5.6 (left).

For the device response phase, the communication cost also depends
on the number of active devices, as Mohito requires that each device
generate a response. In practice, there will be more active devices in each
round than the number of commands, as in each round not all devices will
receive a command. Fig. 5.6 (right) shows how communication changes

4We note that while the number of vendors in the systems also impacts the commu-
nication cost, it only controls the number of additive shares attached to the command;
therefore, adding a new vendor is equivalent to increasing the command size by two
integers.
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Figure 5.6: The communication cost of Mohito, given a command size
of 1 KB. The device responding phase costs more bandwidth than the
command sending phase, since the size of OKVSs in former scale with the
number of active devices, while the size in latter scales with the number
of commands.

when we assume that in each round only 10% of active devices receive
commands.

Performance

This section focuses on the performance of IoT servers, since the protocol
we run on each end user and each device is relatively simple (it takes only
0.03 seconds on our machine and should not be a bottleneck for modern
embedded microprocessors). Our servers are deployed in the same data
center to minimize communication latency, allowing us to focus on the
performance impact of the Mohito protocol.

Round duration. As shown in Fig. 5.5, the operations of different rounds
overlap due to the use of message streaming. The integrator begins the
second round as soon as it finishes forwarding all user messages from
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unaffected by the number of commands we put into each round.

the first round to the shuffler. As a result, for all rounds except for the
first, the integrator needs to process the shuffler’s return messages from
the previous round while it is forwarding the user messages from the
current round. This also means that the integrator can only proceed to
the next round after it has completed processing the shuffler’s return
messages from the previous round, which consists of two operations:
the decryption of the shuffler’s return messages and the OKVS encoding.
Therefore, the round duration is determined by the execution time of these
two operations.

In Fig. 5.7, we show how the round duration varies due to the num-
ber of commands returned by the shuffler (including both real and fake
commands) and the size of command. We note that while a shorter round
leads to smaller latencies, we would also want to keep the number of
commands the system can handle large enough so that the small number
of devices controlled by the adversary cannot cause a traffic burst, as we
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discussed in Section 5.5. For example, if we assume the adversary can
send up to δ = 100 commands in each round and there are 1,000 vendors
in the system, we need to ensure each round can handle at least 100,000
commands, which, given a command size of 1 KB, translates to 1.9 seconds
per round.

We note that the performance of the device response phase is almost
identical to the performance of the command sending phase. While each
vendor may need to encode more responses in the device response phase
compared to the number of commands they decode during the command
sending phase, the bottleneck of the system only depends on the integra-
tor’s operations as we have shown above. Therefore, the only difference
between these two phases is that, instead of encoding commands into
an OKVS, the integrator now decodes responses from OKVS. However,
encoding/decoding cost is relatively small compared by the decryption
cost. For example, given 100,000 commands and a command size of 1 KB,
the time needed to decrypt is 1.3 seconds, while it takes 0.6 seconds to
encode and 0.2 seconds to decode. As such, for the remaining evaluations,
we only focus on the command sending phase.

Throughput. Based on Fig. 5.7, the throughput of the system primarily
depends on the command size. Given a command size of 1 KB, Mohito
is capable of handling approximately 48,000 commands per second, no
matter how many commands we put into each round. Even if we assume
half of these commands are fake, the effective throughput of the systems is
24,000 commands per second. Although we cannot compare Mohito with
existing non-metadata-hiding IoT systems due to their proprietary nature,
we note that Express [100], a state-of-the-art general-purpose metadata-
hiding messaging system that uses a two-server PIR technique, supports
around 40 messages per second while running on machines with twice the
number of CPU cores than ours. Hence, being a tailored system, Mohito
is able to achieve a much higher throughput, so that it can accommodate
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the high volume of concurrent requests in IoT environments.

Latency. We define the end-to-end latency as the time needed to deliver a
command from a user to its device. Hence, if we ignore the communication
latency between different parties, the end-to-end latency consists of three
parts: the remaining duration of the current round, the entire duration of
the next round, and the time it takes for the vendor to decode commands.
Since each vendor only needs to decode its own OKVS, the decoding time
is much shorter than the duration of each round and therefore the latency
is primarily determined by our choice of the round duration. If we assume
the uniform distribution of the command arriving time, then the average
latency is approximately equal to 1.5 times of the round duration. That is,
with 100,000 commands per round and a command size of 1 KB, the end-
to-end latency is 2.7 seconds. We again use Express [100] as a comparison.
Express provides roughly half of Mohito’s latency for a single message, but
its latency scales with the number of concurrent messages, while Mohito
ensures all messages have similar latency.

System Cost. We measure the costs of running the Mohito servers (the
vendors and the integrator) on AWS. Our current setup supports a through-
put of 24,000 commands per second and costs 9.2 USD per day for the
shuffler. However, since each vendor takes turns to become the shuffler,
the cost of running the shuffler is split among all vendors. We note that the
bottleneck of our system is decrypting a large list of messages, a highly par-
allelizable operation. Therefore, performance can be improved by adding
more machines.

5.9 Discussion

Practicality of Shuffler. The integrator can choose a different vendor as
the shuffler in each round and report this vendor (as well as the public
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key of this vendor) to every participating party. Each vendor must agree
to periodically act as the shuffler before it can engage in Mohito’s privacy-
preserving protocol. While this may seem to contradict our goal of not
putting the load of larger vendors onto smaller ones, the integrator can
select the shuffler in a way that ensures the average work of each vendor
is balanced. That is, the total number of messages a vendor must shuffle
should in the long run be roughly proportional to the number of devices
it operates. Therefore, smaller vendors should not be discouraged from
participating in Mohito. For example, assuming the device distribution
follows the IFTTT data in [150], smaller vendors tend to own around 50
active devices and hence they only need to become a shuffler once in every
22,500 rounds; as such, they may just run the shuffler server (as a lambda
function) for a few seconds each day, so the extra overhead is insignificant.

Multiple Shufflers. We note that instead of choosing one vendor as the
shuffler, we can also select multiple (or even all) vendors as shufflers.
Now each shuffler will be responsible for shuffling a fraction of the user
messages the integrator receives and injecting fake traffic to the same
fraction of the pre-determined constant C. However, having multiple
shufflers does not necessarily improve the overall performance. As shown
in Section 5.8, even if we reduce the shuffler’s running time, the total time
of each round is still determined by the time spent by the integrator’s
operation, which is not affected by the number of shufflers.

Asynchronous responses. In a real-world setting, not all devices will
have responses ready by the end of the round. Some devices may need a
longer period of time to execute the user’s command before it can respond.
In cases where the response for a command in round t is received in round
t+i, the vendorV may simply encode another OKVS S ′ using this response
and send it to the integrator I, who then re-executes DecodeCommands
using the internal state it stored from round t. This asynchronous approach
would incur some small communication overhead between I and the users
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who participated in round t, as Iwill send a message to each of these users
whenever it runs DecodeCommands.

Malicious Security. The current protocol of Mohito only protects against
honest-but-curious IoT services, as a malicious integrator can lie about its
aggregated sum of secret shares. However, we can upgrade our security
guarantee to defend against a malicious integrator by running secret-
shared non-interactive proofs (SNIP) [90] on a subset of vendors as long
as one of the vendors remains honest.

Preventing intersection attacks via anonymous credentials. As we note
in Section 5.5, another way to prevent intersection attacks is to remove
the identity of the users via an anonymous credential system. Anony-
mous credentials allow each user to authorize and communicate with
a server without revealing the user’s identity, preventing the adversary
from deducing a mapping between users and vendors. There are many
works on anonymous credentials [62,69,173] and they can be plugged into
Mohito directly, as Mohito does not place additional requirement on how
users should authorize with IoT servers. However, even with anonymous
credentials, each time a user communicates with a server, the user’s IP
address will unavoidably leak. Thus, the adversary can still recover a
mapping between IP addresses and vendors. This leakage is weaker, since
in practice many IP addresses are dynamic [197], so the IP address alone
may not always identify a user.

Preventing intersection attacks via client-side cover traffic. Users can
also hide their traffic patterns by generating cover traffic from their side. In
this way, a message from the user to the integrator may represent either a
real command or a fake one, preventing the integrator from learning the set
of users that are participating in each round. However, user-side cover traf-
fic may not be practical in the IoT setting, because it would require the user
to be always online (or at least online at specific times), but the user’s client,
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usually a smartphone app, should not be expected to constantly run in
the background and may disconnect arbitrarily. Nonetheless, approaches
to client-side traffic for IoT devices have been proposed [55, 58, 198] and,
if a user can satisfy these conditions, it may use client-side cover traffic
alongside Mohito to prevent the integrator from learning when the user is
participating.

5.10 Related Works
Mohito applies an anonymous communication system to the problem of
IoT metadata protection. Thus, we review related works in these fields
separately.

Metadata in IoT. IoT metadata and its associated privacy risks have been
extensively studied by prior works. There is a line of works that analyze
how passive network observers, such as Internet service providers and
WiFi eavesdroppers, can infer device activities based on encrypted IoT
traffic [42, 57, 58, 98, 149, 183]. These rely on metadata information, includ-
ing traffic rates and the domains of servers that IoT devices contact. While
the adversaries (IoT vendors and integrator) in our threat model are dif-
ferent than theirs, both types of adversaries are equally powerful, as they
both have access to such metadata. In addition, several defenses against
passive network observers have been proposed. Most of them build so-
lutions from the client/device side and utilize a technique called traffic
shaping [55, 56, 58, 94, 202]. Traffic shaping modifies traffic generated by
IoT devices by padding messages and injecting cover traffic. We note that
if a user can ensure its client is always online, this approach can be used
to complement Mohito’s server-side cover traffic approach. EPIC [143]
proposes a different type of solution by designing a differentially-private
routing protocol at the network layer. To our knowledge, Mohito is the



182

first system that hides IoT metadata from the server side.

Anonymous communication systems. Mohito belongs to the class of
communication systems that achieves cryptographic guarantees regarding
anonymity and metadata-hiding properties. Many of these systems are
based on mix-nets, which perform message shuffling in a peer-to-peer
system. Examples of such systems include Dissent [194], Atom [135], and
XRD [136]. They suffer from high latency due to the lack of a central-
ized party and therefore need to run multiple shuffles in each round. In
contrast, the communication structure in IoT systems allows Mohito to
perform a single shuffle, greatly reducing latency. Riposte [91], Pung [52],
Talek [82], and Express [100] instead achieve anonymous communication
by reading/writing user messages from/to a private database via private
information retrieval. These approaches allow reading and writing to
happen in different rounds, but they prioritize performance of a single
message and do not scale well when high throughput is required.

There is another class of communication systems that provides dif-
ferential privacy guarantees [138, 139, 184, 187]. These systems, while
generally having better performance, allow quantifiable leakage of meta-
data. Therefore, an attacker may eventually learn who is communicating
after observing a large number of rounds in a differentially private system,
whereas the security of Mohito and other cryptographic-based systems
do not degrade over time.

5.11 Summary
We have presented Mohito, a privacy-preserving IoT system that achieves
metadata protection. It prevents both the integrator service and device
vendors from learning which user communicates with which device. In
addition, we tailor the protocol of Mohito to support two key require-
ments of an IoT system, which are the handling of large concurrent traffic
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and the load-balancing among device vendors with various processing
powers. We evaluate the performance of Mohito and demonstrate that
our implementation, although doubling the single-message latency, in-
creases the throughput by 600× when compared to a general-purpose
metadata-hiding system that provides similar security guarantees.
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6 conclusions and future work

In this chapter, we first propose several future work directions based
on the scopes of our work and findings, and then conclude with our
contributions to the understanding of various security and privacy issues
in online integration platforms and potential defenses.

6.1 Future Work

Metadata-hiding with support for computations in trigger-action plat-
forms. A malicious TAP can learn about the metadata of a user’s automa-
tion rules using the traffic pattern and rule semantics. Although eTAP can
encrypt the trigger data, a TAP can still observe the source service of the
trigger data and the destination of the encrypted result as well as the times-
tamp of each execution. As we discuss in Section 5.2, these metadata may
sometime allow the platform to infer user activities. Meanwhile, Mohito
provides metadata protection but cannot support computations due to
the use of end-to-end encryption. While one may substitute the standard
encryption scheme with homomorphic encryption schemes [155], the
performance overhead would be unbearable. For reference, TFHE [31], a
state-of-the-art library for fully homomorphic encryption, takes 4.45 sec-
onds to compute a typical function in automation rules. As Mohito needs
to deal with thousands or millions requests in each round to hide traf-
fic patterns, a practical scheme that support both metadata-hiding and
computations remains an area of future investigation.

Minimization with symbolic execution. The precision of dynamic min-
imizer in minTAP can be further improved by incorporating symbolic
execution to achieve data-specific attribute minimization. Symbolic execu-
tion allows for automated exploration of the program control-flow graph,
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precise program state reasoning, and generation of the input that leads to
a given program point. For example, if a string attribute is used only in a
condition for substring matching, we can replace this attribute with just the
substring. Currently, as shown on the left of Fig. 4.11, only a small fraction
of filter codes that have non-time-based conditions can benefit from such
symbolic analysis. However, rules in other types of trigger-action settings
(such as Node-RED [37] and OpenWhisk [34]) where more complicated
programming paradigms are required may benefit from symbolic execu-
tion. We do note that one particular challenge is that, when filter codes
contain nested conditions, current techniques for symbolic analysis may
become inefficient due to path explosion [144].

Support for multi-trigger automation rules. Recently IFTTT has devel-
oped a feature called queries [124], which allows a single automation rule
to pull data from multiple trigger services. Both eTAP and the dynamic
approach in minTAP do not support this new paradigm of automation
rule. This still remains a challenge, as the set of trigger services needed
for a rule may be determined at runtime and vary by each execution. One
future direction is to build an efficient synchronization strategy between
different trigger services to support this feature.

Automated security analysis of access control. In our study of the app
ecosystems in business collaboration platforms, we choose only two repre-
sentatives, namely Microsoft Teams and Slack, due to their popularity and
access to their officially hosted app directory. While we do find these two
platforms use a similar model and therefore suffer from similar attacks, it
is still unknown whether our finding can be applied to other platforms.
A promising future direction is to develop an automated approach to
discover the potential privacy escalations based on an OAuth-based access
control scheme. This could lead to a more generalizable finding and serve
as a foundation for a universal defense mechanism.
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6.2 Conclusions
This dissertation has delved deeply into the intricate landscape surround-
ing security and privacy in online integration platforms. Two primary
threat vectors are examined in detail.

The first threat revolves around vulnerabilities stemming from access
control mechanisms for third-party services. Our research has uncovered
shortcomings in the design of these mechanisms, rendering them suscep-
tible to exploitation by malicious parties. This is illustrated through a
systemic analysis of the app ecosystem within popular business collab-
oration platforms including Slack and Microsoft Teams, where we have
found that a malicious third-party app can obtain unauthorized access
to private messages and gain control of other benign apps. To mitigate
such vulnerabilities, a more dynamic and fine-grained permission model
is required to adequately define the capabilities of each app.

The second threat is rooted inherently in the current design of integra-
tion platforms. These platforms, by acting as centralized data hubs, amass
vast quantities of user data, giving rise to potential privacy risks. We
have addressed this issue through an exploration of system designs, each
providing a distinct trade-off among security, performance, and function-
ality: (1) in eTAP, we have leveraged the unique structure of trigger-action
platform to design an efficient protocol that optimizes garbled circuits
and supports secure computations in automation rules; (2) in minTAP, we
have developed a framework that provides practical language-based data
minimization for trigger-action platforms and achieves least-privilege by
releasing only the necessary attributes of user data to the platforms; (3) in
Mohito, we have built a privacy-preserving protocol for smart home IoT
platforms, offering the advantages of metadata hiding while ensuring high
throughput. In constructing these system designs, we have devised a num-
ber of novel techniques, some of which (such as Mohito’s server-side cover
traffic) are tailored towards each platform’s unique requirements while
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others (such as eTAP’s evaluations of string functions in garbled circuits)
have broader applications beyond the scope of integration platforms.

In summary, securing integration platforms remains of paramount
importance for the security and privacy of user data in modern digital
ecosystem, and this dissertation has shown two key strategies: first, a
more dynamic and fine-grained access control system is the key to fend
off threats from connected third parties; second, the development of new
secure and efficient protocols that tailor to each platform’s unique system
requirement and data communication flow is required to mitigate the
privacy concern stemming from the platforms themselves. These strategies
serve as vital steps toward fortifying integration platforms against potential
security and privacy vulnerabilities.
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a appendices

A.1 Implementation Details of Attacker Apps in
BCPs

In this section, we provide more implementation details of our attacker
apps demonstrated in Sections 2.4 to 2.6. All apps are implemented by
following the official guideline and APIs.

App-to-App Delegation Attacks

In Section 2.4, we demonstrate five delegation attacks. For each attack,
the attacker registers a malicious app that provides benign functionality
and requests a legitimate set of permissions (detailed below). After that,
the attacker either installs the malicious app to their workspace (where
the attacker is a curious user) or tricks a user into installing apps in the
user’s workspace. Once installed and granted permission, the malicious
app gets notified and starts the attack by interacting with other targeted
apps in the workspace.

The first four malicious apps request permission to send messages on
behalf of the user. They launch the attack by sending specific messages that
the targeted apps were designed to read and process. The last malicious
app requests permission to react to messages on behalf of the user. It
launches the attack by reacting with an emoji that the targeted app is
designed to notice and retweet.

User-to-App Interaction Hijacking

In Section 2.5, we demonstrate the command hijacking attack on Zoom,
which requires implementing a malicious app that mimics the appearance
and behavior of the official Zoom app. To this end, we register an app
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with slash command permission but deliberately implement the command
responses with Zoom APIs (of the attacker’s controlled Zoom account) to
mimic the official Zoom app. As BCPs permit installing apps from just a
public URL, we do not have to publish the apps on official app stores. This
approach avoids any accidental distribution of malicious apps to other
BCP users.

Furthermore, this attack can be extended to hijack any other apps, as
long as the attacker can re-implement the proper functionalities of the
targeted app. The appearance of an app is publicly available in the official
app directory.

App-to-User Confidentiality Violations

We provide more details of how the attacker can obtain the channel and
message IDs described in Section 2.6.

Obtaining channel ID. Each channel ID is a random string. The direct
way to learn the ID of a private channel is by requesting a less alarming
scope, groups:read, which provides the read access to a private channel’s
metadata. Alternatively, if the attacker knows the name of the channel
(through side channels or guessing; per our threat model the attacker can
be a curious workspace member who has some prior knowledge), it can
use the chat:write scope to write a new message. It can just provide the
channel name to the corresponding chat.postMessage API, which will
accept this request and return the channel ID as part of the response.

Obtaining message ID. The direct way to learn the message ID requires
groups:history, which also grants the ability to directly read messages,
avoiding the need for any attack because an app can simply misuse that
permission to leak messages. However, unlike channel ID which is com-
pletely randomized, the format of a message ID follows a simple, intuitive
pattern, consisting of only the current timestamp and a counter value. An
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example message ID is shown below:

1616604187︸ ︷︷ ︸
Timestamp

0000600︸ ︷︷ ︸
Counter

The first 10 digits represent the UNIX epoch timestamp of the message
in seconds, and the last 7 digits is a counter that gets increased for each
consecutive message and resets to 0 after approximately 5 days of inactivity.
We conducted a series of controlled experiments and empirically found
that the counter increments according to the following rules:

1. The increment between two consecutive messages is always a mul-
tiple of 100. Although this increment is usually 200, it may change
based on the user actions listed in Fig. A.1.

2. The counters are independent across different channels, as well as
user actions in different channels.

Due to the first rule, the attacker cannot predict the exact message ID
given the previous ID, as Slack does not provide a way to learn how many
drafts are saved internally. However, if the attacker is given two valid IDs
separated by a small time interval, then it is straightforward to guess the
valid IDs in between. We describe two ways of learning a valid ID. The
first way is, again, to rely on the groups:read scope, since the metadata
of the channel includes the ID of the latest message in the channel. The
second way is to write a new message to the channel, which will cause the
Slack API to return the ID of the newly posted message.

Attack workflow.

1. The attacker obtains a valid combination of channel ID and message
ID using the techniques described above. We refer to the message
ID as (t0, c0). If it obtains the message ID via posting new messages,
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User Action Counter Increment

User Posting a message with text 200
App Posting a message with text 100
Posting a message with only file 100
Saving a draft (happens automati-
cally 10 seconds after the user stops
typing)

100

Figure A.1: Slack Message Counter Increment. For each consecutive mes-
sage, the counter value is increased by 100x, where x starts at 0 and gradu-
ally increases based on actions of the users in the channel.

then it immediately deletes the message to hide its trace, which is
also permitted by the chat:write scope.

2. After a short time τ, the attacker obtains another valid message ID
(t0 + τ, c1).

3. The attacker guesses all possible message IDs, which is the cartesian
product of (t0, t0 + 1, ..., t0 + τ) and (c0 + 100, c0 + 200, ..., c1 − 100).

4. The attacker uses the guessed IDs to generate the message URL and
posts it to the user’s personal channel. The URLs of the valid IDs
will get unfurled.

By repeating this attack over and over again for different message
IDs, the attacker can eventually pull every message from any private
channel that the victim user has joined, effectively granting the malicious
app the power of the groups:history scope even though this scope is
never explicitly requested. We note that the attacker should adjust the
time interval τ dynamically based on the messaging frequency to aim for
c1 − c0 6 500, so that it can post all possible IDs in step 3 under Slack’s
rate limit (which allows unfurling of up to 5 URLs per second).
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A.2 Implementing Supported Function in eTAP
In this appendix section, we describe how to implement each operation
that appears in Fig. 3.3, except for Boolean and arithmetic operations, since
existing GC frameworks like EMP toolkit [191] already provide built-in
functions to efficiently translate them.

• x == s and x.startwith(s). A bit-wise comparison between x and
s is performed up to the min(len(x), len(s)) bit, and results are
feed into a large AND gate as output. For x == s, We additionally
check if the next remaining character in x or s is a padding character.

• x.endwith(s) and x.contain(s). These functions need to be first
converted to a correspondingly regular expression and then matched
against x.

• x.replace(s, t). We can apply the DFA replacement technique
described in Section 3.5 directly for this type of functions.

• x.extract_phone() and extract_email(). We apply the DFA ex-
traction described in Section 3.5 by constructing appropriate regular
expressions. However, as we need the matching results to be non-
overlapping, one modification is needed : we can append [ˆa-Z0-9]
to the regular expression and shift the final matching position for-
ward by 1 character.

• x.split(d,i). Without loss of generality, we assume d is a single
character. First we need to create two regular expressions, Γ1 and Γ2,
to that output accepting states when the i-th and i+1-th occurrences
of d is encountered. Once we have the starting and ending location
of the substring, we can proceed with substring extractions.
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• x.truncate(n). We can keep a variable counter c that gets increased
after each bit in x is processed. And each output bit y[i] is computed
by x[i] & (n > c).

• x.tolowercase(). Assume ASCII encoding, for each character in x,
we first check if the last five bits are in the valid ranges; if so, we flip
the sixth bit.

• m.lookup(x). First, we compare x with each key of m, and store
the matching results into a len(m)-bit sequence. We denote this
sequence as b. Then, the output y is computed iteratively by y =
(b[i] & v[i]) | (!b[i] & y) as i ranges from 1 to len(m).

A.3 Attribute Category Criteria in minTAP
We list below the detailed criteria for how we determine which category
each attribute belongs to in our evaluation of minTAP’s privacy benefits
(Section 4.8). We note that there are overlappings between different cate-
gories. For example, an attribute named LocationMapImageUrl counts as
both location and downloadable link. However, we use the third criteria to
ensure there are no overlappings between categories of different sensitivity
levels.

Timestamp. In IFTTT, attributes representing timestamps are convention-
ally named in the format of xxxxAt, such as OccurredAt or CreatedAt. Other
common attribute names include Date and Time.

Link. For all attributes we inspected of this category, their names include
either Link or Url. Furthermore, we found that, out of these attributes,
the ones whose links are access-controlled (i.e. user’s login credentials
are required to access the information) are usually named as PublicUrl or
EventUrl. On the contrary, links that can be used to directly download files
often start with one of the following keywords in their names: Image, File,
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Video, Download, Record, Document, Mp3, Photo, Audio, Picture, Share, and
Source.

Location. Location attributes contain one of these keywords: Location,
Longitude, Latitude, Where, and Address.

User Info. Attributes in this category reveal information about the user,
including the user’s real name (FullName), online identity (Username, User,
Member), and their contact information (Contact, Email, Number, From,
To).

Event description. Attributes in this category provide descriptive texts to
the trigger event, including ProjectName, TaskName, EventName, Description,
About, Note, Title, Tag, Summary, HTML, Section, Field, Column, Row,
Caption, FirstLinkUrl, and EmbeddedCode.

Message. Attributes pertain to a text message or an email includes Mes-
sage, Body, Text, Content, and Subject.

Bookmark. Attributes related to a article or webpage bookmarked by the
user usually includes the keywords Article, Website, or Page.

Other. Other attributes that we found containing sensitive information
include financial information (Transaction, Money, Payment, Amount), smart
home (Temp, Pm, Co2, Humidity, Indoor, Air, Concentration, Device, Sensor,
Camera,Thermostat, Switch, Doorbell, Home, EnterOrExited), event duration
(Ends, Duration), and reminder lists (List).
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