Securing User Data in Online Integration Platforms: From Risk
Assessment to System Design

by

Yunang Chen

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

2023

Date of final oral examination: 10/02/2023

The dissertation is approved by the following members of the Final Oral Committee:
Rahul Chatterjee, Assistant Professor, Computer Sciences
Earlence Fernandes, Assistant Professor, Computer Science and Engineer-
ing, University of California San Diego
Kassem Fawaz, Associate Professor, Electrical and Computer Engineering
Somesh Jha, Professor, Computer Sciences

© Copyright by Yunang Chen 2023
All Rights Reserved

To the memory of my dear grandfather, Dianhuang Xu, whose wisdom, kindness,

and love have illuminated my path since my childhood.

ii

ACKNOWLEDGMENTS

I am profoundly grateful for the invaluable support and guidance I re-
ceived throughout my doctoral journey. What once felt like an endless
journey six years ago has finally reached its destination, all thanks to the
incredible help I received along the way.

First and foremost, I would like to express my gratitude and apprecia-
tion to my advisors, Prof. Earlence Fernandes and Prof. Rahul Chatter-
jee, whose guidance, patience, and encouragement have supported me
throughout my PhD. Earlence first introduced me to the intricate world
of security and privacy research at a time when I possessed limited ex-
perience of the field. Since then, he has not only guided me through
the initial challenges and struggles but also been constantly encouraging
and empowering me to forge my own unique research path. Rahul has
been instrumental in assisting me with his technical expertise. There were
instances during my research journey when I found myself stuck with
complex problems without appropriate tools. Rahul always stepped in,
suggesting a range of promising directions that ultimately steered me
towards overcoming these challenges. I am indebted to their collective ex-
pertise and unwavering support, without which my academic achievement
would not have been possible.

I extend my sincere thanks to other members of my dissertation commit-
tee and the faculty members who generously supported me: Prof. Kassem
Fawaz, Prof. Somesh Jha, Prof. Andrei Sabelfeld, Prof. Danny Huang,
and Prof. David Heath. Their insightful contributions and constructive
feedback were instrumental in refining the quality of this dissertation and
my research. I also want to give a huge shout-out to my awesome collabo-
rators and labmates in MadS&P — Amrita Roy Chowdhury, Ruizhe Wang,
Mohannad Alhanahnah, Yue Gao, Rose Ceccio, Mazharul Islam, Ashish
Hooda, and the rest of the crew. We teamed up on loads of stuffs and they

iii

have made my research journey a whole lot more enjoyable.

Finally, my family deserves my utmost gratitude. From the earliest
days of my childhood to the culmination of my doctoral journey, their
encouragement during moments of doubt, their unwavering belief in my
abilities, and their endless patience have been my constant pillars. My
parents, even though we could not physically meet up for four years,
maintained an unbroken weekly tradition of connecting through Facetime.
Their pep talks are confidence boosters, comfort bringers, and problem-
solving sessions for all kinds of my nuanced troubles. Their understanding
and continuous support were pivotal in helping me conquer the most
rigorous challenges of a PhD. For that, I am eternally grateful.

iv

CONTENTS
Contents iv
List of Figures vii
Abstract xii
1 Introduction 1
1.1 Contributions o000 3
12 RelatedWork 0L 6
1.3 Organization of Dissertation 9
2 Security Analysis of Access Control in Business Collaboration
Platforms” App Ecosystem 10
2.1 Introduction 10
2.2 Business Collaboration Platforms 13
2.3 Analysis of App Permission Model inBCP 19
2.4 App-to-App Delegation Attacks 26
2.5 User-to-App Interaction Hijacking 32
2.6 App-to-User Confidentiality Violations 37
2.7 Potential Countermeasures 42
28 RelatedWork 45
29 Limitationso 0oL 47
210 Summary 47
3 eTAP: Protecting Data Privacy and Integrity in Trigger-Action
Platforms 49
31 Introduction, 49
32 Background L 53
3.3 Analysis of Current Trigger-Action Systems 57

3.4 Design Considerations for Providing Data Confidentiality

in Trigger-Action Systems 61
3.5 Design of Encrypted Trigger-Action Platform 66
3.6 Security Analysisof eTAP 80
3.7 EvaluationofeTAP 86
38 Relatedwork 92
3.9 Discussion and Limitations 94
310 Summary 97

minTAP: Minimizing Data Access in Trigger-Action Platforms 99

41 Introduction 99
4.2 Filter Code in Trigger-Action Platforms 102
4.3 Data Privacy in Overprivileged Trigger-Action Platforms . 104
44 Threat Model and Design Goals 105
4.5 Data Minimization Model 109
4.6 minTAP Framework 115
47 Security of minTAP 123
48 Evaluation L. 126
49 Discussion o oo 135
410 Relatedwork Lo Lo 138
411 Summary 141
Mohito: Scalable Metadata-Hiding for IoT Platforms 142
51 Introduction, 142
5.2 Background & Motivation 146
5.3 Designing a metadata-hiding IoT system 149
5.4 Overview of Mohito Architecture 153
5.5 Preventing Cross-Round Attacks 158
5.6 Mohito Protocolo o o 162
5.7 Securityof Mohitoo oL 170

5.8 Implementation and Evaluation 172

59 Discussion
510 Related Works
511 Summary

6 Conclusions and Future Work
6.1 FutureWork

6.2 Conclusions

A Appendices

A.1 Implementation Details of Attacker Appsin BCPs

A.2 Implementing Supported FunctionineTAP

A.3 Attribute Category Criteria in minTAP

Bibliography

Vi

178
181
182

184
184
186

188
188
192
193

195

LIST OF FIGURES

vii

2.1

2.2

2.3

24

2.5

2.6

2.7

Overview of BCP’s ecosystem: A BCP user interacts with their
BCP clients to communicate with the BCP server. BCP apps,
which are maintained as separate web services by different
third-party developers, communicate with BCP server via API
calls and event notifications. A user has to install and authorize
an app before accessing its functionalities.
Installing apps with bot scopes (left) and user scopes (right)
inSlack.
An example of Slack permission system. We show three exam-
ple scopes that App 1 may acquire. The arrow lines indicate
that a token can be used to query all resource instances of the
types allowed by the token’s scope. However, Slack performs
additional runtime policy checks (indicated by the red crosses)

to determine which of these instances can actually be accessed.

Summary of proof-of-concept attacks and their requirements
and threats. Per our threat model, the victim is a user who has
authorized all the app’s requested permissions.
Zoom meetings created by official and spoofed /zoom com-
mands in Slack. The spoofed Zoom meeting is secretly created
by the attacker but publicly shown as started by the victim. The
word “Fake” is added clear demonstration, it can be removed
in practical attacks. oo 0oL
Demonstration of phishing attacks using the Command Hijack-
ing attack in Slack. The two messages are sent to the user after
invoking the official and hijacked /gcal command, respectively.
The attacker can start a valid OAuth authorization process to
acquire access to the user’'saccount.

Privilege escalation exploiting link unfurling.

19

3.1

3.2

34
3.5

3.6
3.9

4.1

4.2
4.3

4.4

viii

Overview of current trigger-action systems. The dataflow for
the example rule is illustrated in blue color: “IF I receive an
email containing the word ‘confidential’, THEN blink my desk-

top smartlight” L 0 0L 50
Breakdown of triggers, rules, and installed rules in IFTTT based

on their sensitivity levels. 58
Overviewof eTAP. 67

Circuit generation and rule execution protocols for eTAP. L}*
denotes the true label for the first output wire wy, ;" = Ly ®e,;
T is a threshold parameter used to ensure the freshness of a
trigger. CktGarbling is run by TC asynchronous to the actual
rule execution. The remaining three functions are run by TS,
TAP, and AS during rule execution. 68
Security games foreTAP. 80
Latency (top) and throughput (bottom) for running each of
the rules (X-axis) in eTAP and PlainTAP. 90

An example automation rule in trigger-action platforms. The
boxed fields represent various information that the user needs
tospecify. 100
Example filtercode. oo 0L 103
Examples of IFTTT rules, where several sensitive attributes of
trigger data are not used by a rule but still sent. 106
Generating the auxiliary information required for running
static and dynamic minimization is shown at the top, and how
this auxiliary information is used is shown in the bottom two
procedures. For a rule r, T is the set of trigger attributes, A is
the values of action fields, f is a filter code, D is the trigger data. 115

4.5

4.6

4.7

4.8

4.9

4.10

minTAP Framework. The blue-shaded background represents the
components of minTAP: a client application and a modification to the
existing IFTTT-compatibility layer of trigger services. The user creates
a rule 1, which is then transformed by the client into r’ that contains
minimizer information (m) with integrity protection (o). During
rule execution, the TAP contacts the trigger service with (m, o). The
trigger service returns minimized data by removing attributes not
needed for rule execution. All of this works transparently to users
andtheTAP.
minTAP authorization phase: The non-bold text represents the
original OAuth 2.0 authorization code flow used between IFTTT
and the service, while the bold parts highlight the changes
introduced by minTAP’s trusted client.
Rule setup phase. The left part represents a high-level abstrac-
tion of IFTTT’s rule setup interface. The right part details the
steps performed by the client (as a browser extension) in the
background. oL oo
Figure shows the rule execution steps with dynamic minimiza-
tion at the trigger service. IFTTT queries the service with the
minimizer auxiliary information m = (f/, T’) and the signature
(o). The trigger service applies DynamicMinimizer on the trigger
data m, and responds with the sanitized trigger data to IFTTT.
CDFs showing the percentage of rules that have at least x total
/ unused / unused-and-highly-sensitive attributes.
Breakdown of unused attributes by sensitivity. Each row repre-
sents a category of attributes. The third column denotes, out of
all occurrences of unused attributes, the percentage that con-
tains this category’s keywords and the fourth column denotes
the percentage of rules that have at least one unused attribute

withsuchkeywords.

ix

116

120

122

411 Filter code characterizations. (left) Histogram of filter codes
based on lines of code. (right) CDF of the simulated skip
probability for time-based filter code.

4.12 Evaluation results of minTAP. (left) The average execution time
for the client during the rule setup. The rules are separated
into different groups, based on the lines of code. (middle)
CDF of the filter code’s execution times in the trigger service’s
isolated environment. (right) The throughput of the trigger
service for using static or dynamic minimzer, or baseline (i.e.,
w/o modification to the compatibility layer).

5.1 Opverview of IoT Ecosystem. Users communicate with an in-
tegrator, which communicates with various vendors. Each
vendor communicates with its own devices.

5.2 Number of fake messages B, assuming a total of 100 vendors
and A follows N(100,20).

5.3 Mohito protocol for command sending phase. Each procedure
is executed by different entities: user’s mobile phone app (U),

integrator (I), shuffler vendor (V*), and the device vendor (V).

5.4 Mohito protocol for device response phase.
5.5 Execution graph of our Mohito implementation. Message stream-
ing is used to reduce system idle time.
5.6 The communication cost of Mohito, given a command size of 1
KB. The device responding phase costs more bandwidth than
the command sending phase, since the size of OKVSs in former
scale with the number of active devices, while the size in latter
scales with the number of commands.
5.7 Performance of Mohito. Based on the duration of each round
(left), we can compute the system throughput (right), which
remains unaffected by the number of commands we put into

eachround.

164
169

173

Xi

A.1 Slack Message Counter Increment. For each consecutive mes-
sage, the counter value is increased by 100x, where x starts at
0 and gradually increases based on actions of the users in the

Xii

ABSTRACT

Online integration platforms have become integral components of modern
digital ecosystems. These platforms establish connections with numerous
third-party services, enabling a seamless exchange of data and interactions
among these services. This pervasive connectivity, while enhancing effi-
ciency and convenience, has raised various security and privacy concerns.
This dissertation delves into such multifaceted challenges posed by online
integration platforms, focusing on two primary threat vectors.

First, we investigate the vulnerabilities that arise from the design of the
integration platform’s access control. These platforms typically employ
permission-based models to regulate the extent of access granted to third-
party services. However, many of these models are inadequately designed,
which leaves them susceptible to exploitation by malicious third-party
services seeking to escalate their privileges and gain unauthorized access
to user data. To illustrate these vulnerabilities, we conduct a systemic
analysis of the app integration platforms in team-based business collabo-
ration platforms (Slack and Microsoft Teams). Our study reveals that an
adversarial-controlled app not only poses a direct threat to the data within
the platforms but may also jeopardize the security of other connected third
parties.

Second, even when the access control of an integration platform is
appropriately designed and implemented, the platform itself still poses a
privacy concern by design. Integration platforms inherently possess vast
repositories of user data, as they act as centralized hubs through which
data from various third-party services pass. Consequently, the platforms
have the capability to accumulate extensive information about users and
their activities, creating a potential risk to user privacy. Given the intrinsic
nature of this issue, it calls for the development of novel system designs.

In particular, we focus on two popular types of integration platforms,

Xiii

namely trigger-action platforms and smart-home platforms. Through a
comprehensive examination of their specific security requirements and
data communication flow, we propose secure and efficient protocols de-
signed to safeguard user data from the prying eyes of these platforms.
Due to the connections with various third-party services, a compromise
to the security of integration platforms has cascading effects. Securing
integration platforms is therefore a vital part of the protection of user data.
By focusing on several distinct but representative types of integration plat-
forms, this dissertation aims to contribute valuable insights and practical
solutions to enhance the security and privacy of user data in the evolving

landscape of digital interactions among online services.

1 INTRODUCTION

In an era marked by the proliferation of digital services and the ever-
expanding scope of the Internet, users have increasingly embraced a mul-
titude of services to manage various aspects of their digital lives. Online
integration platforms have thus emerged as indispensable cornerstones of
modern digital ecosystems, since they play a vital role in bridging the gap
between a diverse array of digital services that do not directly communi-
cate with each other. These platforms facilitate seamless interaction and
data exchange between third-party services. For instance, trigger-action
platforms, one popular type of integration platforms, allow users to con-
nect an email service to a smart speaker and set up an automation rule that
rings the speaker each time a new email is received [26]. Such pervasive
connectivity of the integration platforms has enabled a more efficient and
convenient digital landscape [146].

However, integration platforms also introduce a series of security and
privacy concerns. These platforms inherently serve as central hubs through
which data flows from various third-party services, and hence a com-
promise to the security of an integration platform can have far-reaching
consequences. Any vulnerability or breach can be exploited to gain unau-
thorized access to a wealth of user data, with repercussions that extend
not only to the user data within the platform but also to the connected
third-party services. The diverse range of these third-party services may
thus lead to a spectrum of potential risks, ranging from phishing attempts
and loss of sensitive information to life-threatening attacks, such as ma-
licious manipulation of critical components in energy distribution and
medical systems.

In light of these risks, the task of securing integration platforms takes on
paramount importance and motivates the overarching question to answer

in this dissertation:

What are the prevalent security and privacy risks to user data in
online integration platforms and how can we develop robust security

mechanisms to mitigate these risks?

To solve this question, we take a comprehensive approach by focusing
on the threat vectors that originate from the two primary players in the
system: the connected third-party services and the integration platforms
themselves.

The first threat arises from third-party services under adversarial con-
trol. Integration platforms commonly rely on permission-based models
to govern the scope of access granted to third-party services [76,101].
Nonetheless, when these access control schemes are not adequately de-
signed, they introduce vulnerabilities that can be exploited by malicious
third-party services. These adversaries can manipulate the system to es-
calate their privileges, ultimately obtaining illicit access to user data to
which they should not have any entitlement.

The second threat stems from the platforms themselves, constituting
a more direct and inherent challenge. Even when the access control of
an integration platform is appropriately designed and implemented, the
platform still naturally accumulates a vast amount of user data, enabling
it to infer a wealth of information pertaining to users and their daily
activities [102]. This aggregation of data, while essential for the platform’s
intended function, simultaneously poses a risk to user privacy.

This dissertation examines both of these threats and, through the case
study of selected integration platforms, aims to understand the scope of
the associated risks as well as their possible mitigations, thereby advancing
our efforts toward secure and privacy-preserving integration platforms.

1.1 Contributions

Our contribution towards securing user data in integration platforms
comes in twofold. Firstly, we assess the vulnerabilities stemming from the
inadequate design of their access control models for third-party services.
We use the app ecosystem in business collaboration platforms as a case
study to illustrate such vulnerabilities, given the complex array of func-
tionalities and permissions offered in these systems. Secondly, we address
the inherent security and privacy issues within these integration platforms
by introducing new system designs. Our focus in this endeavor is targeted
at two types of integration platforms, namely trigger-action platforms and
smart-home platforms, chosen due to their extensive integration with a
vast number of third-party services.

Through the study of these distinct yet representative types of inte-
gration platforms, we have contributed valuable insights and practical
solutions to enhance the security and privacy of user data, which are sum-
marized in the thesis statement below and then expanded upon in the rest
of this section.

Thesis statement. Securing user data in online integration platforms
necessitates a dual defense strategy against threats originating from third
parties and from the platforms themselves. Addressing the former re-
quires dynamic and fine-grained access control mechanisms, while the
latter demands the development of specialized protocols tailored to each
platform’s distinct security requirements and communication flows.

Contributions to security analysis of third-party access

control in integration platforms [81]

Business collaboration platforms. Business collaboration platforms like

Microsoft Teams and Slack enable teamwork by supporting text chatting

and third-party resource integration. A user can access online file stor-
age, make video calls, and manage a code repository, all from within the
platform, thus making them a hub for sensitive communication and re-
sources. The key enabler for these productivity features is a third-party
app ecosystem. We contribute an experimental security analysis of the
access control scheme in Microsoft Teams and Slack. To guide the analy-
sis, we derive a common permission model for these two BCPs and then
experimentally examine each interaction method between apps and users.
Specifically, we introduce three new attack classes that leverage funda-
mental shortcomings of the access control model: app-to-app delegation
attacks, user-to-app interaction hijacking, and app-to-user confidentiality
violations. We constructed proof-of-concept attacks for these classes to
achieve effects such as sending arbitrary emails on behalf of victims, merg-
ing code requests, launching fake video calls with loose security settings,
and stealing private messages without having the appropriate permission.
Finally, we provide an analysis of countermeasures that these business

collaboration platforms can adopt today.

Contributions to system designs towards secure and

privacy-preserving integration platforms [78,79]

Trigger-action platforms. Trigger-action platforms, such as IFTTT, Zapier,
and Microsoft Power Automate, enable millions of end-users to automate
interactions between a wide variety of third-party services ranging from
cloud services to IoI' device vendors and social networks. End-users create
simple automation rules using the trigger-action paradigm. For example,
one can connect Outlook email with a smart speaker so that whenever
an email that contains the keyword “Important” arrives at the inbox will
trigger a notification from the speaker. Unfortunately, the current design
of TAPs is flawed from a security and privacy perspective, allowing un-

fettered access to sensitive user data from connected third-party services.
To address this issue, we present two different systems, each occupying a
different point in the design spectrum:

e First, we have eTAP, a privacy-enhancing protocol that allows trigger-
action platforms to execute automation rules without accessing users’
private data in plaintext. We use garbled circuits as a primitive
to support a commonly used set of computations in user-created
automation rules, and leverage the unique structure of trigger-action
platform to make the protocol practical. We formally state and prove
the security guarantees of our protocols. We implement and evaluate
eTAP. It can support 93.4% of computational rules in Zapier and 100%
of the 500 most-used rules in IFTTT. We show that most functions
can be evaluated with a modest performance impact: on average
rule execution latency increases by 70 ms, or 55% when compared to

an insecure baseline system.

e Next, we have minTAP, a more lightweight approach that provides
data access minimization for trigger-action platforms. The goal of
minTAP is to mitigate the attribute-level overprivilege in automation
rules. Instead of preventing all plaintext access, minTAP releases
only the necessary attributes of user data to trigger-action platforms
and fends off unrelated API access, by leveraging language-based
data minimization to apply the principle of least-privilege. Using real
user-created rules on IFTTT, we demonstrate that minTAP sanitizes a
median of 4 sensitive data attributes per rule with less performance

overhead (5 ms) and does not require any modifications to IFTTT.

Smart-home systems. Modern IoT services feature an integrator service
and several device vendors. The integrator acts as an intermediary by
providing a centralized interface that allows users to remotely control

devices from various vendors. To achieve this, the integrator forwards

communications between users and vendors. While such IoTI services
provide benefits, they also observe interactions between users and devices,
which can be used to infer sensitive personal information, leading to
privacy concerns. We propose Mohito, a privacy-preserving Iol system
that hides such interactions from both the integrator and the vendors.
In Mohito, we protect both the interaction data and metadata, such that
no one can learn which user is communicating with which device. By
utilizing oblivious key-value storage as a primitive and leveraging the
unique communication graph of IoI services, we build a practical protocol
that is capable of handling large concurrent traffic, a common demand
in Iol' systems. Our evaluation shows that Mohito can achieve up to
600 x more throughput than the state-of-the-art general-purpose metadata-
hiding systems that provide similar security guarantees.

Other technical contributions

In the process of designing secure protocols for integration platforms, we
have also developed a generalized technique for oblivious evaluation of
regular expression (Section 3.5). This technique holds a broader appli-
cation scope beyond the context of integration platforms — any systems
that need to evaluate regular expressions without learning input strings
can utilize this technique. Specifically, we devise a way to convert the tran-
sition function of a deterministic finite automaton into a Boolean circuit

that can be efficiently encoded into a garbled circuit.

1.2 Related Work

In this section, we provide an overview of related research work. The aim
of this section is twofold: to contextualize our work within the current
security and privacy landscape of integration platforms, and to establish
links with existing work in the broader domains of authorization, access

control, and data privacy. Subsequent chapters delve into more detailed

discussions of related research tailored to the specific focus of each chapter.

Access control in integration platforms

OAuth [158], an open standard for access delegation, is commonly used
by integration platforms to define the set of resources that a connected
party can access. Despite the wide adoption, OAuth-based access control
systems are usually poorly implemented. Studies [76,179,189] have shown
that developers tend to make many mistakes when implementing OAuth,
such as exposing application secrets, redirecting secret tokens arbitrarily,
or even inventing home-brewed and insecure OAuth protocol flows. These
mistakes ultimately undermine the security properties of OAuth and leave
the systems vulnerable to attacks.

Moreover, the OAuth protocol does not specify how permissions should
be defined. Therefore, overprivileged access is a common issue in OAuth-
based systems, even when there is no implementation flaw. This issue is
particularly pronounced on IoT platforms, where a line of work [71,73,101,
115,126] has demonstrated that third-party applications are frequently
granted access to a significantly larger volume of resources than they
actually utilize. Similar findings are corroborated by studies conducted
on mobile platforms [96,125], voice assistant platforms [178], and trigger-
action platforms [102].

Aremark by Chen et al. [76] aptly pinpoints the root cause of these prob-
lems — the initial objective of OAuth was to simply serve the authorization
needs for traditional websites, but the protocol has been significantly re-
purposed and re-targeted over the years. Consequently, the specification
of OAuth may not satisfy the requirements of these emerging platforms.
Our work chooses to examine the OAuth-based access control system in
business collaboration platform, a recently established integration plat-
form tailored to meet the surging demands of remote work. Compared to

the integration platforms studied in the prior research endeavors, business
collaboration platforms offer a broader spectrum of functionalities and en-
able more direct communication channels between users and third-party
applications. This higher level of intricacy results in more substantial
challenges when it comes to designing a secure access control system,
potentially leading to new attack vectors and vulnerabilities.

Designing secure integration platforms

The research community has recently shown interest in designing new
privacy-preserving protocols for trigger-action platforms, due to the gener-

alizability of these platforms’ trigger-action style computational paradigm.

Least-privilege. The problem of overprivileged access isn't confined to
third-party applications alone; it also extends its influence to the platforms
themselves, turning them into a privacy threat. To solve this problem,
several solutions, such as SPKI/SDSI [88] and Macaroon [66], have been
proposed to facilitate finer-grained authorization by attaching predicate
conditions to access tokens. However, while they offer a generic approach,
they do not seamlessly integrate into the data flow of trigger-action plat-
forms, nor are they readily adaptable to capture the expressive nature of the
trigger-action style computational paradigm. DTAP [102] extends upon
Macaroon’s idea to build a protocol tailored for trigger-action platforms to
ensure all tokens acquired by the platforms are not overpriviledged. Our
work in Chapter 4 goes further to craft a more fine-grained access control
system by delving into the data attribute level and allowing for a more

flexible way to express the predicate condition.

Encryption. OTAP [84] takes a different approach to secure trigger-action
platforms. It uses end-to-end encryption to fully protect the integrity and
confidentiality of data while it transits through an untrusted platform. Its

main drawback is that no computation is allowed — a primary feature for

trigger-action platforms. While there are some works that utilize hardware-
based trusted execution environments (TEEs) to enable computations [172,
206], our work in Chapter 3 proposes a purely cryptographic solution that
avoids the underlying security design issues in TEEs [77,154,186].

Metadata-hiding. Filter-and-Fuzz [198] achieves metadata protection by
instructing smart home devices to generate cover traffics, successfully hid-
ing the timestamp of each message. In comparison, our work in Chapter 5
additionally hides the metadata information of which sender is communi-
cating with which receiver and employs a more efficient server-side cover

traffic scheme.

1.3 Organization of Dissertation

This dissertation is organized as follows. In Chapter 2, we contribute to
the understanding of security vulnerabilities resulting from the access
control model in integration platforms with a systematic analysis of the
third-party app ecosystems in two widely-used business collaboration
platforms, Microsoft Teams and Slack. In Chapters 3 to 5, we describe
three different designs to address the privacy concerns stemming from
the design of today’s integration platforms. Specifically, we propose eTAP
and minTAP for trigger-action platforms and Mohito for smart-home plat-
forms. Each of these designs provides a different trade-off among security,
performance, and functionality. Finally in Chapter 6, we conclude with
remarks summarizing the contributions of this dissertation and examine

potential future work.

10

2 SECURITY ANALYSIS OF ACCESS CONTROL IN BUSINESS

COLLABORATION PLATFORMS’ APP ECOSYSTEM

In this chapter, we delve into the first category of threats to user data
in online integration platforms — that is, the attempts by malicious third
parties seeking to circumvent the access control enforced by the platforms.
We use the third-party app ecosystem in business collaboration platforms
as a case study to illustrate to scope of this threat and propose a set of
possible countermeasures. These platforms offer a broader spectrum of
functionalities and enable more direct communication channels between
users and third parties, thus resulting in more substantial challenges when
it comes to designing a secure access control system and leading to new

attack vectors and vulnerabilities.

2.1 Introduction

Business Collaboration Platforms (BCPs) like Slack and Microsoft Teams
are indispensable collaboration and productivity tools. Beyond multi-user
chat features, BCPs enhance productivity by allowing users to integrate
third-party resources. For example, users can make video calls with Zoom,
store files on DropBox, chat with customers, and manage code repositories,
all from within the BCP. A vibrant third-party app ecosystem allows many
such integrations. Thus, BCPs not only host private communications
between users but also serve as a hub for all their sensitive resources
from third-party systems. As such, it is vital to understand the security
and privacy properties of this emerging class of distributed multi-user
collaboration platforms.

We contribute to understanding the security of BCPs by performing an
experimental analysis of the third-party app model. We focus on the app
model because it allows BCPs to access sensitive data from third-party

11

systems. Although there is work on understanding the operational security
issues of BCPs (e.g., web security flaws [38,39]), to our knowledge, no
work has examined the third-party app model. We focus our work on
Slack and Microsoft Teams — two of the most widely-used BCPs with
mature app ecosystems [19]. Furthermore, these two systems share design-
level commonalities and potentially with other BCPs. Thus, any security
findings are potentially broadly applicable to BCP design.

Performing the security analysis of Slack and Microsoft Teams is chal-
lenging because these systems, including their apps, are closed-source.
Specifically, apps themselves are remotely-hosted web services whose
endpoints are only known to the BCP. This precludes classical analysis
techniques such as source code and binary analysis or API endpoint test-
ing. As an external party, we can only interact with apps the way a human
user would — through the BCP itself. Therefore, we focus our analysis
efforts on the interactions between apps and users, such as sending mes-
sages and reacting to them. To conduct the analysis methodically, we first
systematize an access control model that describes the approaches taken
by Slack and Teams using a uniform vocabulary. We then explore how an
attacker can violate the access control model by experimentally studying
each interaction method.

We find that the BCP app model uses a two-level access control system
consisting of the OAuth protocol and a runtime policy enforcer. Abstractly,
a BCP app requests OAuth tokens to interact with categories of resources.
For example, an app might request an OAuth token to read chat messages.
However, this token does not entirely dictate what specific messages the
app can read. Thus, the user has to specify the fine-grained access control
policy at runtime. Once the user installs an app and permits it to read
chat messages, the user can additionally specify that the app may read
messages from specific channels (e.g., the “usenix-security-submission”

channel). Whenever an app issues an API request to the BCP server to

12

read a chat message from a specific channel, the access control system
first verifies the OAuth token and then executes a runtime policy check to
verify that the app is authorized to read from that specific channel.

By examining each interaction method between BCP apps and users, we
establish that this two-level access control system does not adequately con-
fine third-party application behavior. Concretely, we have discovered that
the BCP access control system violates two standard security principles:
(1) least privilege and (2) complete mediation [169]. This allows malicious
apps to escalate their privilege and violate the confidentiality and integrity
of private chat messages and third-party resources connected to BCPs. To
demonstrate the concrete harms posed to end-users, we introduce three
attack classes for BCPs along with attack prototypes:

(1) App-to-App Delegation Attacks (Section 2.4): BCPs support apps
that can interact with each other for productivity reasons, independently
of human involvement. To support such meaningful interactions, the BCP
access control model allows apps to act on behalf of a user. We show
how malicious apps can exploit this to violate the confidentiality and
integrity of resources that victim apps manage. Our proof-of-concept
attacks include sending arbitrary emails on a victim’s behalf, merging
code pull requests, and retweeting any links using the victim’s account.
(2) User-to-App Interaction Hijacking (Section 2.5): BCP apps can cus-
tomize how users interact with them and with workspace features. For
example, an app can introduce new ‘slash commands’ into a workspace
or manipulate how URLs get unfurled. For example, one can start a Zoom
video call by entering /zoom on the Slack UI. We show how a second ma-
licious app can interfere when a user attempts to interact with a benign
app, a problem similar to DNS domain squatting and voice assistant skill
squatting [134,207].

(3) App-to-User Confidentiality Violations (Section 2.6): BCP apps inter-
act with users by participating in any approved channels or conversations,

13

where a human user explicitly ‘adds’ the app as a member. BCPs imple-
ment runtime policy checks to enforce security policies in these situations.
We show how a malicious app can exploit gaps between OAuth and these
runtime mechanisms to leak private messages it does not have permission
to view.

Finally, we propose a set of countermeasures that BCPs like Microsoft
Teams and Slack can adopt today as a temporary solution to mitigate the
attacks (Section 2.7). For example, enforcing user confirmation before
every app-to-app interaction and command name collision can fix most
issues, but this is undoubtedly a user-hostile solution. As a result, solutions
with acceptable security and usability trade-offs necessitate rethinking the

app and access control model in multi-user communication platforms.

Ethics and Disclosure. We conducted all experiments inside private
workspaces with the authors as the only members. We did not exercise
cross-workspace features; thus, our investigations did not influence other
workspaces. We did not distribute or submit our test malicious apps to any
BCP app directory, so our attack did not affect BCP users other than the
authors’ testing accounts. We ethically disclosed all attacks we found to
Slack and Microsoft, both of which have confirmed their existence. Due to
their view of the workspace as a trusted environment, the assumptions that
social engineering is a prerequisite for the attacks, and that the workspace
administrator will correctly manage app installations, these attacks do not

meet their definitions of a security vulnerability.

2.2 Business Collaboration Platforms

BCPs provide chatrooms that facilitate online collaboration among a group
of people, who usually belong to the same workspace, such as a project
team or a research group. In BCPs, one can create a virtual workspace to

host all conversations for a group. It supports discussions among the users

14

Event Notification

type : message
text : Welcome!
sendrnex?ge channel: CHANNEL_ID
velcome! » /user : USER_ID \

° ; s ts : TIMESTAMP . .

. ° Interact At - API Calls o 20 ! !

= gerlf] i DI~
= -—

. — | & Responses .BCP API Call | !

method chat.postMessage
text : Hello, world! .
BCP User BCP Clients BCP Server channel: CHANNEL_ID Cloud Backends of BCP Apps

token TOXXXX=XXX XX XX =X XXX

Figure 2.1: Overview of BCP’s ecosystem: A BCP user interacts with their
BCP clients to communicate with the BCP server. BCP apps, which are
maintained as separate web services by different third-party developers,
communicate with BCP server via API calls and event notifications. A
user has to install and authorize an app before accessing its functionalities.

who joined the workspace through various conversation channels. Users
can open a new channel which can be public — any user can join — or
private — only those who are invited can join. Users can also send direct
messages to any other user or group of users in the workspace. To use a
BCP, a human user interacts with their BCP client on their computer or
mobile device, which then communicates with the backend servers of
the BCP through various APIs. The backend server then responds to the
client, updating what the user sees. We illustrate this communications
framework in Figure 2.1.

In this work, we focus on Microsoft Teams and Slack, due to their
popularity and mature third-party app ecosystem. A recent survey of 900
businesses [19] has shown that they are the two most popular BCPs'and
are the only ones that provide a list of officially supported third-party

apps.

BCP App

Beyond basic chatting features, modern BCPs usually offer many third-
party integrations, commonly known as apps, which are cloud services pro-

IThe original survey listed Skype for Business as the top spot, but it has since been
discontinued and replaced by Microsoft Teams.

15

viding additional productivity-enhancing functionalities in the workspace,
often connecting user’s data from other services (such as email or online
storage) to the workspace. These BCP apps exist on cloud servers not main-
tained by the BCP. These app backends communicate with the BCP servers
by subscribing to event notification APIs and reacting when information
about a new event is received, as depicted in Figure 2.1. Generally, a BCP
app can simultaneously act in three roles: workspace feature provider,

interactive bot, and user delegate.

Workspace feature provider. The app may enhance a workspace’s ex-
isting features. For example, an app made by Twitter can customize the
default link unfurling feature to preview tweets linked in messages auto-
matically. The app may also provide user-invokable actions through slash
commands. As another example, Google’s Slack app [10] shows a user’s
recent schedule when the user types /gcal.

Interactive bot. The app can present itself in the workplace as a bot user
and interact with other users the same way as a typical human user. The
user can, for example, chat with the app’s bot user directly, invite it to a
channel, or share files with it. Due to these convenient features, this role

has become the app’s primary communication interface with its users.

User delegate. If permitted, the app may also perform actions on behalf
of users. This role is particularly beneficial for enhancing productivity.
For example, when users visit Dropbox’s web page and wish to share files
with others in their Slack workspace, they must divert their attention back
and forth between Dropbox and Slack. In contrast, with the delegation
ability, Dropbox enables the user to click a button without leaving the
webpage and let Dropbox’s Slack app [8] share files on their behalf. As a
result, the shared files appear to have been sent directly from the user.

16

Life Cycle of BCP Apps

Microsoft Teams and Slack allow any BCP user to create and distribute
BCP apps without requirements, such as applying for a developer account.
BCP apps generally go through the following stages in their life cycle:
registration, publication, installation, per-user authorization, in-use, and

removal.

Registration. To enable the various functionalities in Section 2.2, an app
needs to query different web APIs or subscribe to different event notifi-
cation APIs on the BCP’s backend server, which in turn usually require
different permissions. The app developer must register the app in the
corresponding BCP’s developer portal by submitting a manifest, which
specifies the app’s backend URL, required permissions, and subscribed
events. We note that, in both Microsoft Teams and Slack, the developer
does not need to submit any of the app’s codebase, as all their apps are
hosted purely inside the developer’s server. No client-side code is accessi-
ble by Slack, Microsoft, or the end-users.

Publication. After the app has been successfully registered, the de-
veloper can choose to either distribute the app’s public installation URL
through its own advertising channels or submit the app to the official app
directory [33,36]. For the second option, the app must follow submission
guidelines and go through the platform’s vetting procedure, which primar-
ily involves checking if the app’s requested permissions match its claimed
functionality (e.g., through a provided test account). However, as BCP
apps are closed-source and their codes are not submitted for examination,

it is difficult to enforce these guidelines strictly.

Installation. In Microsoft Teams and Slack, any user? can install an app
to the workspace. During installation, a permission request page will
be presented to the user, detailing what the app can do, as illustrated
in Figure 2.2. The user then either accepts all permissions or rejects all

J— N
—

Zoom is requesting permission to access the

_Slack workspace

What will Zoom be able to view?
8 Content and info about you
Gl Content and info about channels & conversations

SS Content and info about your workspace

What will Zoom be able to do?
@ Perform actions in channels & conversations

88 Perform actions in your workspace

cance' m

17

4 .
=
Dropbox is requesting permission to access the
ﬁSIack workspace

What will Dropbox be able to view?

£ Content and info about you 4
E) Content and info about channels & conversations 4
88 Content and info about your workspace 4

What will Dropbox be able to do?

8 Perform actions as you v
Manage your public channels and create new ones on your behalf
Send messages on your behalf

Start direct messages with people on your behalf

E) Perform actions in channels & conversations v
Send messages as Dropbox
Show previews of www.dropbox.com URLs in messages
Start direct and group direct messages with people
Upload, edit, and delete files as Dropbox
Add and remove pinned messages and files
Add or remove stars

Add and edit emoji reactions

oo L
oo Perform actions in your workspace 4

Cancel m

Figure 2.2: Installing apps with bot scopes (left) and user scopes (right)

in Slack.

permissions. This installation is relatively invisible to other users; they are

not notified when a new app is installed, and the list of installed apps is

often hidden in secondary menus in the UL

Per-User Authorization. If an app wants to act as the delegate of some

users in the workspace, it may initiate a separate permission request to

2Although Microsoft Teams and Slack provide a setting for the administrators of
a workspace to limit which users are allowed to install apps and which apps can be
installed, the default for both BCPs is that any user can install any apps from any source.

18

each user, usually by sending the request link via the app’s bot user. Once
the user authorizes it, the app gains permission to act on behalf of that

user.

In-use and Removal. After the app is installed and authorized, it may
additionally ask for integration with the user’s account on third-party
services. For example, Google’s Slack app requests the user to authorize
access to their Google account. BCPs do not manage the communications
between BCP apps and third-party services. If the app developer updates
an app to request a different set of permissions, the user has to reinstall
the app and go through the permission prompts as before. Finally, when
a user uninstalls an app, it is deauthorized by the BCP. However, there
is no guarantee that the app properly disconnects itself from third-party

services.

Security and Privacy Concerns

The widespread usage of BCPs in remote work environments implies that
alot of sensitive information passes through it. With the potential ability to
access such information, BCP apps lead to security and privacy concerns.
Moreover, some of the design choices that we described earlier exacerbate
such concerns: (1) all-or-nothing permissions that disallow selective toggling
of permissions; (2) imperceptible installation that reduces the chances for
users to notice what kinds of apps are installed and also prevents any
workspace-wide consent mechanisms; (3) pure server-side implementation
that prevents BCPs or other entities from inspecting the app’s behavior
through traditional tools like static or dynamic analysis. This also allows

the app to change its behavior at will.

19

Private Channels

Name
Messages
Text Author
A 1 ”
Z] L Members
" Text Author App 1

*®
User 1 3

|Private Channel #2
Name

I I
I I
I I
I
I I
I I
I I
I I
I I
I Il
I
I |
I I
I I
| |
I
I Messages l
e
l " Text Author group }
I I
I I
I I
‘ i
i
I |
I I
I I

3 N
[1] Members

"7 Text Author User 1
% User 2
I User 2
groups:history chat:write groups:read
Bot Token Scope User Token Scope User Token Scope
(for User 1) (for User 2)

Figure 2.3: An example of Slack permission system. We show three exam-
ple scopes that App 1 may acquire. The arrow lines indicate that a token
can be used to query all resource instances of the types allowed by the
token’s scope. However, Slack performs additional runtime policy checks
(indicated by the red crosses) to determine which of these instances can
actually be accessed.

2.3 Analysis of App Permission Model in BCP

We study the permission systems in Microsoft Teams and Slack to identify
their similarities and differences to understand the potential security de-
sign issues and systematically perform experimental security analysis. We
focus on these two BCPs since they are the top two most popular ones [19]
and have mature app ecosystems. We also introduce a practical threat
model and the methodology we will use to analyze the third-party apps
in these two BCPs.

App Permission System

At a high level, Microsoft Teams and Slack have designed their access con-

trol model based on a similar permission-based system. This permission

20

system controls whether or not an app has access to various resources in a
workspace. An app must first declare a set of permission scopes it requires,
with each scope representing the permission to read or write a type of
resource. However, such scopes are statically defined by the BCPs and
thus do not allow more dynamic and fine-grained access control over the
specific instances under a single type of resource. To solve this problem,
the BCP permission system includes runtime policies that are usually user-
configurable. For example, to read a message in a private channel, a Slack
app not only needs the groups:history scope but also has to be added
to the channel’s member list by some user, as shown in Fig. 2.3. We now
examine this two-level permission system in detail and show that it has
security design issues that can violate the least privilege principle and

cause privilege escalation.

Level 1: static permission scopes. An app needs to acquire several
different permission scopes to perform all of its functionality. Each scope
represents the permission to read or write a type of resource in a workspace,
such as channel messages or shared files.

To install the app, the user must accept all of its requested permissions;
neither BCPs provide options to selectively toggle them. Slack’s permission
scopes are implemented as standard OAuth permission scopes. Slack
provides two types of scopes for its apps: bot token scope, which allows
an app to provide workspace features or act as a bot user, and user token
scope, which allows an app to perform actions on behalf of an authorized
user. For example, the chat:write bot token scope permits the app to
send messages with its bot user as the author, while the chat:write user
token scope allows sending messages as the user. Microsoft Teams follows
a similar design: a set of core app capabilities that must be declared in an
app’s manifest is the equivalent of Slack’s bot token scope, while Microsoft
Graph API's OAuth permission scopes are equivalent to Slack’s user token

scope. The difference is that only the first type of scope is shown during

21

the app installation; the second type can only be acquired by initiating a
separate permission request to the user after installation.

These scopes are static, in the sense that they are predefined based
on how BCPs categorize the workspace resources, and therefore might
not align with the user’s desired security policies, which can vary by
workspaces and evolve. To compensate for the static nature of scopes, both

BCPs impose a second level of permission checking.

Level 2: runtime policy checks. Microsoft Teams and Slack implement
runtime policies to determine which instances in a resource type an app
can access based on various conditions. Users can usually control these
conditions to express their desired security policies. For example, users
can have more fine-grained control of which messages in private channels
an app (that has the prerequisite permission scope) can view: in Slack,
they can invite the app to a specific channel, indicating that the app can
view all messages inside this channel; in Microsoft Teams, they can e-
mention the app in the messages that they wish the app to read. In this
way, runtime monitors grant users some flexibility to dynamically adjust

the set of resources of an app can access.

Security design issues. Despite the two-level checking, we uncover two
design issues in the BCP permission system that violate basic security

principles.

1. The runtime policies are ad-hoc and incomplete. As a result, not all
user security policies can be correctly expressed. We find that not
only do they differ in each BCP, but even in the same BCP there are
often inconsistencies between the runtime policies of similar types
of resources. For example, Slack treats public channel messages
and direct messages as two separate types of resources; however, it
only imposes a policy on the former by checking whether the app is

invited to the channel, but provides no mechanism to limit which

22

user the app can send direct messages to. The incompleteness of
runtime policies leads to coarse-grained access control, violating the
principle of least privilege.

2. The ownership or provenance of some resources is not properly
tracked or enforced. This frequently happens when a user dele-
gates an app to create resources. For example, Microsoft Teams does
not differentiate between messages sent by a real user and a dele-
gated app. In addition, due to the multi-user multi-app nature of
BCP workspace, the ownership of a resource can sometimes be hard
to define correctly. When the ownership or provenance is absent, or
the system assumes the wrong one, the principle of complete mediation

can be violated and potentially lead to privilege escalation.

Although it is possible to build a BCP permission system to fix the above
problems by allowing the user to specify the security policy for every
instance of resources and tracking every resource’s provenance, we will
see in Sections 2.4 to 2.5 that such an ideal system is hard to design and

often requires sacrificing usability.

Threat Model

Based on our analysis of the permission model above, we derive a threat
model for BCP apps. We assume that the attacker has targeted a BCP workspace
containing a number of users and already-installed apps. The attacker
has also tricked one of the users (referred to as the victim) into installing
the attacker-controlled malicious app, i.e., the victim has granted all the
permission scopes requested by the malicious app. We believe this is a
reasonable assumption, because (1) the malicious app can easily mimic a
legitimate app by copying its publicly available manifest, making the two
indistinguishable for the victim during installation, and (2) by default, any
user in the workspace is allowed to install any app from any source. In our

23

threat model, the attacker can be either an outsider or a curious user inside
the workspace who wants to gain the information they cannot access. For
example, an admin can recommend everyone in the organization to install
a malicious app (disguised as an innocent management app), hoping to
steal chat logs from private channels they are not invited.

In addition, we assume that the BCP’s clients and its backend server
are secure and do not collude with the attacker — attacking such infras-
tructure is an orthogonal research direction. Therefore, the capacity of the
malicious app is limited to the functionality defined by the BCP’s API. We
also assume that the other apps installed in the workspace are benign and
secure, which means they follow the security guidelines [35,40] and do
not contain any implementation-level flaws such as exposing their tokens

directly.

Security Analysis Methodology

We perform experimental security analysis on Microsoft Teams and Slack
to study how a malicious app (defined by our threat model) can exploit
the two security design issues in these two BCPs” permission systems.
Specifically, for each potential exploit, we evaluate its practicality and preva-
lence.

To explore potential exploits, we examine every type of interaction the
malicious app can have with other entities in the workspace and check
whether such interaction involves resources that have incomplete runtime
policy or suffer from improper ownership tracking. If so, we explore
attacks causing security-critical consequences. For each attack, we analyze
how it stems from the security design issues in the permission system, how
it violates the security principles, and how it jeopardizes the workspace’s
integrity or confidentiality guarantees expected by the user. We detail our
findings in Sections 2.4 to 2.6, and summarize the prerequisites and effect

surface for each attack in Fig. 2.4.

24

For practicality, we build proof-of-concept malicious apps and, if appli-
cable, target the attack on selected apps. Since most apps require a valid
third-party account to function properly, running large-scale analysis is
infeasible. Thus, we only select a few targeted apps that connect to sensi-
tive resources and test them manually. We only install one targeted app at
a time in our test workspace to avoid undesired interference.

For prevalence, we analyze the app’s potential ability to launch attacks.
We collect the requested permissions of all published apps from the two
BCPs’ official app category?®, and count how many apps have sulfficient
permissions or resources to launch each attack. It is important to note that
our goal is not to prove that some specific apps are malicious; we only
examine the capabilities granted by various permission scopes and how
they can be abused to perform malicious actions. This strategy allows for
a sound analysis despite apps being closed-source, as the apps we find

indeed have prerequisite permissions to potentially launch attacks.

3We collected 2,460 apps from the Slack [33] on April 7, 2021 and 1,304 apps from
Microsoft Teams [36] on November 17, 2021.

25

‘suorssturrad pajsanbai s,dde s [Te pazroyme sey oym 1asn e ST WIOIA S}
‘[PPOoW 1edI3 INO I3 "S}eaI} pue sjuswarmbar mmayy pue syoepe 3dedouod-jo-jooid jo Arewrwung 3z 93]

*JO I9qUISW B ST WIOTA 2I9UyM [auured ajearrd

J1eeq S, UmoIA Uo s uonoear/reys/uid eia —
Aue ur saGessauwr pue sa3essaur J0AIIP S, WIOIA Py sadessowr 03 30ea1 10 “Ie)s “urd 03 UOTSSTULId] : R
"JO IOQUISW © ST ‘Jreyoq s, uImdIA uo
M [Angun yuij era —
widIA araym puue ajearid Aue ur sadessaw peay $93LSSIUI J02ITP J)LIM 2P PRI O} UOTSSTULID]
uorenxa a9essan
WIOIA Aq Juos syurf a3 Sunodage | _
Ay{ets us300 papnyun s, dde 1ayz0 Aue sverdey Surpmyun pazruroysnd apraoid 0} UOTSSTWIS] P [Enyun yyurg
PUELIIO) i) Jutsn SU0L1243 Surpoge Amyrea)s "SPUBUIWOD YSB[S PPe 0} UOISSIWLIS] P puBWWOd Ysers —
ooedsyIom 9y} ur puewrwod yse[s Aue Moeff]
Suppe(y uonpderajuy
‘sadessowt pa[npayds [eAOWI 10j
-o1d e1a passryoe aq A[uo ued sy SpPe[g UL, quorssrusad aaoqe sy paamboe seq ddy » N reaowrax dde 3sod —
‘paaowss st dde ayy 1935e yoee uoneda[ep Mmouy o :
‘syunodoe A)red-pIny; pajosuuod s,WnHdIA Ul jep Jeueq
: NSNS S, WA UO (S93eSSou J091Ip 9)LIM 29 pedl 2 2 uone3aa(q
arendrews 03 sdde 1aU30 5,wRILA UF SUOROE oAU Amrewntzd) suorpoe wiroyrad 0} UOISSTULID]
JdeyINg PIAPH MPeNV soyisibarary sweay oe[g SpPeny

26

24 App-to-App Delegation Attacks

One of the core functionalities provided by BCP apps is to chat with users
through their bot users interactively. However, a BCP app can also send
and receive messages on the user’s behalf and, therefore, chat with other
app bot users. In this section, we present the delegation attack, where one
malicious app abuses such app-app interactions and causes security-critical
consequences. We then show that the source of this vulnerability roots
in the fundamental design issues of current BCP permission systems — a
violation of least privilege.

App-to-App Interactions

Both Microsoft Teams and Slack allow their apps to present themselves in
a workspace as bot users so that human users can send direct messages to
these bot users to instruct them to perform certain tasks. This functionality
is commonly used to let users manage their data in other online services,
such as emails and file storage, without leaving the BCP.

At the same time, these two BCPs also allow apps to perform certain
actions in the workspace on behalf of the user. If an app sends a message
in this way, this message will appear as if the user sent it. Such dele-
gation can be useful to enhance productivity. For example, Dropbox’s
BCP app [8] utilizes it to share files in channels on behalf of the user. In
Slack, this can be achieved if the app has acquired the chat:write user
token scope in its OAuth permission request with the user; in Microsoft
Teams, although none of its standard app capabilities grants permissions
to delegate, one can still employ the advanced Microsoft Graph API and
ask for the Chat.ReadWrite scope.

By combining the above two functionalities, we can enable app-to-app
interactions in BCPs: one app that has the delegated permission to send

user’s messages can interact with another app’s bot user. Such interaction

27

can be beneficial; for example, Dokkio’s Slack app [7] can organize files
sent by Dropbox’s app into a coherent page for the workspace and tag
them as shared by different users. Slack regards app-app interaction as
an important feature with growing demand [111]. However, allowing
one app to communicate with other app’s bot users has severe security
implications. When the former app turns malicious, it can potentially
invoke actions from the latter app, and such actions might affect data in
the user’s connected third-party account. We refer to attacks exploiting
this vulnerability as delegation attacks.

We note app-app interactions can happen in other ways. Although
receiving a message from the user is the most intuitive trigger event to
indicate when the app should perform its actions, an app may subscribe
to other triggers as well, like when a file is shared or an emoji reaction
is added. As such, apps with delegated permissions to produce these

triggers can also launch potential delegation attacks.

Post-removal interactions. Even after an app’s removal from the workspace,
it can have residual effects that cause delegation attacks. Slack provides
its apps the ability to schedule a message to be sent at a future time (us-
ing the same chat:write user token scope). We find that if the app is
removed before the message’s scheduled time, its message will still be
sent, potentially invoking actions from other apps. In Microsoft Teams,
although there is no scheduling feature, this issue is more severe due to
its two separate permission schemes. Upon uninstallation, only the app’s
standard capabilities declared in the manifest will be removed, while its
delegation permissions acquired through the Graph API remain entirely
intact. Therefore, a user cannot, by simply removing a Teams app from
the workspace, prevent the app from continuing to send messages on
the user’s behalf and interact with other apps, allowing the channel for

delegation attacks to remain open.

Current defenses. We note that Microsoft Teams and Slack do have

28

workarounds that can prevent app-to-app interactions. They allow apps
to interact with users through alternative ways, such as slash commands
and interactive Ul windows. This prevents other apps from interfering
since neither BCPs allow an app to send slash commands or click buttons
in a UL Slack in particular also tracks which messages are sent by a real
user through the Slack client and which are sent by a delegated app, so
that the app receiving the messages can choose whether to respond or not.
However, both of these mechanisms require the receiving app’s developer
to decide which actions can be triggered by other apps, but the current
design of BCP permission system does not provide any ways for it to
learn whether the delegated messages align with the user’s actual intent,
making it impossible to arrive at the correct decision. As we will discuss
in Section 2.7, a principled fix would trade-off functionality or usability.

Delegation Attack

We now focus on the delegation attack targeting both Microsoft Teams apps
and Slack apps. We have built a tool that crawls the information of a
targeted app from the two BCPs’ official app directories and analyzes
which trigger events the app is subscribing to. In the case of Microsoft
Teams, we can also extract all message keywords that trigger the targeted
app’s actions. We set up a workspace as defined per our threat model.
The attacker app has acquired the appropriate delegated permission from
a victim user who has also installed the targeted apps with connection to
third-party services. The attacker app produces the trigger events, and
we observe whether the targeted app will be tricked into performing the
actions (see Section A.1 for more implementation details). Since most
apps require a valid third-party account to function properly, performing
large-scale automated analysis is infeasible. Thus, in this section, we select
a few apps connecting to sensitive third-party resources and manually
target them, demonstrating that delegation attacks can indeed trigger

29

security-critical or privacy-violating actions.

@ Send emails on victim’s behalf. MailClark’s Slack app [13] allows
sending emails directly from Slack to include non-Slack users in a Slack
conversation. MailClark provides a unique email address for a list of non-
Slack guests in a channel configured by the user. The email account and the
recipients are only accessible to MailClark and the user. The attacker app
induces MailClark to send any emails of the attacker’s choice to recipients
configured by the user. Specifically, the malicious app launches this attack
by sending messages to the channel as the user. During this procedure,
MailClark will automatically send the attacker’s message as an email to

all recipients and indicate the author as the user.

@ Chat with victim’s website visitors. Chatlio [5] is a service that lets
developers add live chat functionality to their websites. It also provides an
accompanying Slack app that automatically forwards any messages of the
website visitors to a Slack channel and vice versa. Therefore, website own-
ers can chat with any visitors in real-time through Slack. Unfortunately,
this convenient feature makes Chatlio’s app a victim of delegation attacks.
Our attacker app can post messages directly into the channels used by
Chatlio to chat with website visitors and thus launch further phishing
attacks or harvest sensitive user info, as it now appears like a trustworthy

entity to the visitors.

(3 Merge pull requests in victim’s code repository. BitBucket’'s Microsoft
Teams app [4] will merge a given pull request if it receives a message
starting with the keyword merge. It will then ask for confirmation, at
which point the attacker app can reply with the text yes to approve the
merge. The attacker app may additionally use the 1ist keyword to ask
BitBucket’s app to display all pull requests in the victim user’s connected
repos or the find keyword to locate a specific pull request. If the repo
is public, the attacker can even submit and merge its own pull request,

30

leading to code poisoning or backdoor injection.

(@) Execute victim’s automation flows. Microsoft Power Automate has
a Teams app [41] that, upon receiving the message Run flow [id], will
execute the specified automation flow in the user’s account. These flows
can perform various actions in a wide range of services connected to Power
Automate. The app also accepts messages like List flows and Describe
flow [id] that can be utilized by the attacker to learn more about the

user’s flows and conduct more targeted attacks.

® Retweet on victim’s behalf. Ziri [15] is a Slack app that helps users
interact with tweets in a non-disruptive way. It connects to the user’s
Twitter account and requests permission to retweet. After that, whenever
a Twitter link is shared in Slack, and the user adds a Twitter emoji reaction
to that message, Ziri will automatically retweet the shared Twitter on the
user’s behalf. The attacker app can thus send a message containing a link
to a chosen tweet (that includes harmful information) and add an emoji
to the message on behalf of the user. After that, Ziri will successfully
detect the tweet link and retweet it using the victim user’s account. Such
uncontrolled tweets can have detrimental effects, especially when the
connected account is high profile, such as the organization’s official twitter.

Summary. The first four attacks rely on message events to trigger the
actions in the targeted app, while the last one relies on a reaction event. We
note that once the attacker and targeted apps are installed and properly
authorized, the attacks do not require additional user inputs and can
happen anytime, even when the user is not logged into its BCP client.
In addition, the attacker app can delete the traces of trigger events once
the attack is finished, making it even sneakier (since in both BCPs, the
permission to send messages or add emoji reactions also grants for free
the permission to delete them).

31

Analysis of Root Cause and Potentially Prevalence

The delegation attack is possible because both BCPs’ permission systems
violate the principle of least privilege. Currently, the permission to send del-
egated messages is governed by Slack’s chat :write or Microsoft Teams’s
Chat :ReadWrite scope; however, these two scopes allow the app to send
messages to any place that the user has access to, be it a public channel,
direct message with other users, or direct message with other app’s bot
user. In addition, neither BCPs provide additional runtime policies that
allows the user to limit the destinations. Therefore, even if the user wants
to install a simple app that only sends delegated messages to a small subset
of other users for sharing or notification purposes, it must grant this app
such overprivileged scopes that inevitable comes with the ability to launch

delegation attacks.

App’s residual permissions after removal. The reason why a removed
app can still keep some residual permission differs in two BCPs. Slack’s
permission system violates the principle of complete mediation by failing
to check that the proper provenance of the scheduled message, which
is the removed app, should have no permissions at the time when the
message is sent. Whereas in Microsoft Teams, it is the result of two separate
permission systems: only the app’s core capabilities are associated with
Teams, while the Graph API’s permissions are tied to the user’s Microsoft
Account (outside the permission system of Teams). Therefore, when the
app is uninstalled in Teams, only the former is revoked while the latter is
not affected. We note this issue is not Teams-specific, but also exists in other

systems when permissions are managed by different trust domains [203].

Potential Prevalence. We report the number of apps capable of executing
the delegation attack and that are vulnerable to the attack. For Microsoft
Teams, we find vulnerable apps by counting apps that use bot commands
capability, as these apps will accept text input from the user (or a delegated

32

app) to perform various actions. We observe that 427 (33%) of Teams apps
use bot commands, implying that they are vulnerable to a delegation attack.
However, Teams apps do not list whether they will request any delegated
permission since it is acquired through a separate system. For Slack, we
find 563 Slack apps (23%) request at least one ‘write” user scope, allowing
them to interact with other apps adversarially, while 1,493 Slack apps
(61%) request at least one ‘read’ scope, implying that they are subscribing
to events in the workspace and thus can be potentially affected by the
attack. We note that the measurements for Slack’s vulnerable apps are
the worst-case estimation. Since these apps are third-party web services
with hidden endpoints, it is impossible to learn the app’s behavior directly.
Furthermore, most apps only perform actions after a third-party account is
connected, preventing us from fully automating the evaluation of apps on
a large scale. Thus we may miscount apps that (1) have already employed
a countermeasure by blindly rejecting delegated messages, (2) subscribe
the certain events but never trigger their security-critical actions based on

these events.

2.5 User-to-App Interaction Hijacking

BCPs provide various features that serve as entry points for users to in-
teract with apps. Examples of these features includes ‘@’-mention, slash
command, and link unfurling (see Section 2.2). In this section, we discuss
how a malicious app exploits such interactions between the user and other
apps in the workspace. Specifically, we find two different ways that this
can happen: the malicious app can hijack other app’s registered slash
commands, and replace another app’s unfurled link content. In particular,
we note that both Microsoft Teams and Slack allow apps to customize
their appearance (e.g., name, icon, and description) without restriction.

A malicious app can thus completely mimic the appearance of another

33

app*to exploit the above interactions more stealthily. Finally, we analyze

the root cause and potential prevalence of these attacks.

Slash Command Hijacking

In Slack’s user-to-app interactions, all apps’ slash commands share a single
namespace, creating the potential for name collisions. A malicious app
can hijack another app’s commands, responding to any user that tries
to launch the hijacked command in the victim app’s stead. Two specific
design flaws enable this attack. First, Slack only invokes the most recently
installed app when multiple apps in a workspace have registered the same
command. Second, both creating and renaming commands are silent
and do not trigger a notification or permission prompt in Slack. As a
result, one can hijack a targeted command in two ways: (1) create a new
command with the same name as the targeted one; (2) rename an existing
command to the targeted one. In other words, the commands scope becomes
over-privileged as it implicitly allows an app to take over any command
within a workspace (by exploiting the name collision). However, Slack
does not recognize this design issue as a security-critical problem®; we
find no runtime policy checks of an app’s permission to create or rename
commands with a specific name.

We demonstrate the command hijacking attack on Zoom’s Slack app [16].
From Zoom’s app, users can invoke the command /zoom to start private
Zoom meetings and display a Zoom call in Slack, as shown in Figure 2.5a.
If the command is invoked in a private channel, only users in this pri-

vate channel will receive this private call. We create a malicious app that

*This may not be the case for apps published in the BCP official catalog, as per their
security guidelines. Although a Slack app can still requests chat:write.customize to
send messages with customized appearance.

>Slack acknowledged this problem in its document, but only suggests developers to
“avoid terms that are ... likely to be duplicated,” and not to make the command “too
complicated for users to easily remember.”

34

u Zoom APP 10:21 PM
Call »

n Zoom meeting started by Victim User
Started 11 minutes ago

Meeting ID: 940-9656-4704

Wiaiting for people to join m

Meeting passcode: L1ZGMUZ1b2dpcmxnUUVUWDM

(a) The official Zoom app.

u Zoom (Fake) APP 10:24 PM
Call »

n Zoom meeting started by Victim User
Started 7 minutes ago

Meeting ID: 974-2615-1898

Waiting for people to join m

Meeting passcode: ZIJveWIYbGEzbFY1SWFIQU
(b) The spoofed Zoom meeting.

Figure 2.5: Zoom meetings created by official and spoofed /zoom com-
mands in Slack. The spoofed Zoom meeting is secretly created by the
attacker but publicly shown as started by the victim. The word “Fake” is
added clear demonstration, it can be removed in practical attacks.

masquerades as the official Zoom app. At the time of installation, our ma-
licious app requests the commands scope to implement a benign command
called /foo. Once installed, we rename this command as /zoom to hijack the
previous official /zoom command. After that, the malicious app will use
the attacker’s Zoom account to start meetings every time a user invokes
the /zoom command, as shown in Figure 2.5b. Attackers can also treat

35

® Only visible to you
Google Calendar APP 12:02 AM
Your schedule for today is empty

31

® Only visible to you
Google Calendar (Fake) AP 1203 AM
Please click this link to connect your Google account.

Figure 2.6: Demonstration of phishing attacks using the Command Hijack-
ing attack in Slack. The two messages are sent to the user after invoking
the official and hijacked /gcal command, respectively. The attacker can
start a valid OAuth authorization process to acquire access to the user’s
account.

this vulnerability as a novel entry point for phishing attacks, as shown in
Figure 2.6.
Since Microsoft Teams does not allow apps to register their own com-

mands, it does not suffer from this vulnerability.

Link Unfurling Hijacking

Microsoft Teams allows an app to provide customized link unfurling for an
authorized user. The app can register a domain in its manifest. Whenever
the user posts a URL under this domain, the app can append a rich message
card containing texts, images, or even interactive buttons. For example,
Lucidchart’s Teams app [12] unfurls a document sharing URL to preview
the document as well as a button to accept the sharing invitation. Such
unfurled content can be hijacked similarly to Slack’s slash command: a
malicious app can register the same domain as the victim app and, if the
malicious app is installed after the victim app, its unfurled content will be
displayed instead of the victim app’s one. Moreover, the malicious app
can masquerade as the victim app to further deceive the user, as its name
and icon will also be part of the unfurled content.

While Slack also allows multiple apps to register the same domain, it

36

chooses to display all app’s unfurled contents in parallel, avoiding the

issue of link unfurling hijacking.

Analysis of Root Cause and Potential Prevalence

The command and unfurling hijacking attacks work by violating least
privilege and complete mediation, which results from an overprivileged scope
and the improper tracking of resource ownership. First, the corresponding
scope that allows an app to use slash commands or unfurl a domain should
not spontaneously grant the ability to modify the app’s currently registered
command names or domains; an app that performs such operation should
need to be re-installed. Second, whenever an app registers a command or
a domain, it should gain ownership of this command or domain, however,
given the namespace collision, both BCPs fail to enforce such ownership,
which thus can be easily taken over by another newly-installed app.

Potential Prevalence. In Slack, this slash command attack only exploits
the commands scope, which is requested by 1,266 apps (51.5%). These
apps can immediately overwrite each other’s commands to hijack their
standard workflows. Recall, once installed, these apps can change their
slash commands at any time, without requiring re-installation or notifying
the users (or admins) of the workspace. We also find that many apps in the
Slack App Directory already have conflicting commands: 270 apps register
commands used by other apps. This implies the wide reuse of conflicting
commands, and thus Slack is likely to preserve this design choice. In
Microsoft Teams, the link unfurl attack relies on the messageHandlers
capability, which is requested by 77 apps (5.9%). We find that 13 of them
register a domain that is also registered by other apps.

37

2.6 App-to-User Confidentiality Violations

We analyze the different ways in which BCP apps interact with user mes-
sages. Our main discovery is that an attacker can leak messages from
private channels without having permission to read from those channels.
Concretely, we can exploit two features in Slack: (1) Link unfurling of
message URLs (Section 2.6); (2) Pinning, starring, or emoji-reacting to
messages (Section 2.6). We additionally find that the root cause behind
this privilege escalation is incomplete mediation coupled with a lack of
ownership tracking of resources (Section 2.6). We note that in Microsoft
Teams these features are either absent or inaccessible to apps, so it does

not suffer from this vulnerability.

Message Extraction Attack via Link Unfurls

BCPs have a built-in link unfurling feature that previews the website
content for any URLs contained in a chat message. We first describe how
link unfurling works with message URLs and then show an attack where
a malicious app without Slack’s groups:history, the permission scope
that controls the read access to messages in private channel, abuses this
feature to effectively monitor all chats in any private channel joined by an

authorized user.

Unfurling of Message URLs

Slack provides a public URL to every message in a workspace. This URL,
if accessed, will only show the message if the login credential of a user
who has access to the message is provided. We find that when the user
sends a message m; in their own personal channel (i.e., where users can
message themselves) and m; contains a URL that links to m,, where m,
can be any message in any of the channels that the user is a member of,

Slack will automatically unfurl m,, adding its text content (up to 8001

38

Direct Messages

9
Messages Members

https://... l l my l

|
| |
! I
| m; !
| Text Unfurled Content !
| |
1 |
| |
| |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
im:history

User Token of User 1

User 1

Figure 2.7: Privilege escalation exploiting link unfurling.

characters) and author as an additional attribute to the original message
m.

While this is a reasonable and useful functionality because the user’s
personal channel is intended for drafting messages and keeping links and
files handy (as described by Slack), it leads to unwarranted access, as
illustrated in Fig. 2.7. Slack allows an app with im:history user token
scope to read the user’s personal channel. This grants the app the ability
to read m, with all its attachments. In this case, the attachments include
the unfurled content, which is m,, a message from a private channel.
Therefore, the app is implicitly permitted to read m,, which is protected
under the groups:history scope, and the app with only im:history does

not have access to originally.

Attack Workflow

Now, we present a powerful attack based on the issue identified above.
Through this attack, a malicious app can achieve privilege escalation —
it gains the ability to monitor all chat messages in any private channel
where the victim user is a member of, effectively gaining the permissions
provided by the groups:history user token scope but without explicitly
requesting it.

The key insight enabling this attack is that if the attacker can learn

39

the message URL of a private channel message, it can then instruct the
malicious app to post a generated URL to the victim user’s personal chan-
nel (using the chat:write scope as we described in Section 2.4), actively
leaking messages from that private channel. We additionally find that
Slack’s message URL always follows the format:
“https://[workspace] .slack.com/archives/
[channel-ID] /p[message-ID]"”

Therefore, the attacker’s job becomes learning valid combinations of chan-
nel ID and message ID.

We have discovered several ways to obtain such combinations without
resorting to groups:history and detailed them in Section A.1. Here we
describe one method that utilizes groups:read. This user token scope
provides the read access to the metadata of the user’s private channels,
including the channel ID and the ID of the latest message in the channel.
By constantly querying a channel’s metadata, the attacker can pull every
message from any private channel the victim user has joined. We note that
even if multiple messages occur between two queries, the attacker can still
guess their IDs since Slack’s message ID is a counter that increments for

consecutive messages (see Section A.1 for details).

Extracting other types of messages and files. This attack also works for
other types of messages. An app’s bot user can use this to view any public
channel messages without the corresponding bot token scope or invitation
to join that channel. Additionally, it can even be applied to read files
shared with the user. Unlike message URL, there is no easy way to obtain
a valid file URL through alternative approaches; yet, whenever a file is
uploaded in a chat message, the file’s public URL will also be included
in that message. The attacker can then instruct Slack to unfurl the public
URL to obtain a direct-downloadable link. Therefore, the attacker can
access files by reading all the messages in the user’s joined channels.

40

Message Extraction Attack via Pins, Stars, or Reactions

We demonstrate another message extraction attack exploiting the incom-
pleteness of resource ownership tracking in Slack. This time we leverage
the productivity feature of pinning and starring messages (that add them
to a user’s saved message list) and the convenience feature of adding
emoji reactions to messages. The attack builds upon the same message ID
guessing technique from the prior attack.

To pin, star, or react to a message, the app needs to present the mes-
sage ID and the ID of the message’s channel to the corresponding Slack
API, with the pins:, stars:, or reactions:write user token scope respec-
tively. However, the read counterpart of these scopes (pins:, stars:, or
reactions:read) does more than permit the app to view the IDs of the
pinned, starred, and reacted messages; they also allow the app to view
the contents of these messages. Therefore, after a valid channel ID and
message ID is obtained, the app with both read and write scopes can
either pin, star, or react to the message, effectively allowing itself to read
the given message. As we have seen in the prior attack, an app without
permission to read a user’s private channel message is still able to acquire
the channel ID and message IDs of that channel’s messages. Hence, a
malicious app can repeatedly pin, star, or react to these messages and read
through all messages in the channel. We note that the app can also undo
these operations using the corresponding write scope again to prevent the
user from spotting any suspicious activity. With this attack, the malicious
app can read all the messages that the user has access to, using only these

seemingly harmless operations.

Analysis of Root Cause and Potential Prevalence

In both message extraction attacks, the malicious app obtains the ability to

read any messages that the user has access to, with only some irrelevant

41

permission scopes. We consider this behavior as a violation of the user’s
privacy expectations. When a user grants the im:history scope to an app,
there is no description in the authorization prompt that suggests the app
can read private channels®. In addition, it puts the privacy of other users in
these channels at risk — the messages they posted may suddenly become
accessible to an app that they never authorized. Even worse, they have no
way of knowing the leakage, since all it takes is for one user to install the
app, an action that is hardly perceptible to them (Section 2.2), while the
app itself is never a member of the channel.

An adversarial admin can use these attacks to monitor chats in pri-
vate channels they are not invited to by forcing everyone to install their
malicious app that disguises itself as an innocent management app.

Such privacy violation in the first attack is a failure of not enforcing
complete mediation, which results from the improper tracking of resource
provenance in Slack. Take Fig. 2.7 for example: when Slack finds a link
to m, in my, it blindly appends the content of m, as m;’s attachments,
without tracking where m, originates from. As such, any entity that can
read m; can also read m,, whereas these two messages have different
provenances and should be checked against two separate permissions.
The second attack can also be mitigated if Slack tracks and checks who
performed the operation. While Slack needs to allow apps to read the
content of pinned, starred, or emoji-reacted messages for functionality
purposes, this rule should not apply if the app trying to read the message
is the one who performed the operation (since it does not make sense for

an app to pin a message it does not already know).

Potential Prevalence. Out of all 1,640 apps (66.7%) that do not request
explicit scopes to read private channels (i.e., groups:history), we only

counted 11 apps with the necessary permissions to extract messages via

6 Accessing private channel messages with only im:history will cause Slack API to
return an missing_scope error and a message saying that groups:history is needed.

42

pins, stars, reactions, or link unfurls.

2.7 Potential Countermeasures

We discuss countermeasures for the attacks we previously discussed. We
note that these countermeasures are point fixes for the BCP permission
model as it currently exists. The attack classes we’ve identified exist be-
cause the BCP permission model violates classic security principles. As
such, even with these countermeasures, we cannot guarantee that all fu-
ture issues will be prevented. We characterize each countermeasure from
three perspectives: which design issues it attempts to solve, how much it
helps mitigate the attacks, and what the cost or trade-off is.

Finer-grained Scopes

The BCPs we examined define several coarse-grained scopes that manage
multiple resources of different types. For example, Slack’s chat:write
user scope allows an app to send messages to any target with the identity
of the authorizing user. The Microsoft Teams Graph API Chat .ReadWrite
scope grants a Microsoft Teams app similar permissions. Therefore, even
if the app’s functionality only requires sending messages to human users,
it needs to acquire one of these broad scopes, which inevitably comes with
the permission to send messages to apps and thus the ability to perform
impersonation attacks on other apps. These scopes are coarse-grained
as they allow an app to send messages to separate targets (app and non-
app). BCPs can break down these scopes into two separate scopes: one
that allows sending messages to non-app targets, and another that allows
messages to app targets. However, this countermeasure cannot handle the
attacks exploiting scopes that do not have finer-grained concepts (such as

command hijacking).

43

Stricter Runtime Policy Checks

Stricter runtime checks can help address the message extraction attacks
found in Slack. Specifically, Slack first needs to fix its coarse-grained mod-
eling of the message resources by decoupling the unfurled content from
the message and treating it as a separate type of resource. Slack also needs
to track the origin of the unfurled content, for example, whether it is a
message from another channel or a file shared with the user. Then, when-
ever an app requests to read a message, Slack should enforce an additional
dynamic condition check to examine whether the provided token has the
correct privilege to access the origin of the unfurled content. If not, only
the message should be returned to the app, but not the appended unfurled
content.

For the attack via pins, stars, or reactions, we present two options. The
first is that when an app wants to read the pinned or starred messages,
Slack should send the message content only if the app has the privilege
to read the original message; otherwise, only the message ID is returned.
However, this may inversely encourage malicious apps to request more
privileges to maintain their original functionality. The second is for the
BCP to consider the entity that issued the pin, star, or react operation. For
example, an app can only read the content of a pinned/starred /reacted
message if the pinning/starring/reacting is done by a human user or a
different app; if it is done by the requesting app itself, then the BCP only
returns the message ID. The tracking should occur even when a user has
delegated control of their account to an app. When an app performs
actions on behalf of a user, those actions should still be tracked as having
been taken by an app. This should not hurt any benign app’s functionality
because if a message is pinned, starred, or reacted on by a benign app, it
is reasonable to assume that the app should already know the message’s
content.

However, this countermeasure does not apply to situations where it is

44

difficult for an app or Slack to determine whether an action is malicious
or user-intended. In Section 2.4, we demonstrated various legitimate

scenarios in which users indeed want apps to perform actions on their
behalf.

Indicate Identity of Action Issuer

To counter delegation attacks, the victim app should be able to determine
if a received event comes from a human or an impersonated user and thus
choose whether to respond or not. Thus, BCPs should indicate the identity
of the action issuer (i.e., whether a real or delegated user performed the
action) and therefore allow for identity checks on the victim app’s side.
Slack has provided this information for a few actions, such as posting
messages but ignored it for other actions such as reacting to a message,
which might also lead to exploits. However, as mentioned earlier, in some
cases, even if the app knows the action is coming from another app, it is
hard to tell whether the intent of the action is malicious or not.

Explicit User Confirmation

The final countermeasure is to request confirmation from users. From
the perspective of victim users, all attacks stem from the fact that either
victim apps or the BCPs automatically reacted to malicious events (in an
unwanted way). Therefore, before accessing sensitive data, both the apps
and the BCP should prompt the user for confirmation. For example, they
can create a consent popup Ul that involves clicking a button. Based on
the current design of Microsoft Teams and Slack, only human users can
perform such actions, making it hard to forge Ul actions. This will prevent
both delegation and message extraction attacks.

To resolve namespace collision attacks, BCPs should actively check

for namespace collisions when apps are being installed. For example,

45

Slack should detect when an app attempts to register a command with
the same name as a command already registered in the workspace, and
Microsoft Teams should detect when an app has the same name as another
app already installed in the workspace. We outline three solutions that
BCPs may adopt. First, they can refuse to install the new app whose
command would conflict with an existing one. However, this robs BCPs of
functionality and unfairly penalizes apps installed later. Second, they can
permit installation but require the user to make a selection whenever a
namespace collision arises during use, but this requires the user to pay
attention at all times. Third, after detecting a collision, they can provide
an alias mechanism where users can change the conflicting names. In
conclusion, runtime user confirmation can mitigate namespace collision
attacks, but at the expense of productivity and user convenience.

2.8 Related Work

To the best of our knowledge, this is the first work to analyze the security
and privacy of third-party apps in business communication platforms.
However, considerable work has been done in other types of app platforms

that share varying degrees of similarities with BCPs.

Social networks. Facebook and other social network platforms allow
third-party applications that offer users additional functionality and ser-
vices but generally at the cost of user privacy [74,167]. These apps are
similar to BCP apps in terms of pure server-side implementations and
all-or-nothing permission, but they are installed in a single-user home
space, whereas BCP apps are in a multi-user workspace. Symeonidis et
al. show Facebook apps lead to collateral information collection [181],
where they can collect not only data of the users who install them but
also of their friends. This is akin to our findings of BCP apps; however,

BCP apps can also actively affect other users’ actions, such as through

46

interaction hijacking. On the other hand, several studies propose different
access control schemes for apps in social networks [53,83,174,175,182,188].
While these solutions aim to solve the problem of coarse-grained permis-
sions, they usually require the social network provider to host some part
of the application codes, which does not suit the current communication
framework of BCP apps.

Voice assistants. Amazon Alexa, a voice assistant often built into smart
home devices, allows users to install third-party apps called skills. Similar
to BCP apps, Alexa skills often appear in the form of chatbots; however
the primary way of interacting with Alexa skills is through voice com-
mands. Studies have shown that Alexa skills can be easily squatted to
enable phishing attacks [134,207], similar to how Slack’s commands can
be hijacked. However, skill squatting relies on the inherent ambiguity of
voices, whereas we exploit the namespace collisions of commands. In an
orthogonal direction, many works try to measure the privacy practices of
current Alexa skills and find that many skills do not honor their privacy
policy and request overprivileged access [44,113,141,178].

Android. Many studies have analyzed the security and privacy of An-
droid apps. The closest related attacks to this work are the confused
deputy and collusion attacks [68,96,145,147,171]. Just as in BCPs, the
app-to-app communications in Android can be used with malicious intent;
however, they usually aim to achieve privilege escalation to access more
user data instead of attacking users” accounts in other services. In addition,
the problem of coarse-grained permission scopes is also found in Android,
granting apps powerful capabilities that can be used to exploit various
vulnerabilities [125]. Meanwhile, defenses proposed for Android apps
usually require static or dynamic analysis [99,104,112,192,196], making
them incompatible with BCP apps, which have no client-side codes.

Other OAuth-based systems. Studies have shown that overprivileged

47

attacks are a common issue in OAuth-based systems [71,73,101,115,126].
In addition, despite its wide adoption, OAuth is usually poorly designed
and implemented by developers [76,179,189]. BCPs use coarse-grained
scopes for certain operations and couple them with separate runtime

policy checks that we have shown to be incomplete.

2.9 Limitations

For ethical reasons, we did not publish our attack apps to the Slack app
directory or Microsoft Teams app store, and thus cannot comment on their
vetting processes. However, we did analyze their security guidelines [35,
40] for publishing apps and found no obvious restrictions that would
fundamentally prevent the attacks described in this work. These attacks
rely on abusing permissions acquired for benign purposes, causing the
information-limited vetting to be ineffective. BCPs do, however, prohibit
two apps from sharing the same name, making it harder for a published
app to mimic the appearance of another app; but as we noted in Section 2.5,
a Slack app can circumvent this restriction by requesting the chat:write
.customize permission scope, which allows the app the send messages
using customized name and icon, avoiding the need to modify the app’s

own name and icon declared in the manifest.

2,10 Summary

We performed an experimental security analysis of the app model of two
popular BCPs: Slack and Microsoft Teams. Our methodology was to
study each BCP-facilitated interaction method between apps and users.
We found that these BCPs violate two standard security principles: least
access and complete mediation. We created proof-of-concept attacks that
exploit these violations to (1) impersonate users and trick victim apps into

48

performing unwanted actions; (2) hijack commands; (3) steal messages
from private channels without appropriate permissions. Our discussion
of countermeasures indicates that while point fixes for these attacks can
be deployed at the cost of BCP usability, preventing further issues requires
redesigning the BCP app access control model.

49

3 ETAP: PROTECTING DATA PRIVACY AND INTEGRITY IN

TRIGGER-ACTION PLATFORMS

From this chapter, we begin to study the second category of threats in
online integration platforms, which is their extensive access to user data
from connected third-party services. Here we first focus on trigger-action
platforms, which is a popular type of integration platforms with plethora
of third-party connections, due to the generalizability of these platforms’
trigger-action style computational paradigm. We introduce eTAP, a privacy-
enhancing protocol that provides no plaintext access to the platforms.

3.1 Introduction

Trigger-action platforms (TAPs), such as IFTTT [26], Zapier [32], and
Microsoft Power Automate [20] are web-based systems that enable users to
stitch together their cyber-physical and digital resources (e.g., IoI devices,
GMail, Instagram, Slack) to achieve useful automation. TAPs provide
a simple trigger-compute-action paradigm and an easy-to-use interface to
program automation rules.

For example, using their smartphone, a user can setup a rule that
checks if an email contains the word “confidential” and, if so, sends an
SMS with the subject line and the sender’s address to a pre-specified
number (Fig. 3.1). Instead of an SMS, the rule could also blink a smart
light whenever a matching email arrives. To execute this rule on a TAP,
when an email arrives (trigger), the mail service (trigger service) sends the
email to the TAP that runs the string search (computation), which then
contacts an SMS gateway or a smart bulb service (action service) with
required information to perform the action. We refer to the combination
of trigger/action services and the TAP as a trigger-action system — a key
ingredient for fulfilling the promise of the IoT [146]. They provide a layer

50

Client

(smartphone or browser)

does the email
Program rule | subject contain the !
word “confidential”?}

Trigger-Action
Platform (TAP) ! blink desktop
! light blub

.......

Rule Execution: |
compute on trigger data, invoke action !

Figure 3.1: Overview of current trigger-action systems. The dataflow
for the example rule is illustrated in blue color: “IF I receive an email
containing the word ‘confidential’, THEN blink my desktop smart light.”

of abstraction that enables trigger and action services to develop APIs
independently without worrying about compatibility with each other.
These benefits unfortunately come at the high price of private data dis-
closure to the TAPs. Even the simple rule discussed above reveals the user’s
private emails to the TAP. As the TAP is the center of communication be-
tween triggers and actions, it can launch person-in-the-middle attacks by in-
visibly collecting private information on all of its users, similar to what has
already been happening on centralized ride-hailing platforms [114, 140].
Due to the highly compatible nature of TAPs, this data includes location,
voice commands, fitness data, pictures, files, etc. [120] and is limited only
by the variety of online services of users (e.g., IFTTT supports 600 ser-
vices [118]). Commercial TAPs do not provide any technical protections
for user data. For example, IFTTT’s terms of use explicitly state that they
collect personal data from third parties, and may pass it to other third
parties, partners, or any company that might acquire IFTTT [120].
Furthermore, because TAPs are widely-used centralized web services
(e.g., IFTTT has more than 20 million users [122]), they are attractive
targets for attackers. Breaches of cloud services are commonplace [18,
160, 165,193]. Attackers sometimes even have continued access to the
compromised service for days, and even weeks before getting detected [86,
87,159]. A similar breach will have disastrous consequences for TAP

users. Such privacy risks might discourage users as well as trigger/action

51

services from using TAPs. Indeed GMail, due to security and privacy
concerns, pulled back some of its APIs from IFTTT [163].

In this chapter, we introduce eTAP, an encrypted trigger-action plat-
form that executes user rules without accessing the underlying user data
in plaintext. Thus, eTAP provides confidentiality even when the attacker
fully controls the TAP. Although this problem fits in the general framework
of secure function evaluation (SFE) [199,200], building a functional and se-
cure trigger-action platform with good performance requires overcoming
several challenges.

First, we desire confidentiality of user’s data and authenticity of com-
putation when the TAP is compromised and acts maliciously. While there
are protocols for SFE that provide security even if some parties act ma-
liciously [105, 142], these constructions are not yet practical [142,166].
Second, using off-the-shelf protocols for SFE will require invasive changes
to the architecture of trigger-action systems that break the independence
between trigger and action services, making them less useful. Third, run-
ning arbitrary computations on the TAP using SFE will be inefficient.

We leverage the unique structure and threat model of trigger-action
systems to overcome these challenges. At a high-level, we create a trusted
generator of garbled circuits (GCs). This allows eTAP to use semi-honest
implementations of SFE coupled with a few efficient extensions, which
we contribute with security proofs, to achieve security against a fully
malicious circuit evaluator.

In our setting, the user’s smartphone, a standard component in TAP
design, plays the role of a trusted circuit generator that periodically gen-
erates and transmits garbled circuits to the untrusted TAP. The trigger
service garbles sensitive data when it is available and calls the TAP, which
then executes the circuit and contacts the action service with the (garbled)
results. The action service performs security checks and then executes
the action. We assume that the user’s phone is fully trusted, while TAP

52

is malicious. An attacker interested in compromising a large number of
users is more likely to try compromising the TAP than the user’s phone. To
maintain the same level of trust as current TAPs provide, we treat the trig-
ger and action services as semi-honest — they follow the protocol but can
be inquisitive — and they should not learn any new private information
that they do not learn in the current setting.

To overcome the challenge concerning the efficiency of arbitrary com-
putations, we perform an analysis of the types of computations in popular
commercial trigger-action platforms. We show that the computations
supported by TAPs are stateless and use Boolean, arithmetic, or string
operations. Most GC libraries support Boolean and arithmetic operations
natively, but none support string operations out of the box. Existing work
contributes oblivious deterministic finite automata that can match regu-
lar expressions [151]. However, it does not support substring extraction
and replacements — a common operation in trigger-action systems. We
therefore introduce a novel approach to efficiently encode a subset of fixed-
length string operations as Boolean circuits. We then use the standard
GC approach to evaluate them securely on the TAP. Our approach also
has the advantage of unifying all the formal security properties of eTAP
rather than having a separate set of proofs for string operations. eTAP can
compute 93.4% of all rules published on Zapier that require computation
and 100% of the 500 most-used rules on IFTTT. (Of course, eTAP supports
all rules that do not require any computation.)

We formally prove the security of eTAP in the presence of a malicious
TAP (Section 3.6). We show that the malicious TAP can execute user
rules without learning the private data or tampering with the result of
computation. eTAP also provides mutual secrecy between the trigger and
action services.

eTAP is a clean-slate approach to building trigger-action systems and

lays a foundation for securing the data they handle. However, it does

53

require some changes to current systems. First, the trigger/action services
need to understand our protocols. We provide simple shims that they can
use to upgrade their functionality while maintaining their independence
and RESTful nature. Second, the user’s client device takes on a more
prominent role because it generates garbled circuits. As efficient circuits
cannot be reused in general, the client has to periodically generate and
transmit these circuits to the TAP. We estimate that this process has a
modest impact: the trusted client is expected to transfer 61.7 MB of data
per day for an average user. This is equivalent to the data consumed by
uploading a one-minute of Full-HD video.

3.2 Background

We discuss background information on trigger-action systems and the
cryptographic primitives that we use.

Trigger-Action Systems

Trigger-action systems allow stitching together disparate online services us-
ing a trigger-compute-action paradigm to automate different tasks. There
are three main components of the system: trigger services (TSs), action
services (ASs), and a trigger-action platform (TAP). We also explicitly
mention another computing component: the user’s client device that they
use to interface with the trigger-action system. Fig. 3.1 shows the interac-
tions between different components.

Trigger and action services are online services for IoI' or web apps.
There are a plethora of such services such as Instagram, Slack, GMail,
Amazon Alexa, Samsung SmartThings, and many others. These services
rely on REST APIs to send and receive data, and each service may support
several APIs to provide different functionalities. They typically support
the OAuth protocol [158], which is used to delegate authorization. With

54

OAuth tokens, a third party, such as a TAP, can access APIs and execute
trigger-compute-action rules.

Commercial TAPs are compatible with hundreds of trigger and action
services, allowing each trigger or action service to focus on building their
own REST APIs without worrying about compatibility with each other.
Third-parties own a large majority of these services that integrate with
IFTTT (e.g., LG, Samsung, Google).!

Additionally, modern TAPs also allow performing non-trivial compu-
tation over the trigger data. The ability to modify the trigger data provides
great flexibility for TAPs to achieve compatibility between trigger and
action services (e.g., two calendar apps that use different date formats).
The TAP also uses operations to decide whether or not it should send
a message to the action service (e.g., does the email contain the word
“confidential”). TAPs serve as a computation and communication hub.
Zapier has explicitly supported computation on trigger data from the very
beginning [24,25]. IFTTT has recently started to expose its computing
interface to end-users [121]. Thus, trigger-action systems are evolving to
be trigger-compute-action systems. We use these two terms interchangeably
throughout the chapter.

Users interface with trigger-action system through a client device, typi-
cally a smartphone. The user programs rules by selecting a trigger service,
then specifying a computation on that data using a library of functions,
and finally selecting an action to be run on the action service. As noted
before, the user also authorizes the TAP to access their online services

using the client device.

Privacy and authenticity risks in current TAPs. Commercial TAPs oper-
ate on sensitive trigger data of millions of users, making them an attractive
target for attackers. If the TAP is compromised, the attacker gains the

1As of Aug 2020, 417 out of 522 services on IFTTT are third-party that require a user
to login and authorize access to IFTTT.

55

privilege of the TAP — unfettered access to user data and resources. The
types of data are limited only by the set of rules that users create and
the end-point services that the TAP supports. Commercial systems like
IFTTT support approximately 600 services currently [118]. The sensitive
information from these services can be emails (our earlier example), data
files, health information, voice commands, images, etc.

Fernandes et al. [102] first noted this problem with TAPs, and dis-
cussed a more appropriate threat model where TAP can act maliciously.
Under this model, they addressed a sub-problem: preventing a compro-
mised TAP from misusing overprivileged OAuth tokens. Their work adds
integrity to the rules, but it does not allow any computation over the trigger
data.

By contrast, we target modern TAPs that allow computation over the
trigger data. Beyond integrity, we also aim to protect the privacy of that data.
Our work provides a way for TAPs to compute on sensitive data without
seeing the plaintext, despite arbitrarily deviating from the protocol. We
believe such privacy risks might be preventing trigger-action systems from
achieving their true potential. Furthermore, we provide computational
integrity as well, thus subsuming prior work [102].

Cryptographic Primitives

Symmetric-key encryption scheme. Let & = (K, E, D) be a semantically
secure encryption scheme. The key generation function K(1*) generates a
k-bit uniformly random key k; the randomized encryption scheme E takes
a message x € X and the generated key k as input and outputs a cipher
text ct <—s E(k, x); and the deterministic decryption function takes a cipher
text and the key k as input and outputs a message, x < D(k, ct), or L (if
decryption fails).

We use an authenticated encryption scheme [63] that achieves the IND-

56

CCA security guarantee. This ensures both the privacy and authenticity

of plaintext.

Garbled circuits (GCs). Thisis a cryptographic technique for secure func-
tion evaluation (SFE) [63,201]. Following Bellare et al.’s [64] notations,
a garbling scheme § is a tuple of four functions § = (Gb, En, De, Ev). Let
f:{0,1}™ — {0, 1}™ denote the function to be evaluated securely. Here, Gb
is a randomized garbling function that converts the function f (represented
as a Boolean circuit) into a garbled circuit F. It also outputs encoding and
decoding information e and d needed for encoding inputs and decoding
the outputs. As such, (F, e, d) <—s Gb(1, f), where « is the security param-
eter. The encoding function (En) encodes an input x € {0,1}" using the
encoding information e, which is the set of labels corresponding to the
value of each bit in x; X < En(e, x). The evaluation function (Ev) enables
evaluation of the garbled circuit F over the garbled input X to generate the
garbled output Y <— Ev(F, X), which is the set of labels corresponding to
the output wires. Finally, the decoding function (De) decodes the output of
the evaluation y < De(d, Y).

Garbling involves generating two random labels L}" and L}” for each of
its wires, representing the true and false value for the wire w. A number of
optimizations have been proposed to reduce the size of a garbled circuit.
One of them is the free XOR technique [130], which requires all wire labels
to follow the form L}" = L}’ @ e,, where e, is a string randomly chosen
by Gb. This allows XOR gates in the circuit to be computed with only the
input wire labels.

Typically, GCs are used for 2-party secure function computations where
two parties with their respective private inputs x; and x, run the protocol
such that, no party learns more than f(x;,x») for a public function f. The
protocol works as follows. First, one of the parties, called the generator,
uses the garbling function to generate (F, e, d) <—s Gb(1*, f). Next, it en-
codes its input as X; < En(xy,e). The other party, called the evaluator,

57

receives F and X; and also retrieves X, < En(e, x,) — encoding of its pri-
vate input x, — using an oblivious transfer (OT) [164] protocol with the
generator. Following this, the evaluator runs the garbled circuit to obtain
Y < Ev(F, (X1, X3)). Finally, either party can decode Y to obtain the final
outputy < De(d,Y).

A secure garbling scheme provides the following security proper-
ties [64]: (a) Message obliviousness. Given (F, X), an adversary learns
nothing about x or y (beyond what is known from f). (b) Input privacy.
Given (F, X, d), an adversary learns nothing about x beyond what is known
fromy and f. (c) Execution authenticity. Given a garbled input X, it is hard
to find Y’ such that Y’ # Ev(F, X) and De(d, Y’) # L.

We use these cryptographic primitives to design eTAP. In Section 3.3,
we analyze existing TAPs to understand what functions eTAP must sup-
port. We give the detailed protocol in Section 3.5, with its security proven

in Section 3.6.

3.3 Analysis of Current Trigger-Action Systems

We analyze two popular commercial TAPs, IFTTT [26] and Zapier [32]
with the following goals in mind: (1) understand the sensitive data that
TAPs compute on; (2) establish that although TAPs offer a variety of
operations on data, they are not arbitrary and will fit well in a garbled
circuit framework; and (3) derive an abstract TAP computational model

that will help ensure our system supports realistic functionality.

Types of sensitive information. The current trigger-action system design
gives the cloud-based TAP complete access to trigger data. To better char-
acterize the types of sensitive trigger data accessible to TAPs, we analyzed
the IFTTT dataset mentioned in [150], by mapping each of its 320,000
IFTTT rules to one of the three trigger sensitivity levels defined by Bastys

et al. [60] — public, private, and time-sensitive. Private triggers contain

58

triggers

\

\ _4 public

‘ ‘2 private

‘ 224 time-sensitive
0 20 40 60 80 100

percentage %

unique rules

installed rules

Figure 3.2: Breakdown of triggers, rules, and installed rules in IFTTT based
on their sensitivity levels.

information like emails and calendar events, whereas public triggers con-
tain information like news and weather reports. The time-sensitivity level
means that private information exists in the availability of the trigger mes-
sage. For example, considering the rule “IF I leave home, THEN turn off
the WiFi,” the TAP will learn whether the user leaves home depending
on whether it receives a message from the trigger service. Fig. 3.2 shows a
breakdown of sensitive trigger data according to how frequently they are
used.

We observe that although a significant percentage (15%) of triggers
and action APIs supported by IFTTT are time-sensitive, in reality, they
are rarely used — only 0.8% of all available rules in IFTTT (or 0.9% of
all installed rules) use a time-sensitive trigger. We also observe that, al-
though there are fewer private triggers than public ones, private triggers
are most frequently used — 61% of all installed rules contain a private
trigger APIL. These APIs return private information like emails, messages,
location traces, photos, sensitive files, medication lists, health informa-
tion, etc. Thus, we design eTAP to protect the vast majority of private
trigger information that people actually use in real-world rules. We do not
currently provide confidentiality for time-sensitive information, but we
outline possible approaches using standard techniques like cover traffic in
Section 3.9.

Operations on trigger data. IFTTT allows users to express computation
on trigger data using filter code — small snippets of TypeScript with some

59

restrictions (e.g., no I/O operations) [23]. Zapier rules contain two com-
ponents: filters that compute a predicate on the trigger data, and formatters
that modify the trigger data. Multiple filters and formatters can be chained
together.

To understand the common operations in IFTTT, we again used the
dataset of Mi et al. [150]. We selected the 500 most popular rules (based
on user installation count) that are connected to private trigger APIs.
Unfortunately, a challenge is that filter codes for IFTTT rules are not public.
We therefore manually approximated the filter code for these rules by (1)
estimating the functionality of each rule based on their title and description,
(2) examining the corresponding trigger/action APIs, and (3) deducing
the operations that are required to convert trigger fields to action fields.

We also crawled the Zapier website for one day in October 2019 and
collected all the publicly available rules that require computations on
trigger data [24,25]. We collected a total of 378 rules and extracted the
operations used in those rules.

The operations we found in IFTTT and Zapier are shown in Fig. 3.3.
Current garbled circuit libraries support a majority of these operations
natively. The main challenge is string operations, for which we contribute
a novel technique to convert deterministic finite automata into Boolean

circuits (Section 3.5).

Execution model of trigger-action systems. Based on our survey of IFTTT
and Zapier, we derive an abstract model of these trigger-compute-action
rules. During rule setup on the client, the user typically specifies two
functions — a predicate f,, and a transformation f,. These functions take the
trigger data and some additional user-provided constants as input. The
predicate function f; tests the trigger data for a condition to determine
whether TAP should contact AS. The output of f; is either true or false. The
transformation function f, modifies the trigger data before sending the
result to AS. Both f; and f, run inside the cloud-based TAP.

Type Operation Description
x | a xORy
Bool x & a xANDy
! ox NOT x
x <n Is x less than n?
Num X> 08 Is x greater than n?
x.mathop (n) Basic math ops. (+,—, x, +)
x.format () Format x into a string
x == s Does x exactly match the string s
x.contain(s) Does x contain the string s
x.startwith(s) Does x start with the string s
x.endwith(s) Does x end with the string s
x.split(d, i) Split x using delimiter string d
and select the i-th substring
Str x.replace(s, t) Replace all occurrences of s in x
with t
x.to_lowercase() Convert all characters in x to low-
ercase
x.truncate(n) Truncate x to size n
x.extract_phone() Extract the first phone number
found in x
x.extract_email() Extract the first email address
found in x
x.strip_html() Remove all HTML tags in x
x.html2markdown () Convert all HTML tags in x to
Markdown
m. lookup(x) Look up the value for the key x in
a user-provided map m
Any x == null Does x exist?
x.default (y) Set value of x to y if it does not

exist

Figure 3.3: Operations used in top 500 IFTTT rules with private triggers
and all Zapier’s function-dependent rules.

Let x € X be the part of the trigger data on which TAP performs some
computation, and y € Y be the action data TAP sends to AS, where X and
Y are the domains of the trigger and action data, respectively. Both x and
y can be data structures that contain multiple fields. We find that TAPs
do not modify some fields of trigger data such as large media files, but
only forward them to AS. We denote such trigger data as payload v. Let
c1, ¢z € Cbe the two user-provided constants for the functions f; and f5,
where C is the domain of the constants. On receiving (x,v) from TS, TAP

61

executes
“if f1(x, c1) = true, then send (f,(x, cy),Vv) to AS”

For simplicity, we assume the domains of f; and f, to be the same. So,
f1: X x € — {true, false},and f, : X x € — Y.

TAPs operate in two modes: (1) polling mode, where TAP contacts TS at
a predefined frequency; (2) push mode, where TS sends a message to TAP
when an event occurs. While our protocol will work with both models, we
assume the push model in this work as it is more efficient in general.

Example rule. We show how our abstract model can instantiate our previ-
ous example rule: “IF I receive an email containing the word ‘confidential’,
then send me an SMS.” The SMS should contain the address of the sender
and the email’s subject. Assume that TAP provides an operation to search
over strings, called contain. The user sets up a rule by choosing its email
provider as the trigger service, that sends a copy of every new email to TAP.
The action service is an SMS provider that sends SMS to a user-provided
number. The user then specifies the contain function to check for the
string c¢; ="confidential” on the email’s subject line, x. The transformation
function f, creates the required data structure to send the SMS, for exam-
ple, setting the recipient address as the user-provided phone number c,
and the message body as the concatenation of the sender’s address and
the subject.

3.4 Design Considerations for Providing Data

Confidentiality in Trigger-Action Systems

Our goal is to protect the confidentiality of private data involved in trigger-
action rules even if they are run on a malicious cloud-based TAP. In this
section, we discuss our threat model, define our security and functionality

goals, and explore the design space.

62

Threat Model and Functionality Goals

Fernandes et al. [102] first noted the security and privacy issues of a com-
promised TAP and the related attacker motivations. We adopt the same
attacker model — TAP is malicious. Specifically, the attacker: (1) can mon-
itor communications between TAP and the trigger/action services; (2)
can arbitrarily deviate from the communication protocol by manipulat-
ing, delaying, or dropping the messages; (3) can modify TAP’s internal
storage and code that includes manipulating and deleting garbled cir-
cuits; (4) knows API details of trigger and action services; and (5) knows
the functions that are being evaluated on TAP. As we use cryptographic
techniques for our security guarantees, we assume that the attacker is
computationally bounded.

We assume that the end-point services (trigger and action services)
like Samsung SmartThings, Google Calendar, etc. are semi-honest — they
will follow the protocol as specified, but try to glean more information
than what they are entitled to know. This is in line with the trust model
used by current TAPs. Also, if they are compromised, then the attacker can
achieve its goals of accessing and manipulating user data independently of
the trigger-action system. We also assume that TAP is not colluding with
TS or AS. As discussed in Section 3.2, third-parties own a large majority
of trigger and action services and thus collusion with TAP is unlikely (for
example, there is no incentive for LG or Google to collude with IFTTT
to reduce the security of their users). Enforcement of the non-collusion
condition can also be done via legal affidavits [108, 168] or techniques
that involve using a trusted mediator who monitors the communications
between the parties [46,47].

Finally, we assume that the user trusts their client device. We observe
that the attacker is motivated to compromise TAP because it will simulta-

neously be able to attack all users of the platform. An attack on the client

63

device is not scalable to all users easily, and therefore, is less attractive.

Security goals. Under this threat model, we want two security properties
for a trigger-action system:

Privacy: Each party should not learn other parties’ data in a trigger-action
rule. Specifically, TAP should not learn the trigger data (x, v), user-provided
constants (cy, cz), and results of the computation (beyond what they al-
ready know from the definitions of the functions); the trigger service (TS)
should not learn the user-provided constants (c, c2); the action service
(AS) should not learn the trigger data x or user-provided constants (¢, c2)
beyond what is revealed to it after rule execution. Additionally, AS should
not learn the output of transformation function f, or payload v when the
predicate function f; evaluates to false.

Integrity: The attacker should not be able to modify any computations
on private trigger data without being detected by AS. That is to say, TAP
should not be able to trick AS into acting on illegitimate action data, such as
delayed, replayed, or tampered messages that are not the result of proper
evaluation of the rule. AS only accepts valid messages y = f,(x, c,), where
x is sent by TS within the last T seconds (a configurable parameter).

Security non-goals. Denial of service is outside our scope. A compro-
mised TAP can indeed drop all messages it receives from TS and not trans-
mit any message to AS. Metadata and side-channel attacks are also outside
our scope. For example, even if messages are encrypted, the compromised
TAP can observe the timing of messages that arrive from a trigger service
or go to an action service. Coupled with semantic knowledge about the ser-
vices, this might enable the attacker to determine the sensitive data in the
rule even if it is encrypted. As discussed in Section 3.3, this involves time-
sensitive rules which are less used frequently in practice. eTAP protects
the vast majority of sensitive trigger data for which encryption achieves

strong security properties. Section 3.9 outlines standard approaches to

64

protect metadata that we leave as future work.

Functionality goals. We want to achieve the security goals while respect-
ing the following functionality goals: (1) RESTful API for end-point services.
The end services should be able to design their APIs independently of
each other, as they do currently. These APIs should be RESTful, have
minimal computational overhead beyond running the API itself, and do
not need to store data or state specific to different trigger-action rules. (2)
Maintain trigger-compute-action paradigm. The design should run existing
user-created rules without any changes and should maintain the key ar-
chitectural aspects of current trigger-action systems. Notably, the rules

should execute without requiring the client device to be online.

Design Space Exploration

We explore a few potential solutions occupying different points in the de-
sign space and discuss why they do not meet our functionality or security

requirements.

Computation at the edges. The trigger service can run a user-supplied
function over its private data, encrypt the result, and forward that to TAP.
However, the trigger service has to support an execution infrastructure
similar to AWS Lambda, significantly increasing the complexity and over-
head of such services and exposing them to additional security risk due to
executing third-party code. Furthermore, sensitive data in user-supplied
constants (cj, c;) will be exposed in plaintext to the trigger service. For
example, consider rule R7 from Fig. 3.8, which converts Slack mentions to
Asana tasks (a project management tool). It requires users to provide a
lookup table of project names. These are sensitive information that should
not be revealed to Slack. Computation can also be moved to the action

service, but the same issues exist there as well.

Secure hardware. It is possible to use hardware-based trusted execution

65

environments (TEEs) or hardware security modules (HSMs) for comput-
ing the trigger data on TAP, while preserving confidentiality [172,206].
Yet besides requiring hardware changes to the TAP servers, current TEEs

suffer from fundamental security design issues [77,154,186].

Homomorphic encryption of the trigger data. During rule setup, the
client can specify a symmetric key between the trigger and action service.
The trigger service encrypts its data using this key before sending it to TAP.
This will provide trigger data confidentiality and allow the TAP to com-
pute directly on the encrypted data. However, only specialized schemes
like linear homomorphic encryption and “somewhat” homomorphic en-
cryption are practical [155], thus limiting expressivity. For reference,
TFHE [31], a state-of-the-art library for fully homomorphic encryption,
takes 4.45 seconds to compute an addition circuit, which is 3 orders of
magnitude slower than our system as evaluated in Section 3.7. Addition-
ally, protection against a malicious TAP would require zero-knowledge
proofs [110] of computation that would further reduce efficiency.

Off-the-shelf secure multi-party computation. Secure multi-party com-
putation (SMC) protocols allow multiple distrusting parties to compute a
function over their private inputs [199]. However, efficient off-the-shelf
SMC protocols do not fit our threat model — TAP is malicious, or archi-
tectural requirements — needing TC, TS, AS, and TAP to participate in a
multi-round protocol during rule execution. Therefore, we adopt a core

primitive of SMCs — garbled circuits — and modify it to our setting.

Secret sharing based SMC. Secret sharing is an alternative to garbled
circuits for doing SMC. However, secret sharing-based protocols require
intensive multi-round communication (e.g., for evaluating multiplication
gates). Additionally, in such protocols every party has to do an equal
amount of work, which will require invasive architectural changes to TS

and AS. This violates our functionality goal. Finally, the malicious versions

66

of these protocols are not efficient.

3.5 Design of Encrypted Trigger-Action
Platform

In this section, we discuss eTAP’s core protocols and analyze how we
specialize garbled circuits to trigger-action systems. A high-level overview
of eTAP is shown in Fig. 3.4, and the pseudocode is given in Fig. 3.5. Like
a typical trigger-action system in Fig. 3.1, eTAP has four components:
trusted client’s device (TC), trigger service (TS), action service (AS),
and a trigger-action platform (TAP). We describe below how our design
modifies these four components while maintaining the trigger-compute-

action paradigm.

Decentralized trust model. In the current trigger-action system design,
users place all trust within a centralized cloud-based TAP. This design
leaves open a large-scale security and privacy risk — a single compromise
of the TAP will simultaneously compromise all users. To avoid this issue,
eTAP borrows a design element from DTAP [102] and designates the
user’s client device (smartphone) as the root of trust. Each user only trusts
their own smartphone and uses it to program trigger-compute-action
rules. As the eTAP protocols are open-source, we envision a community of
developers building client apps, much like we have apps for open protocols
like SFTP, Telnet, etc. Thus, the eTAP cloud component and the client
app are built and controlled by different entities. Therefore, the client app
can still be trusted, even when the TAP is compromised. eTAP bootstraps
its guarantees on top of this model. In eTAP, the trusted client (TC) is
beyond just an interface — it stores some state (as we describe below) that
is key to its operation.

67

Rule Setup Periodic Rule Execution

O A Trigger Service |
(@R (0)
Circuitid j

Garbled

User constants ¢ trigger data X | gncryoted trigger
payload ct

Trigger-Action
Platform (TAP)

nts
Encrypted decoding blob d
Seqy VP 9 blob @ Circuit id j

“4 Garbled | ENcrypted trigger
payload ct

sty oo b
—— -
Figure 3.4: Overview of eTAP.

Rule Setup (occurs on trusted client)

Like in existing trigger action systems, the user can configure a trigger-
compute-action rule on the trusted client app (TC) using its click-through
interface. The user selects a trigger in a trigger service (TS), a predicate f;,
a data transformation over the trigger data f,, and an action in an action
service (AS). The user also specifies any constants c if required.

TC sends the rule descriptions to TAP and helps the TAP negotiate
OAuth tokens with TS/AS required for running the rule. In eTAP, unlike
existing TAPs, TC shares with TS and AS two uniformly-generated secret
keys k, and k,, upon successful authorizations. The key k, and k, are tied
to the specific trigger and action API for this user in TS and AS?. If a prior
rule has already been set up with the same trigger or action API, then the
corresponding OAuth authorization can be skipped and TC will reuse the
previously generated k, or k,. Once the rule is setup, TS and AS store the
shared key materials; TAP stores the OAuth tokens; and TC stores the rule
(f1, f2), the keys (k,, k,), and the constants (c;, c;) provided by the user
for the rule.

ZPor better usability, current TAPs only acquire one OAuth token per service that can
access all APIs in it [102]. eTAP can adapt to this model by exchanging a service-level
key Kk, K5, and derive the API-level keys k,, k, from the hash value of k, k,; and API
URL, as required.

CktGarbling((f,c), (K, k,j)):

es < H(k.[|j]|0)

er — H(k.[j||1) Vo011

ky < H(k.[j[|2)

e+ (es, er)

(F,L3",..., L") < Gb'(e, f)
" (Isb(Ly™), ..., Isb(Ly"™))

h« HIL .. L)

§+sE(L} @ ks, (j, kv, er,d’, h))

h < HMACy, (||Ly™)

d+ (§h)

C + En(e,c)

Setj=j+1

Returnj,F,C,d

TSExec((x,V), (K,j)):
es + H(k.[}j[|0)
(k
(

e, «+ H(k.|[j||1) V011
kv H(kljl|2)

X+ En((es, er),x)

t « CurrentTime()

ct s E(k,, (t,v))
Setj=j+1

Return j, X, ct

TAPExec((j, X, ct), (F, C, d)):

Y + Ev(F, (X, C))
Returnj,Y,ct,d

ASExec((j, Y, ct, d), ka):

Parse Y as (L™0,...,[Wm)
(5,h) «d
z + D(L™ @ k,,§)
If z= 1 then
R’ « HMAC, (G||IL*°)
If h' # h then Return L
Else Return false
(G’ ky,er,d’, h) + z
If j #j’ then Return L
y < De(d’, (L™1,...,LW¥m))
g+ L
Fori«+ 1tomdo
If y; =0 then g« g|L™:
Else g <« g||(L™t @ e,)
h' + H(g)
(t,v) < D(ky, ct)
t’ < CurrentTime()
Ift' > t+torh#h’then
Return L
Returnvy,v

68

Figure 3.5: Circuit generation and rule execution protocols for eTAP. L}"
denotes the true label for the first output wire wy, L1 = Lj° @ e,; Tis a
threshold parameter used to ensure the freshness of a trigger. CktGarbling
is run by TC asynchronous to the actual rule execution. The remaining
three functions are run by TS, TAP, and AS during rule execution.

Circuit Garbling (periodic, occurs on trusted client)

Once the user creates a new rule, TC has to generate garbled circuit to
enable secure evaluation of the functions on the (untrusted) TAP. TC
generates garbled circuits corresponding to f; and f, and the associated
encoding/decoding blobs. It uses the encoding blob to obtain the garbled
labels for user-supplied constants. The decoding blob allows AS to decode

69

the garbled outputs and to decrypt the payload. To ensure TAP does
not learn or tamper with the decoding blob, TC encrypts it using k,. TC
sends the garbled circuits, encoded constants, and encrypted decoding
blob to TAP. TC identifies each instance of the garbled circuit using a
monotonically increasing counter j. The circuit id j is initialized to zero
if this is the first rule where the user uses the connected trigger API;
otherwise, TC queries TAP for the circuit id that the connected trigger API
is currently using. As garbled circuits cannot be reused, TC periodically
repeats the above process.

Although TC needs to transmit the garbled circuits and related infor-
mation prior to rule execution (Fig. 3.4), we design eTAP such that TC
does not need to be online during execution. TC generates and transmits
GCs in batches at times when the smartphone is not being used (e.g.,
when charging at night). Our evaluation (Section 3.7) demonstrates that
transmitting sufficiently many garbled circuits for a day generally takes
less bandwidth than backing up a 1-minute Full HD video to a cloud drive.
This achieves our design principle of keeping the client device offline
during rule execution.

Note that in our setting, the generator of the garbled circuit is the

smartphone client — a trusted entity. This is a key insight and design
element that is possible due to the nature of our setting. This allows
eTAP to use efficient semi-honest implementations of garbled circuits and
achieve security in the presence of a malicious TAP.
Cryptographic Details. Without loss of generality, we assume f; : {0, 1}™ x
{0,1} — {0,1} and f,:{0,1}™ x {0,1}™ — {0,1}™. For notational sim-
plicity, we denote :{0,1}" x {0,1P™ — {0,1}™"!, such that f(x,c) =
f1(x, c1)||f2(x, c2), ¢ = (c1,¢2) € {0,1P™. Additionally, let H : {0,1}* —
{0, 1}* denote a cryptographic hash function. The pseudocode of the cir-
cuit garbling is given by the CktGarbling function in Fig. 3.5.

Encoding blob. The encoding blob contains the information required

70

to encode the trigger data and encrypt the trigger payload. It can be
derived from the key k, and the garbled circuit id j. TC generates three
bitstrings (es, e, ky) € {0,11°%, using the hash of k,||j. The false labels of
the input wires (as described below) are generated using a H with e;
as the random seed, and e, is used as a global offset for the standard
free-XOR optimization [130]. The least significant bit of e, is set to 1
to enable the standard point-and-permute optimization [61,204]. Thus
e = (es, e;) constitutes the encoding information used for the garbling
scheme’s encoding function (En). The key k, is used to protect the payload
data v.

Garbled circuit. To generate the garbled circuit F for function f, the
labels for every input wire w are computed as L}’ = H(es|jw) and L}" =
L" @ e, (assuming wire index w is a fixed-length bitstring). The rest of
the computation (generating labels of the non-input wires and garbling
gates) proceeds as per standard techniques with optimizations, such as
row-reduction [156] or half-gate [204].

Encrypted decoding blob. The decoding blob consists of information
necessary for AS to decode the labels of output wires (that correspond
to the action data y) and to decrypt the payload. Let the output wires
be (wg, Wi, ..., W), where wy corresponds to the output wire of f;, and
the remaining m wires correspond to those of f,. Following standard
practice [61], the decoding information d contains the least significant bits
(Isb) of the false label of each output wire (Isb(Ly™), ..., Isb(Ly™)). In eTAP,
decoding information is slightly modified. First, the first bit, Isb(L;"), of
d is dropped to create d’. Second, the hash of all the false labels of f,’s
output wires h «— H(Ly"|| ... ||Ly"™) is computed. Third, a decoding blob is
created using d’, h, the payload key k,, the XOR offset e,, and the current
circuit id j. Next, the whole blob is encrypted using a symmetric-key
encryption scheme E with a key derived from both k, (the secret key
shared with AS) and L;" (the true label of f;’s output wire wy) to obtain

71

§<+sE(L @Kk, (j, ky, er,d’, h)). Additionally, an HMAC [132] of the false
label of predicate f; is computed using k, as h <~ HMAC, (j||L;"). We use
d to denote the tuple (5, h). We explain the rationale behind these changes
in Section 3.5.

Encoded user constants. Using the encoding information e, TC computes
the labels for constants c as C < En(e, c).

To accommodate the above customization, we derandomize the gar-
bling function Gb to Gb’ that takes an encoding information e as an input
and returns the garbled circuit F, as well as the false labels of every output
wire. TC sends (j, F, C, d) to TAP and increments the circuit id j by 1.

Rule Execution (occurs on TAP; does not involve TC)

When new trigger data is available for a trigger API, TS will garble the input
data and encrypt any payload data, using the encoding blob it computes
from k, and circuitid j (which is initialized to 0 when the API s first called).
It then transmits the ciphertexts to TAP, which will lookup any rules that
are connected to the trigger API (and user) and run the associated garbled
circuits. TAP finally transmits the output of the evaluation (garbled action
data) and the encrypted decoding blob to the corresponding APl in AS,
which can decode to the plaintext result using k, (Fig. 3.4).

TS and AS only perform simple encoding and decoding of data — fixed
functionality independent of the trigger-action rule semantics, thus main-
taining their RESTful nature. We believe that TS and AS are well-motivated
to support these additional operations, in exchange for enhanced security.
Indeed, current end-point services are concerned about the privacy of user
data. For example, GMail recently removed their IFTTT triggers citing
security and privacy concerns [163].

In our setting, the full evaluation of the garbled circuit is split between
the untrusted TAP that executes the circuit to produce garbled output
labels and the semi-honest AS that decodes the plaintext result from the

72

labels. This, in combination with the trusted generator, allows eTAP to
efficiently achieve the execution authenticity property of GCs using a hash
function (Section 3.5), even when TAP itself is malicious. We omit the
standard OAuth steps that occur during execution, which the reader can
refer to [30] for details.

Cryptographic Details. TS’s operations in the rule execution phase is
function TSExec in Fig. 3.5. TS recomputes the encoding information
e = (es, e;) and the payload key k, from k, and j. It then encodes the
trigger data x using the garbling scheme’s encoding function, producing
X < En(e, x), and encrypts the payload v under a symmetric-key encryp-
tion scheme with the key k, to compute ct <—s E(k,, (t,v)) where t is the
current timestamp. Finally, TS forwards the message (j, X, ct) to TAP and
increments j by 1.

Upon receiving a trigger message (j, X, ct), TAP retrieves the corre-
sponding garbled circuit F, garbled constants C, and the encrypted decod-
ing blob d using the trigger API and the circuit id j. Next, TAP evaluates F
to obtain the garbled action data Y <— Ev(F, (X, C)) and forwards the tuple
(j, Y, ct, d) to AS. Function TAPExec in Fig. 3.5 depicts this process.

After receiving a message from TAP, AS decrypts d to obtain the de-
coding information, which will succeed only when f; evaluates to true (i.e.
Lo = L}"). If AS is able to decrypt the decoding blob, it uses (d’, k,) to
obtain the final output (f,(x, c;),v) in plaintext. AS would terminate if
the message from TAP is malformed (i.e., hash of labels is inconsistent
or decryption fails) or stale (i.e., trigger timestamp is old). The function
ASExec in Fig. 3.5 depicts this process.

Rationale for Novel GC Protocol & Security Analysis

eTAP adopts a customized GC-based protocol tailored to the needs of
trigger-action platforms. This protocol is novel in the following ways: (1)

73

By leveraging the structure and threat model of trigger-action systems,
we can use efficient semi-honest implementations of GCs to obtain secu-
rity against a malicious evaluator; (2) eTAP supports fixed-length string
operations including matching, extraction, and replacement — common
operations in trigger-action programs — using Boolean circuits only; (3)
eTAP contributes an efficient technique to ensure authenticity on the eval-
uator’s output (i.e., TAP) that requires only two hashes instead of the
existing standard approach that requires hashes for true and false labels
for every output wire.

Our setting has four parties: TC generates the garbled circuit via Gb’
and then, both TC and TS use En(e, -) to encode their respective inputs. On
the other hand, TAP evaluates the garbled circuit using Ev(F, -) while AS
decodes the plaintext output using De(d’, -). Thus, TC and TS jointly act as
the “generator”, and TAP and AS jointly emulate the role of the “evaluator”
of a two-party computation setting. The evaluators (TAP and AS) in our
setting do not have any private input, therefore, eTAP does not require
any oblivious transfers. Trust assumptions of the constituent parties of
the generators and evaluators are asymmetric. Among the generators, TC
is fully trusted and TS is semi-honest; among the evaluators, AS is semi-
honest and TAP is fully malicious. Recall, TS and AS do not collude with
TAP. (See Section 3.4 for the motivations behind these trust assumptions.)

Next, we highlight the changes we introduce in two-party GC protocol

and the rationale behind those changes. We formally prove all security
properties of our protocol in Section 3.6.
(1) TC generates the encoding information deterministically from the
shared secret key k, and the circuit id j, so that TS can also generate it
without any communication with TC during rule execution. This achieves
our design goal of ensuring that TC can be offline during rule execution.
We note that this change does not violate the input privacy guarantees of
the GC (see Thm. 3.1, 3.3, 3.4, and 3.5).

74

(2) Recall that the decoding blob (which contains information to decode
garbled action data and to decrypt payload) is encrypted using the bit-wise
XOR of k, and L}™ as the key. Thus, TAP cannot learn the decoding blob (it
does not have k,, Thm. 3.1). Only AS can successfully decrypt 3 if it gets
the true label of the output wire of f;, L}", from TAP; which can happen
only when the predicate f;(x) evaluates to true. This meets our privacy
requirement that AS should not learn f;(x, c2) or v when fi(x, c;) = false.
We formally prove this in Thm. 3.4 and 3.5.

(3) eTAP ensures that the malicious TAP (evaluator) cannot tamper with
the results of evaluation. To achieve this we add the following information
to the decoding blob: h = H(Ly"|| ... ||[Ly™), the XOR offset e,, and H(L;").
Standard techniques to achieve this property require the hashes of both
true and false labels for every output wire [204]. However, in eTAP, AS
does not have access to the circuit F and the garbled inputs (X, C). This
makes it safe to disclose e, to AS (Thm. 3.4, 3.5). Thus, AS can compute
Ly, ..., Ly'™ from the output labels (see ASExec in Fig. 3.5) and check
whether TAP has returned forged labels for the output wires correspond-
ing to f,. The HMAC h is used to ensure the authenticity of the first output
wire corresponding to f;, when it evaluates to false. Because of this struc-
ture, eTAP achieves efficient authenticity verification with two hash values
(Thm. 3.2). This modification, combined with trusted generator, allows
us to use efficient semi-honest implementations of GCs while achieving
security against a malicious evaluator (TAP).

(4) We use a circuit id j to synchronize between different parties (TS, TAP,
AS) so that they evaluate the correct circuit. Malicious TAP can observe
the circuit id (in plaintext) and can tamper with it. eTAP ensures that
the AS will always be able to catch a lying TAP, and will never act on
an incorrect circuit id j. (See the proof in Section 3.6.) Metadata leaked
due to learning j is outside the scope of this work (Security Non-goals in

Section 3.4). We discuss a potential solution in Section 3.9.

75

Supporting TAP-Specific Operations with Garbled Circuits

While in theory any arbitrary function can be converted into Boolean
circuits, and therefore can be computed using GCs, in practice they can be
expensive. Via an analysis of existing real-world rules (Section 3.3), we
found that they involve well-defined and relatively simple Boolean and
arithmetic operations — these are well-studied and efficiently supported
by existing GC libraries.

However, we also found that many rules use string operations, such
as matching regular expressions and extracting or replacing substrings.
The corresponding Boolean circuits of these operations, unless properly
designed, will be inefficient to execute using GC [152]. eTAP computes
these string operations by first translating regular expressions into deter-
ministic finite automatons (DFA) and then applying a novel approach
to convert DFA to Boolean circuits that can be efficiently evaluated using
GC and can be easily extended for substring extraction and replacement.
We next describe how eTAP utilizes this approach to perform regular
expression matching. Please refer to [75] for details of how to convert a
regular expression into a DFA.

Input and output representations. First, to avoid leaking the length
of the string, every string field in the trigger data (and the action data)
is padded to a fixed length bitstring. AS is responsible for removing the
padding as necessary. The string is encoded into a fixed-length bitstring
X = (x1,...,xn) where x; € {0, 1} before feeding into the encoding function
En. Let the operation of the string be defined using the DFA T, which is
represented as a five-tuple, I' = (S, L, §, so, S¢), where § is the set of states,
¥ is the set of alphabets, s is the initial state, and 8¢ is the set of final states.
The transition function 6 takes a state and an alphabet and returns the
next state; therefore, 6: 8§ x £ — 8. Since every string is a bitstring, we
have £ ={0,1}. Let q = |8| be the total number of states. Without loss of
generality, we assume 8 = Zq ={1,...,q}.

76

Let 5 be the aggregated transition function that takes the entire string

X as input and outputs the final state of the DFA,

-

6(7_6‘) = 6(.o 6(6(80,7(1),)(2), oo ,Xn).
If §(X) € Sf, then X is accepted by the DFA, which means that the string

matches the regular expression.

Converting DFAs into circuits. The main goal is to convert the tran-
sition function t = &(s,x) into a Boolean circuit that uses as few AND
and OR gates as possible, to take advantage of the standard free XOR
optimization [130].

Since both the states s and t are integers between 1 and ¢, one can
choose to represent each state using log, q bits and find the truth table for
5. However, the resulting circuit would be hard to construct and minimize
automatically. Instead, we encode each state as a bit-vector of size q using
one-hot encoding. We use S to denote the encoding of a state s € §, and
St represents the i-the bit of S, where S = 1if i = s and 0 otherwise. We
can observe that when S' = 1and x =0, TV = 1 if and only if 5(1,0) = j
holds; Similarly, when S = 1and x =1, T = 1 if and only if §(i,1) =j.
Therefore, the output of the DFA becomes

AR) = A(..A(A(So, %1),%2), - -+ Xn),

where A is the transition function that operates on the one-hot encoded
states.

To represent the transition function A as a Boolean circuit, we first
define two sets for each state s, P§ and Pj, where P; = {i|5(i,b) = j} for
b €{0,1}. Itholds that TV = 1 if and only if either x = 1 and 3i € P St =1,

77

orx=0and 3i € Pé,Sizl. Thatis tosay, for1 <j < gq,

T=xA\ SHV(xA\ sH

ieP) ieP)
=(xA\ SHe(xA\/ sH.
ieP) ieP)

Because only one of the S' will be 1 at any time, therefore the inner OR
gates can also be replaced with XOR:
T=xANEPSsHe(xAEPsH.
ieP} ieP}
Note the above expression can be further simplified using the Boolean
algebra property (x A\ a) @& (—x Ab) = ((a @ b) Ax) & a. Therefore, each
bit in T requires at most one AND gate to compute. To run I over a string
of length n, we need to apply transition function (A) n times, and thus
the resulting circuit contains at most nq AND gates. Finally, to check if

the final state is accepted by I', simply computing @ SJ, is sufficient.
JESF
We can observe that the size of the entire garbled circuit is O(nqk),

on par with the communication cost of the state-of-the-art non-GC based
customized approach [152]. However, being purely circuit-based, our
approach allows functional conjugation with other operations and retains
the same security properties of standard GC.

Extracting and Replacing Substrings with Garbled Circuits

We now discuss how eTAP extends the regular expression matching tech-

nique described above to extract and replace substrings.

Finding locations of matching substring. Given a regular expression
pattern p, the goal is to find the starting and ending positions of the
matching substrings.

Finding the ending positions can be achieved by applying the KMP

78

algorithm [128] on the pattern p to convert it into a DFA (denoted by I'), so
that I will output an accepting state at the end of each matching substring.
For example, if the pattern is ab, we will rewrite it as . *ab and convert the
new pattern into DFA. Then we use our matching protocol to run I" on the
input string X. However, instead of only checking whether the final state
Sy is an accepting state, we check every state Sy, ..., S, produced by I'. We
denote the resulting n-bit sequence as e, ..., e,. If e; = 1, it indicates that
the i-th bit is the end of a matching substring.

Since a DFA can only report the end positions of matches end, we need
another DFA to find the starting positions. We therefore compute a DFA
I'" on the reversed pattern p. If we run I'’ on the reversed input string, we
get the beginning of the matching substring. Then, like the previous step,
we run '’ backward on X (by feeding from x,, to x;) and check the type of
every state to generate b,,, ..., by. If b; = 1, it indicates that the i-th bit is
the beginning of a matching substring.

Finally, we can find the locations of all matching substrings. That is,
we need to compute another n-bit sequence my, ..., m, where m; =1 if
and only if the i-th bit is part of a matching substring.

We can observe that m; = b; and for any i such that2 < i <n, m; can

be calculated as m; = b; V (—e;_1 A mi_1).

Extracting matching substring. To extract the matching substrings, we
want to replace the characters in non-matching parts with the padding
character (0x00). Therefore, the output string §j = {ys, ..., Yn}is computed
by yi = mi Axy.

Replacing matching substring. In our dataset, all replace(s,t) func-
tions are used with t set to empty string, so it is equivalent to removing
the matching substring, and thus the output string § = {yi,...,yn} is
computed by y; = —m; A x;.

However, for completeness, we will describe a protocol for the general
case scenario where [t| > 0, where t denotes the size of the string t. The

79

output string size will be n x % since the TAP should not know which
substring is matched and replaced and should assume all substrings can
be replaced. When [s| > [t| the sizes of the resulting garbled circuits
will be unbearably large. Therefore, we purpose an alternative design
approach where the actual replacement is processed in the action service:
we replace the first character of each matching substring with some place-
holder character, say 0xff, and the rest with the padding character 0x00,
so the action service can invoke the following functions to complete the
replacement: y.replace("0x00", ""); y.replace("0xff", t); where
y is the decoded output string. Note the first replace () is required re-
gardless of our protocol, since it is needed for removing the padding from
the input string.

We argue this approach does not break our security goal, revealing
no additional trigger data that is not supposed to be revealed to the ac-
tion service. If the replacement string t is considered sensitive the client
can encrypt the replacement mapping with the 1 label of the output bit
corresponding to \/I.; m', similar to how we protect d and k in Fig. 3.8.

Assuming an ASCII encoding and 0xff as the placeholder character,
we can compute the output string § using yi = si—(i—1 mod 8) V (™mi Ax4),
where the i — (i —1 mod 8)-th bit is the first bit of the character that i-th
bit belongs.

Supported functions. By incorporating the above techniques, we can use
garbled circuit to efficiently compute common arithmetic operations, string
operations, and dictionary lookup, which cover all but three functions
listed in Fig. 3.3. We sketch the implementation details for each supported
function in Section A.2. Based on our analysis in Section 3.3, this set of
operations enables eTAP to support 93.4% of the function-dependent rules
published on Zapier and all of the 500 most popular rules on IFTTT.

It is possible to convert the remaining three unsupported functions
(format, strip_html, and html2markdown) to Boolean circuits, as well, but

80

Oinv;tap: Privet“p’l'

(f, (x%, V%), (x!, !, v1)) s A (f, (xo V), (x!, el V1)) s A

Pickj; k; <—s{0,1}<; k, «<-s{0, 1}~ If f(x°,c%) # f(x!,c!') then Return L

b «s{0,1} Pickj; k; <s{0,1}*; k, <s{0,1}

j,F, C, d <s CktGarbling ((©), (K, a,3)) || b 4—5{0,1}

j, X, ct +=s TSExec ((x°,v?), (kT,])) j,F,C, d «s CktGarbling ((f,c®), (ks, ka,j))

b’ +s.A(j, X, ct,F,C,d) j, X, ct = TSExec ((x®,v°), (k+,j))

Returnb = b’ j,Y,ct, d « TAPExec ((j, X, ct), (F, C, d))
b’ «sA(,Y,ct, d)

Auth’ P Returnb = b’

(f,(x,c,v)) +sA

Pickj; Ky {0, 11 ; k, ¢{0,1}%

j,F, C, d <= CktGarbling ((f, c), (j, kr, k4))

j, X, ct <= TSExec ((x,Vv), (Ky,3))

inYct!,d" s A(j, X, ct, F,C,d)

y’ < ASExec ((/,Y’,ct’,d"), k,)

Return (j/,Y’,ct’,d’) # (j, F(X), ct, d)
Ny' # L

Figure 3.6: Security games for eTAP.

the resulting circuits will be very large (for example, we need to build a
full-blown parser to find HTML tags) and inefficient to evaluate. These
functions are only used for formatting and do not require any sensitive
user input. Thus, it is safe to run them on AS or TS directly with minor

modifications to their APIs.

3.6 Security Analysis of eTAP

In this section, we show that eTAP meets the security goals outlined
in Section 3.4 by providing concrete security definitions and proofs. We
assume the adversaries are probabilistic polynomial time (ppt) — they run
in time polynomial in security parameter k. The garbled circuit protocol G
used in eTAP provides output privacy, message obliviousness, and execution
authenticity. The encryption scheme € is IND-CCA secure. We model the
hash function H as a random oracle [65]. Let negl(-) to be a negligible

81

function.
We prove the security of each component of eTAP, namely TAP, TS,
and AS, separately. The security games are defined in Fig. 3.6.

Security against malicious TAP. Following our threat model, we assume
the TAP is compromised and malicious. The security definitions we expect
from eTAP are as follows.

Obliviousness. We define the obliviousness property of eTAP by the se-
curity game Obliv%,“" as shown in Fig. 3.6. Informally, A despite arbitrarily
deviating from the protocol should not know anything about the user-
provided constants c, the trigger data x, v, and the output of the function

y <« f(x).

Theorem 3.1 (TAP Obliviousness). For any ppt adversary A, the probability
that A wins the Obliv};** game is negligible.

Pr[Oblivy,"" =1] <1/2 + negl(x),

Proof: The proof of this theorem follows directly from the message obliv-
iousness security guarantee of garbled circuits § [204] and the semantic
security of the encryption scheme €. As such, the attacker learns nothing
about (x,v,c) from (X, C, ct). First, note that the game Obliv$*’ is equiv-
alent to the game obv.simg [64] in [204]. Now, consider the simulator
§ as presented in Fig. 3 in [204]. In our setting, § is used by TC and TS
to generate (F, X, C) which is then used for the rest of the computation.
Hence the obliviousness of (x, ¢) follows directly from the corresponding
proof (game obv.simg) presented in [204] assuming the random oracle
model for H [65]. The indistinguishability of ct® follows trivially from the
semantic security guarantee of the encryption scheme, thereby concluding
our proof.

We achieve security against a malicious TAP even with a GC imple-

mentation for the semi-honest model. Recall that the “generators” — the

82

trusted client (TC) and the trigger service (TS) — in eTAP are at least
semi-honest. Hence, a valid garbled circuit for the correct function f is
always generated (as TC is trusted), and all inputs are correctly encoded
(since TS is semi-honest and the “evaluators” TAP and AS have no input).
Thus, the only way a malicious TAP can compromise the security of eTAP
is by forging an inauthentic output label or by replaying, delaying, or

dropping a message. We discuss eTAP’s resilience to such attacks next.

Authenticity. The security guarantee authenticity ensures that no ppt
adversary can create a garbled output Y’ # Y such that AS acts on Y’ (that
is to say ASExec outputs anything but L or false). The formal definition is

given by the security game Auth®*” as shown in Fig. 3.6.

Theorem 3.2 (TAP authenticity). For any ppt adversary A, the probability
that A wins the game Auth®,“" is negligible,

Pr[Auth%*" =1] < negl(x).

Proof: The proof follows from the non-malleability guarantee (IND-CCA)
of the encryption scheme &, execution authenticity of § [204], and the colli-
sion resistance of the hash function H. For the rest of the proof, consider the
simulator 8 in [204] which additionally returns h = H(L;"||...||[Ly™), er
and L. TC uses this additional information to generate the decoding
blob d. Similarly, the function in De is changed to that of ASExec.

Case I - Authenticity of y1 = f1(x, c).

Note that § is encrypted under a key derived from k, and L. Hence, from
the semantic security of the encryption scheme, TAP does not have access
to e, since it does not know k, by design. Thus, in case y; = false, TAP
has access only to the false label Ly and thereby cannot cheat AS. On the
other hand, if y; = true, TAP can return some garbage value L’ such that
D(L’®k,,d) = L. However, AS can detect this with the help of the HMAC.

Moreover, TAP cannot send any of the hitherto unseen HMACs because

83

it cannot obtain the output labels without access to the corresponding X
(TS’s trigger data).
Case 1I - Authenticity of y, = f2(x, c).
From the collision resistance of H, the only way TAP can cheat is by gener-
ating a label ijyzﬁ_l] for some wire i € [1, m] where y,[i] denotes the i-th
bit of y,. However, as discussed above, TAP cannot compute any other
label other than the one obtained from Ev(F, X, C).

The rest of the proof follows an identical sequence of hybrids as the

proof of Theorem 1 in [204] assuming the random oracle model for H.

Protection from altering the timing of rule execution. An adversary can-
not forge a message that the AS will accept due to the strong authenticity
guarantee of eTAP protocol. However, it can alter the execution time of a
rule by deliberately dropping, delaying, or replaying messages. TAP can
successfully drop a message without being detected by AS. However, this
would fall under the denial-of-service attack which is beyond eTAP’s scope
(Section 3.4). eTAP also protects against replayed or delayed messages.
Every message from TS is timestamped as they are sent which AS can
check before performing any action. Therefore, AS will reject a message —
outputting | — if the received message is delayed more than T seconds (a
parameter set by AS) since the time it was sent from TS. (See the function
ASExec in Fig. 3.5.) We acknowledge that the TAP can replay any message
for which f;(x, c) = false without getting detected by the AS.
Nevertheless, this does not lead to any undesirable outcome in practice
because in this case AS performs no action. Note that the above attack
(replay of false labels) could have been prevented by keeping track of the
last seen circuit id of each rule at AS. However, maintaining such state

information would violate the RESTfulness of AS.

Tampering with circuit id j. The malicious TAP can modify the circuit
id j — a unique identifier given to every instance of a garbled circuit for

synchronization between TAP, TS, and AS — in whatever way they want to.

84

But eTAP ensures AS will always be able to detect any such modification
and rejects the message from TAP (by outputting). This is done by
having TS include the circuit id j in the encrypted payload ct — that TAP
cannot modify. AS verifies that value against the circuit id forwarded by
TAP, and any mismatch results in execution termination. Though TAP
cannot tamper with j without being detected, it could learn the popularity
of certain rules by observing circuit id values (which are passed to TAP
in plaintext to help find corresponding garbled circuit F to execute). We
acknowledge that metadata attacks are a limitation in eTAP and we discuss
a cover traffic approach to address them (Section 3.9).

Security Analysis of TS and AS. We assume TS and AS are honest but
curious. We define security as follows.

Theorem 3.3 (Privrs). TS does not learn anything about the user constants

(Cll CZ)'

Proof Sketch. TS only receives from the client k, and j, which it uses to
compute the seed e = (e, e,). Thus, it can only learn the pairs of labels for
all the input wires (including the ones for user constants) to the garbled
circuit. TS, by design, does not have access to the client constants.

AS should not learn about the user constants and the trigger data
beyond what is revealed from the output of the function f. Lety; = f1(x, c)
and y, = f2(x,c). We also need to ensure that when the output of the
predicate function y; = false, AS does not learn the output of the function
f, and the payload v. We formally state these properties, using the theorem
below.

Theorem 3.4 (Privig). If y; = false, then AS learns nothing about (x,c,V)
other than what is revealed from y, = false.

Proof: To know the value of y,, AS needs access to the decoding table d’
(from the obliviousness guarantee of garbled circuits in [204]). AS will be

85

able to do this only if it has access to L1 (from the IND-CCA security of
the encryption scheme). Note, L1 is available to TAP, and subsequently
to AS, only if f1(x) = true [204]. In case TAP returns some garbage value
other than L}"°, the decryption still fails. Additionally, v is protected by
the IND-CCA security of the encryption scheme.

Theorem 3.5 (Priv)\q). Ify; = true, then for any ppt adversary B, the probability
that B wins the game Priviy®™" is only negligibly more than random guessing.

That is,
Pr [Privy™' =1] < 1/2+ negl(k).

Proof: The indistinguishability of ct® follows from the semantic secu-
rity of the encryption scheme. Now note that Priv;;*™! is equivalent to
prv.simg) [64] in [204]. The rest of the proof is based on the proof for
the corresponding game (prv.simg) in [204]). In fact in our setting, the
view of the A is a strict subset of that of the adversary presented in [204].
Specifically, our adversary A does not have access to the garbled inputs
X®, C? and the garbled circuit F. Note that in the above game, a malicious
TAP instead of outputting (Y, ct) <— TAPExec ((X, ct), (F, C)), could gener-
ate some arbitrary message. However, from the obliviousness property of
garbled circuits (Thm. 3.1, we know that this message has to be completely

oblivious of (F, X, c¢) and hence the privacy guarantee is upheld trivially.

Proposition 1 (TAP Input Indistinguishability). For any ppt adversary A
with access to a circuit garbled with the scheme in [204], the probability that
A distinguishes between a valid garbled input and randomly generated input is
negligibly more than random guessing.

Proof Sketch. Following Fig. 2 in [204], it is clear that A cannot validate
inputs to XOR gates. For AND gates, the fact that at most one valid label

for each input wire is revealed to A and the correlated robustness of the

86

hash function ensures that F = (Tg, Tg) does not reveal information about

the valid inputs.

3.7 Evaluation of eTAP

We prototyped eTAP and showed that it is competitive in performance
with TAPs that do not provide any data privacy. We implemented the
garbled circuit protocols described in Section 3.5 using EMP toolkit [191], a
C++ library for multi-party computation. We build on EMP toolkit’s semi-
honest 2PC protocol. We use state-of-the-art optimizations (including free
XOR [130] and half gates [204]) for improving efficiency and bandwidth.
The security parameter is k = 128. For other cryptographic operations
we use Cryptography.io [6]. We use SHAKE-128 (a member of SHA-3
family [157]) as a cryptographic hash function, and AES in CBC mode with
HMAC using SHA-256 as a semantically secure, non-malleable, robust
symmetric-key encryption scheme. To convert regular expressions into
DFAs we use the library dk.brics.automaton [153]. For all experiments,
we used nl-standard instances in Google Cloud Platform configured with
2 vCPUs, 7.5 GB memory, and 1 Gbps network connection.

Performance of Basic Operations

eTAP supports Boolean, (integer) arithmetic, and string operations (which
is sufficient to run most of the rules in Zapier and IFTTT). To evaluate the
performance of these basic operations, we picked a set of representative
operations from Fig. 3.3. For Boolean, we chose the AND operation since
our circuits only contain AND and XOR gates, and the XOR gate can
be computed without any encryption costs [130]. For numeric data, we
selected comparison and multiplication between two 32-bit integers. For
string operations, we divided them into two categories: operations that

need regular expressions (contain, replace, split, and extract_phone)

87

Computation time (ms) GCsize #DFA

Operation Client TS TAP AS (KB) states

Bool x & y 40 37 37 39 0.03 -

Num® > B 40 39 38 38 0.96 -
X *n 40 37 40 37 31 -
x ==t 40 37 40 38 25 -
m. lookup (x) 42 3.6 41 38 31 -

Str x.split(d,0) 57 37 53 41 78 16
x.contain(s) 78 39 74 39 123 47
x.replace(s,"") 10.7 3.8 105 46 278 40
x.extract_- 247 3.6 255 41 2191 108
phone ()

Figure 3.7: Execution time of different basic operations at the client (TC),
the trigger service (TS), the action service (AS), and the TAP. We record
the size of the garbled circuit sent from TC to TAP and the number of
states in the DFA if applicable.

and those that do not (1ookup and ==). We set the input x as a 100-character
(800 bit) string, except for lookup, where we set x to a 10-character string.
In the functionm. lookup (x), we setm to be a key-value store with 10 entries,
where each key and each value is 10-characters long. For x.replace(s,
"") and x. contain(s), we set the s to a 4-character string. For x.split(d,
0), we set d to be a single character.

While measuring the costs for above basic garbled circuit operations, we
do not consider the overhead of other components like payload encryption,
as they are independent of the operation. Fig. 3.7 shows the time required
for each operation.

The circuit generation (at TC) and circuit evaluation (at TAP) take
roughly the same amount of time for each operation, which is expected
because they require roughly similar operations. Most of the Boolean,
arithmetic, and some string operations (such as string equality or lookup)
execute in less than 4 ms on the TAP. Complex string operations are also
fast (takes less than 25 ms) under some reasonably sized inputs. TS and
AS can encode/decode inputs in less than 5 ms.

We record the size of the garbled circuit (|F|) for each operation in

88

Rule description Functions performed G(ils(llg [_))a{ﬂa:;ansfe;ﬁiﬁ]iz

R1 Share your Tweets (exclud- ! x[Text].startwith("@") 0.2 43 20
ing replies) in Slack

R2 Get Slack notifications for ~x[FollowerCount] > 5000 1.0 29 3
new Twitter followers with
more than 5,000 followers

R3 Copy New Events from x[StartTime] - x[EndTime] 1.0 33 32
Google Calendar into iOS
Calendar

R4 Blink your lights when you x[Sender] == ¢ 58 29 3
receive email from a specific
address

R5 Send SMS messages fornew x[Phone] != null; 9.0 27 3
Shopify orders x[Phone] .replace(" ", "")

R6 Add new inbound emailsas x[SenderName].split(" ", 0); 30.5 34 13
contacts in Ontraport x[SenderName] .split(" ", 1)

R7 Create Asana tasks when x[Text].startwith("$request"); 92.4 29 4
new Slack messages start x[Text].replace("$request");
with $request c2.lookup(x [Channel])

R8 Save new liked Tweets with ~ x[Text] .contain("http") 173.4 43 20
links to Pocket

R9 Send SMS reminders for x[Description].extract_- 4,668.9 51 28
upcoming Google Calendar phone ()
e