
Algorithms and Systems for Scalable Machine Learning
over Graphs

by

Roger Waleffe

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2024

Date of final oral examination: 12/04/2024

The dissertation is approved by the following members of the Final Oral Committee:
Theodoros Rekatsinas, Research Scientist, Apple Inc.
Shivaram Venkataraman, Assistant Professor, Computer Sciences
Steve Wright, Professor, Computer Sciences
Dimitris Papailiopoulos, Associate Professor, Electrical and Computer Engi-
neering

© Copyright by Roger Waleffe 2024
All Rights Reserved

i

acknowledgments

There have been many people who have helped me and collaborated with
me throughout my PhD and my life; I am very grateful for them.

I would like to especially thank my advisor Theodoros Rekatsinas, who
has supported and guided me for the entirety of my PhD. Working with
Theo, I have grown immensely as a researcher, presenter, and writer. I will
always be grateful for these teachings and experience. Though we were often
in different timezones, Theo always met with me early in the morning or
late in the evening and went above and beyond with his dedication to my
PhD.

I would also like to sincerely thank the other members of my disserta-
tion committee: Shivaram Venkataraman, Stephen J Wright, and Dimitris
Papailiopoulos, whose questions and expertise have helped to enhance my
research, this dissertation, and my PhD. In particular, Shivaram has been
an invaluable collaborator during the research and development of this
thesis and I have truly enjoyed all of the time working with him. I would
additionally like to thank Shivaram and Steve for also providing advisory
and procedural support during my PhD at UW-Madison.

I owe a great deal of thanks to my coauthors, professors, and fellow grad-
uate students at UW-Madison and beyond who have been a part of my PhD.
Jason Mohoney and Patrick Okanovic were particularly key collaborators
who helped substantially with one or more of my PhD papers. I would also
like to thank Emmanouil-Vasileios Vlatakis-Gkaragkounis, Xiangyao Yu,
Wenqi Jiang, Vasilis Mageirakos, Nezihe Merve Gürel, Devesh Sarda, Zifan
Liu, and all of the staff and members of the UW-Madison CS department.

To those at NVIDIA, including Mohammad Shoeybi, Bryan Catanzaro,
Brandon Norick, Duncan Riach, Wonmin Byeon, Deepak Narayanan, and
many others, I am very grateful for the opportunities you have provided
and I am looking forward to continuing to work together in the future.

ii

This thesis is the culmination of an academic journey that started well
before my PhD itself. I would like to thank all of my teachers in the
Middleton-Cross Plains Area School District who prepared me for college
and beyond. I also owe many thanks to my professors during my time as
an undergraduate at UW-Madison; I hold my undergraduate education at
UW-Madison in the highest regard. The Math, Physics, and Computer
Sciences departments are truly exceptional places to learn and grow.

A special thank you goes to Cary B Forest, who provided me with the
opportunity to start my research career at the Wisconsin Plasma Physics
Laboratory (WiPPL) during my undergraduate studies. Cary’s encourage-
ment and excitement for his work were inspiring, and the joy I experienced
working with Cary led me to continue with a career in research. Many
others contributed to this enjoyable learning experience, including Ethan
E Peterson, Douglass A Endrizzi, Jason Milhone, Joseph Olson, Michael
Clark, John Wallace, Jan Egedal, and Vladimir Mirnov.

Finally, I would like to thank my family and those close to me who have
supported me during my PhD. The path to my PhD has been easier with
you as a part of this journey.

To my parents, I will be forever grateful for the life and opportunities you
have provided for me and my brother. This thesis is no doubt a reflection
and result of your unconditional love and support over the last 27 years. To
my brother, thank you for all of your love, support, and encouragement.

iii

contents

Contents iii

Abstract v

1 Introduction 1
1.1 Motivation . 1
1.2 Dissertation Goal . 5
1.3 Contributions . 10
1.4 Organization . 16

2 Background and Challenges 18
2.1 Background on GNNs . 18
2.2 GNN Mini-Batch Training 19
2.3 Scaling Training Beyond CPU Memory 26
2.4 Weather Prediction: A Motivating Application 33
2.5 Related Work . 36

3 Efficient Mixed CPU-GPU Mini-Batch Training 38
3.1 Asynchronous Pipelined Training for High Throughput 38
3.2 OAC: Optimistic Asynchrony Control for High Accuracy . . . 40
3.3 DENSE: Efficient Multi-hop Neighborhood Sampling 53
3.4 Results: Mixed CPU-GPU Training in MariusGNN 58
3.5 Summary . 67

4 Scalable Min-Edge-Cut Graph Partitioning 69
4.1 GREM: Greedy plus Refinement for Edge-Cut Minimization . 69
4.2 Theoretical Analysis of GREM 73
4.3 Empirical Analysis of GREM 76

5 Min-IO and High-Accuracy Disk-Based GNN Training 80

iv

5.1 Overview: Disk-Based Training in MariusGNN 81
5.2 BETA: A Partition Replacement Policy with Minimal IO . . 84
5.3 COMET and High-Accuracy Partition Replacement Policies . 90
5.4 Hyperparameter Auto-Tuning Rules For Disk-Based Training 96
5.5 Results: Disk-Based Training in MariusGNN 99
5.6 Summary . 108

6 Scalable Distributed GNN Training 109
6.1 Overview: Armada’s Disaggregated Architecture 110
6.2 Disaggregated Training - Implementation Details 114
6.3 Results: Disaggregated Training in Armada 117

7 Conclusion 123

References 126

v

abstract

Many forms of data are best represented as graphs with entities (nodes)
and relationships (edges) between them. By combining this structure with
neural network computation, Graph Neural Networks (GNNs) have emerged
as the state-of-the-art approach for machine learning on graph data and
have enabled advancements in navigation, structural biology, and weather
forecasting. Training GNNs over large graphs, however, is highlighted as a
major challenge in the literature: Real world graphs contain billions of nodes
and edges, each of which can be associated with high-dimensional (possibly
learned) feature vectors that form the input to GNNs. Moreover, the node
representations at internal GNN layers depend on feature vectors in the
nodes’ multi-hop neighborhood. These workload characteristics necessitate
storing feature vectors off device (e.g., in CPU memory) and leveraging mini-
batch training coupled with multi-hop neighborhood sampling algorithms for
learning GNNs over large-scale graphs; yet, we find that these requirements
can lead to GPU underutilization and sublinear scaling in existing systems,
leading to increased monetary costs and runtime over massive graphs.

Motivated by the above, this dissertation aims to develop cost-effective,
scalable GNN training over large graphs. We move towards this goal by
addressing a sequence of technical challenges, starting with mixed CPU-
GPU training on a single machine and advancing to disk-based, distributed
training across multiple machines and GPUs.

First, we focus on maximizing GPU utilization during mixed CPU-GPU
mini-batch training on a single machine with a single GPU and with the full
graph in CPU memory. We present a pipelined architecture for asynchronous
training in this setting to overlap data preparation and movement with
GNN computation. Asynchronous machine learning, however, introduces
the possibility of concurrent mini batches accessing stale parameters or
overwriting each other’s work, thus slowing convergence or limiting accuracy

vi

compared to synchronous training. To address this issue, we introduce a
new policy for mixed CPU-GPU training that ensures asynchronous parallel
preparation and transfer of mini batches is equivalent to a serial one by one
execution. Finally, we introduce a new data structure and algorithm for
neighborhood sampling that minimizes redundant computation and data
access when constructing multi-hop neighborhoods. We implement the
above techniques in MariusGNN, a new system for GNN training, and show
that in-CPU sampling in MariusGNN can be up to 14× faster compared
to state-of-the-art systems. Moreover, we show that end-to-end training in
MariusGNN can be up to 4× faster than these systems, even as they use
four GPUs and MariusGNN uses only one.

Next, we focus on GNN training over large graphs which exceed the
CPU memory capacity of a single machine. Efficient, high-accuracy training
in this setting relies on min-edge-cut graph partitioning algorithms, which
maximize the number of neighbors each node has within the same partition,
thereby maximizing the number of neighbors readily available for training
(e.g., accessing neighbors in different partitions may require cross-machine
communication in distributed settings). Yet, min-edge-cut partitioning over
large graphs remains a challenge: Existing offline methods (e.g., METIS) are
effective, but they require orders of magnitude more memory and runtime
than GNN training itself, while computationally efficient algorithms (e.g.,
streaming greedy approaches) suffer from increased edge cuts. Thus, in
this dissertation we introduce GREM, a novel min-edge-cut partitioning
algorithm that can efficiently scale to large graphs. GREM builds on stream-
ing greedy approaches but continuously refines prior vertex assignments
during streaming, rather than freezing them after an initial greedy selection.
Our theoretical analysis and experimental results show that this refinement
is critical to minimizing edge cuts and enables GREM to reach partition
quality comparable to METIS but with 8-65× less memory and 8-46× faster.

Given a partitioned graph, we then focus on disk-based GNN training.

vii

In this case, graph partitions are stored on disk, with subsets loaded into
memory as needed for mixed CPU-GPU training on the induced subgraph.
We introduce a series of partition replacement policies that ensure 1) the
entire graph appears in memory for training each epoch with a near-minimal
number of partition swaps (and thus IO) and 2) that models learned with
disk-based training exhibit accuracy similar to those trained with the full
graph in memory. We combine the above policies in MariusGNN with a
partition buffer that supports prefetching and writing partitions to disk
asynchronously, thus introducing the first system that utilizes the entire
memory hierarchy—including disk—for GNN training. We evaluate disk-
based training in MariusGNN against state-of-the-art systems for learning
GNN models and find that it achieves the same level of accuracy up to 8×
faster than these systems. Moreover, disk-based training enables MariusGNN
to train over large graphs that do not fit in CPU memory using just a single,
cheap machine rather than an expensive, large-memory machine or multi-
machine deployment, leading to monetary cost reductions of up to 64×.

Finally, for the case when parallelization is desired to accelerate training,
we study distributed training of GNNs on billion-scale graphs that are
partitioned across machines. We introduce Armada, a new end-to-end system
for distributed multi-GPU and multi-machine training. Armada leverages a
disaggregated architecture to improve efficiency; we find that on common
cloud machines, GNN neighborhood sampling and feature loading bottleneck
training in existing multi-GPU deployments. Disaggregation allows Armada
to independently allocate resources for these operations and ensure that
expensive GPUs remain saturated with computation. We evaluate Armada
against state-of-the-art systems for distributed GNN training and find that,
in the same setting for which existing systems achieve only 2.3× and 1.7×
speedup with eight instead of one GPU, Armada’s disaggregated architecture
leads to a 7.5× speedup. This linear scaling leads to runtime improvements
of up to 4.8× and cost reductions of up to 3.4× compared to baselines.

1

1 introduction

1.1 Motivation
Graphs are ubiquitous data structures, valued for their ability to represent
entities (nodes) and the relationships (edges) between them. This versa-
tility makes them widely applicable across domains, where they are used
to model various types of data, including social networks, transportation
systems, biological networks, and knowledge graphs (Zafarani et al., 2014;
Fairchild et al., 1988; Brohee and Van Helden, 2006; Derrow-Pinion et al.,
2021). Motivated by their prevalence and the recent success of machine
learning (ML) across many disciplines, including computer vision (He et al.,
2016; Huang et al., 2017; Dosovitskiy et al., 2020) and natural language
processing (Brown et al., 2020; Radford et al., 2019; OpenAI, 2023), there
is growing interest in applying ML over graphs to enable richer analysis and
prediction on this form of data (Chami et al., 2021; Kipf and Welling, 2016).

The desire to apply machine learning to graphs has led to the development
of specialized models known as Graph Neural Networks (GNNs), which have
emerged as the defacto approach for ML over graph-structured inputs (Chami
et al., 2021). Behind this success is the ability of GNNs to combine graph
connectivity directly with neural network computation (Kipf and Welling,
2016; Hamilton et al., 2017; Veličković et al., 2018). This property allows
GNNs to achieve state-of-the-art accuracy on diverse tasks. In fact, GNN-
based models are currently used to predict the travel time for route options
in navigation apps (Derrow-Pinion et al., 2021), to accurately predict protein
structures (Jumper et al., 2021), and to create the most accurate weather
forecasts (GraphCast (Lam et al., 2022)). We describe the latter as a
motivating application in more detail in Chapter 2.

While impressive, state-of-the-art results require training GNNs over
massive amounts of graph data. For example, GraphCast was trained on

2

Neighborhood Sampling GNN Aggregation

Target Node 1-Hop Neighbor 2-Hop Neighbor Feature Vector

Feature Table

Figure 1.1: GNNs compute representations for graph nodes that can be
used for downstream tasks by learning to aggregate local information with
information from nodes’ multi-hop neighborhoods. The local information
for each node is encoded in a feature vector and the feature vectors for all
nodes in the graph are stored together in a lookup table.

53TB over four weeks using 32 Google Cloud TPU v4 nodes (totaling an
estimated cost of $70,000 as of 10/2024), limiting the development of such
a model to those with sufficient resources. As such, there is a compelling
need for cost-effective, scalable systems for GNN training to democratize
further expansion of GNN applications.

As highlighted in the literature, however, cost-effective, scalable GNN
training over large-scale graphs is challenging (Chami et al., 2021; Zheng
et al., 2022; Thorpe et al., 2021; Gandhi and Iyer, 2021). These challenges
arise from the unique properties of the GNN workload itself: First, graphs
used in production settings contain billions of nodes and edges, each of which
can be associated with high-dimensional feature vectors that describe the
node (or edge) and form the inputs to GNNs. Thus, the storage overhead
for these vectors can require hundreds of GBs to TBs of memory (Ilyas
et al., 2022; Maass et al., 2017) (Table 1.1), easily exceeding the capacity
of the GPUs needed to accelerate GNN computation (e.g., matrix-vector
multiplications) over these features (e.g., an NVIDIA V100 GPU has 16GB
of memory). Moreover, for certain GNN models, the feature vectors are

3

Table 1.1: Graph sizes and storage overheads for common, representative
graphs that GNNs are applied to. Large graphs exceed the memory capacity
of GPU accelerators, but can often fit in main memory or the disk of a
single machine (e.g., AWS P3 GPU instances range from 61-488GB of CPU
memory and contain up to 16TB of disk storage).

Graph Nodes Edges Feat.
Dim

Memory (GB)

Edges Feat. Tot.

Papers100M (Hu et al., 2020) 111M 1.62B 128 13 57 70
Mag240M (Hu et al., 2021) 122M 1.30B 768 10 375 385
Freebase86M (Google, 2018) 86M 338M 100 4 69 73
WikiKG90Mv2 (Hu et al., 2021) 91M 601M 100 7 73 80
Hyperlink-2012 (Meusel et al., 2014) 3.5B 128B 50 2k 1.4k 3.4k
Facebook15 (Ching et al., 2015) 1.4B 1T 100 8k 560 8.5k

actually learned during training, rather than predefined, further complicating
the challenge of working with this data. Second, the node representations
computed by multi-layer GNNs and used for downstream tasks depend on
the feature vectors of the nodes’ multi-hop neighborhood. This dependency
causes the GNN computation to scale exponentially with the number of
GNN layers and results in irregular accesses patterns to storage (Figure 1.1).

Given these two workload characteristics—graph storage overheads and
GNN neighborhood dependencies—state-of-the-art systems, such as Deep
Graph Library (DGL) (Wang et al., 2019; Zheng et al., 2020a, 2022), PyTorch
Geometric (PyG) (Fey and Lenssen, 2019), and Salient++ (Kaler et al.,
2022, 2023), address the challenges of large-scale GNN training by leveraging
multi-hop neighbor sampling algorithms (Hamilton et al., 2017) coupled
with mixed CPU-GPU mini-batch training over one or multiple machines
with attached GPU(s). In this setting, CPU memory is used for graph
storage. Training then proceeds as follows: Mini batches, consisting of a
random sample of graph nodes (or edges), a sample of each nodes’ multi-
hop neighborhood, and the corresponding feature vectors for all nodes and
neighbors, are prepared on the CPU before being transferred to the GPU(s)

4

0 50 100 150 200 250
Time (s)

0

25

50

75

100

G
PU

 U
ti

liz
at

io
n

(%
)

DGL 1 GPU
DGL 4 GPUs

Figure 1.2: Average per-GPU utilization of DGL during one epoch of
GraphSage (Hamilton et al., 2017) GNN training on OGBN-Papers100M (Hu
et al., 2020). Experimental details are provided in Section 3.4.

for GNN computation; once on the GPU, one training iteration consists
of a forward and backward pass through the GNN to calculate gradients
and update the learnable GNN parameters (weights). If applicable, any
updates to learned feature vectors resulting from the training iteration are
also calculated and then transferred and written back to CPU memory. One
round of training (called an epoch) completes when all nodes (or edges)
have been used to create mini batches.

Despite these techniques, however, two primary inefficiencies remain for
large-scale GNN training. First, in many cases we find that existing systems
underutilize their available hardware, particularly as compute resources (i.e.,
GPUs) are scaled. For example, the average GPU utilization of DGL on
a common GNN benchmark is about 45% and drops to just 35% when
using 4 GPUs (Figure 1.2). In fact, we find that two state-of-the-art
systems (Kaler et al., 2023; Zheng et al., 2020a) yield only 2.3× and 1.7×
speedup respectively when using eight instead of one GPU (instead of
8×). Second, existing systems require graph data and feature vectors to be
stored on the CPU of GPU machines used for training. This requirement
necessitates that expensive compute resources are allocated in proportion
to the graph size. As a result, current systems incur increased monetary

5

costs and runtime over massive graphs due to resource-hungry deployments
coupled with underutilization of the allocated hardware.

1.2 Dissertation Goal
Motivated by the above, this dissertation aims to enable cost-effective,
scalable GNN training over large graphs by optimizing resource utilization
and leveraging the entire memory hierarchy—including disk—for training.
To achieve this goal, we tackle the following sequence of technical problems
that build on each other and progress from mixed CPU-GPU training on a
single machine to disk-based, distributed training over multiple machines.
A more detailed discussion of these challenges is presented in Chapter 2.
Problem 1: Efficient In-Memory Mixed CPU-GPU Training First,
we aim to maximize utilization during mixed CPU-GPU mini-batch training
on a single machine with a single GPU and when graphs are assumed to
fit in CPU memory. GPU underutilization in this setting can be attributed
to two primary challenges: 1) data movement overheads resulting from the
need to transfer feature vectors between CPU and GPU memory and 2)
CPU bottlenecks arising from multi-hop neighborhood sampling.

More specifically, mixed CPU-GPU mini-batch training, which typically
proceeds synchronously—one mini batch is prepared, transferred, and then
used for computation at a time—leads to low throughput (and utilization,
e.g., Figure 1.2) as the the GPU sits idle during mini batch preparation
and transfer. While synchronous training is the default in many frame-
works (Zheng et al., 2020b), asynchronous training has gained popularity for
increasing GPU utilization. In this case, multiple mini batches are prepared
and transferred in parallel to ensure that the GPU is always busy with
GNN computation. While asynchronous training can improve utilization, it
can result in suboptimal convergence—requiring more mini batches to be
processed to reach the accuracy of synchronous training, or failing to reach
that accuracy altogether. The problem occurs when multiple concurrent

6

mini batches contain the same nodes, and thus feature vectors, and these
feature vectors are being learned during training; since mini batches are pre-
pared and transferred in parallel, any feature vectors present in concurrent
mini batches will be missing updates that are generated by other concurrent
mini batches containing the same features (we say these feature vectors
are stale). Therefore, new algorithms for mixed CPU-GPU training that
leverage asynchrony while maintaining synchronous convergence are needed
to maximize GPU utilization without accuracy loss.

Even with asynchronous training, however, it can be difficult to maximize
GPU utilization during mixed CPU-GPU training due to the overheads
associated with multi-hop neighborhood sampling. Despite recent efforts
to address this issue (Chen et al., 2018; Zou et al., 2019; Ramezani et al.,
2020; Zeng et al., 2020; Chiang et al., 2019), we find that existing sampling
algorithms in state-of-the-art systems bottleneck training and lead GPUs
to sit idle. For example, when training a three-layer GNN on a graph with
100M nodes, we find that PyTorch Geometric’s CPU-based neighborhood
sampler takes 1200ms to sample the requisite three-hop neighborhoods for
each mini batch; yet, the GPU-based operations for training take only 170ms.
Therefore, new techniques and implementations for multi-hop neighborhood
sampling are needed to minimize the overhead of this operation and unblock
mixed CPU-GPU GNN mini-batch training.
Problem 2: Scalable Min-Edge-Cut Graph Partitioning Next, we
aim to support training over large-scale graphs for which the graph structure
and feature vectors may exceed the CPU memory capacity of a single
machine. Training in this case requires that the graph nodes and features
are split into partitions. These partitions can then used to enable training
in one of two ways: 1) they can be stored on disk, with subsets loaded
into CPU memory for training (called disk-based or out-of-core training) or
2) they can be split and loaded into memory across multiple machines to
facilitate distributed training.

7

In either case, the partitioning has a direct impact on the subsequent
training process, as GNNs require access to the multi-hop neighborhoods
of graph nodes. In a disk-based setup, partitioning limits the number of
neighbors available for training, as neighborhood sampling can only be
performed over the nodes present in CPU memory (multi-hop sampling
results in random access patterns to memory which are too expensive
to run over block storage). Consequently, disk-based training can result
in reduced model accuracy if the in-memory partitions lack neighbors for
certain nodes. By contrast, in the distributed setting, neighborhood sampling
can be performed across the whole graph, but doing so requires machines
to communicating with each other as needed (Shao et al., 2024). While
beneficial for model accuracy, cross-machine neighborhood sampling can lead
to a communication bottleneck that limits the scalability and throughput of
distributed GNN training.

The above issues can by mitigated by partitioning the graph using min-
edge-cut partitioning algorithms that minimize the number of edges with
endpoints in different partitions (called cut edges). Such a partitioning
ensures that the subset of graph data in each partition is dense (i.e., for
a given node most of its neighbors are also in the same partition). For
disk-based training, this implies most of a node’s neighbors will be available
in memory when the node itself is in memory. For distributed training,
min-edge-cut partition reduces cross-machine communication and has been
shown to lead to an order of magnitude faster training compared to random
partitioning (Merkel et al., 2023; Zheng et al., 2022). Thus, min-edge-cut
partitioning is widely used in GNN systems.

Yet, min-edge-cut partitioning over large graphs remains a challenge:
State-of-the-art offline methods (e.g., METIS (Karypis and Kumar, 1997))
are effective due to their ability to iteratively refine partitions across the
whole graph, but they require orders of magnitude more memory and runtime
than GNN training itself, while computationally efficient algorithms (e.g.,

8

streaming greedy approaches (Abbas et al., 2018)) suffer from increased
edge cuts due to fixed greedy partition assignments. Thus, there is a critical
need for new min-edge-cut partitioning algorithms that can efficiently scale
to large graphs on common hardware.
Problem 3: Efficient, High-Accuracy Out-of-Core Training Given
a partitioned graph, we aim to support training using the entire memory
hierarchy—including the cheap and high capacity disk—to enable resource-
efficient, economical GNN training deployments over large graphs (that
do not fit in CPU memory on a single machine), rather than paying for
additional resources to scale training.

As described above, disk-based training involves storing the partitioned
graph on disk and then loading subsets of partitions into memory for mixed
CPU-GPU training on the induced in-memory subgraph. In this setting,
traversing the whole graph (i.e., training on the whole graph) is achieved
by swapping partitions between the disk and CPU, according to a partition
replacement policy, until all graph nodes (or edges) have appeared in memory.
Although partitions can be accessed sequentially, disk-to-CPU partition
swapping can lead to IO-bound training and result in GPU underutilization.
Buffer management techniques combined with specialized data orderings
(i.e., traversing the nodes or edges in the graph in a specific order) can be
used to partially address this issue by overlapping and reducing IO to disk;
yet, we find that existing locality-aware data orderings (e.g., space-filling
curves (McSherry et al., 2015)) still result in IO-bound training due to the
frequent amount of partition swaps they require. Moreover, we find that
partition replacement policies which focus only on minimizing IO harm
accuracy when training GNNs (due to the data orderings they introduce for
training which conflict with the random orderings preferred for stochastic
gradient descent). For example, we find that the accuracy of disk-based
GNN models can drop by up to 16% on common benchmarks when compared
to models trained with the entire graph in CPU memory. Therefore, new

9

partition replacement policies for disk-based training are needed that mitigate
the overheads of partition swapping while simultaneously allowing for disk-
based training to achieve high accuracy.
Problem 4: Scalable Distributed Training Finally, in the case where
the storage overhead of a graph exceeds the CPU memory capacity of a single
machine (and distributed training is preferred over disk-based training), or
when parallelization is desired to accelerate training, we aim to support
cost-effective, scalable distributed GNN training over large graphs using
common cloud offerings.

To do so, we focus on optimizing the utilization of expensive GPU
resources during training as compute resources are scaled. As the number of
GPUs used for training increases, however, so too does the overhead of mini
batch preparation on the CPU (neighborhood sampling and feature loading)–
distributed data parallel training with weak scaling, commonly used for
GNN training, requires preparing one mini batch per GPU for each training
iteration. For example, even with optimized sampling implementations
and zero cross-machine communication, we find that on common cloud
machines mini batch preparation on the CPU can be up to an order of
magnitude slower than mini batch computation on the GPU when using
eight GPUs for training. Thus, existing systems which rely only on the fixed
set of CPU resources attached to the GPU machines used for training to
prepare batches are unable to parallelize mini batch preparation sufficiently
to saturate multiple accelerators and suffer from sublinear speedups as
compute resources are scaled (as highlighted above). Sublinear speedups
lead to higher-than-necessary total training cost and runtime over massive
graphs, as expensive compute resources sit idle. The above observations
motivate a new architecture for large-scale GNN training that supports scaling
each part of the workload independently.

10

1.3 Contributions
To address the problems stated in Section 1.2 above, this dissertation makes
the following technical contributions.
Asynchronous Training with Synchronous Convergence We present
a pipelined architecture for asynchronous mixed CPU-GPU training that
overlaps data access, transfer, and computation to achieve high GPU utiliza-
tion. Specifically, we assign a dedicated set of workers to each stage in the
training process. Workers then read and write the input and output of their
respective stage to a set of queues. This architecture allows each stage to
run in parallel, and allows more workers to be assigned to slower stages in
the pipeline to maximize throughput. Using this architecture, we can learn
feature vectors for the 42M node, 1.5B edge Twitter graph (Kwak et al.,
2010) an order of magnitude faster than state-of-the-art systems which use
synchronous training (Zheng et al., 2020b): Using a single GPU, pipelined
training requires 3.5 hours whereas synchronous training requires 35 hours
on this graph. Our pipelined architecture is described in detail in Mohoney
et al. (2021) and in Section 3.1.

We combine our pipelined architecture with a new technique for asyn-
chronous training, which we term Optimistic Asynchrony Control (OAC),
to ensure that parallel processing of batches in mixed CPU-GPU settings
results in the same accuracy as synchronous, one-by-one execution. Moti-
vated by optimistic methods for concurrency control in database systems
(termed OCC (Kung and Robinson, 1981; Tu et al., 2013)), OAC allows
mini batches to be prepared and transferred in parallel, but ensures that
batches which access the same parameters are updated before computation
to have the correct feature vectors. Specifically, we highlight that even
during asynchronous training, the order in which batches pass through
the GPU computation step defines a one-by-one order over batches. OAC
ensures that asynchronous training results in the same updates to model
parameters as synchronous training would have produced according to that

11

order of batches. To do so, we leverage timestamps for each feature vector to
track the most recent versions in the presence of multiple options and utilize
an on-GPU feature cache to track the updates from batches prepared and
transferred in parallel. This cache allows us to validate that a mini batch
has the correct parameter values just before it enters the GNN computation
step. We show that OAC results in identical convergence to synchronous
training and identical throughput to asynchronous training; this allows OAC
to achieve the best of both worlds, resulting in the fastest time-to-accuracy
(how long it takes to reach a given accuracy) for GNN training. OAC is
described in detail in Waleffe and Mohoney (2024) and in Section 3.2.
Multi-Hop Neighborhood Sampling without Redundancy We
introduce a new data structure to minimize the overhead of multi-hop neigh-
borhood sampling by minimizing redundant computation and data access. We
term the new data structure DENSE, as it uses a Delta Encoding of Neigh-
borhood SamplEs for vertices in multi-hop neighborhoods. More specifically,
we identify that current approaches for sampling multi-hop neighborhoods
resample one-hop neighbors for graph nodes multiple times when construct-
ing a single multi-hop neighborhood—due to the graph structure, the same
nodes can appear repeatedly across different branches and depths of the
neighborhood. This resampling leads to redundant computation and data
access and can limit pipeline throughput when training multi-layer GNNs.
DENSE allows us to cache and reuse previously-sampled one-hop neighbors
to construct multi-hop neighborhoods and enables in-CPU sampling that
is up to 14× faster than state-of-the-art systems. DENSE also enables
GNN forward pass computations up to 8× faster than competing systems
by utilizing optimized dense GPU kernels rather than custom kernels for
sparse matrix representations. DENSE is described in detail in Waleffe et al.
(2023) and in Section 3.3.
Efficient In-Memory Mixed CPU-GPU Training We combine the
above contributions (asynchronous pipelined training, OAC, and DENSE)

12

0 50 100 150 200 250
Time (s)

0

20

40

60

80

100

G
PU

 U
ti

liz
at

io
n

(%
)

DGL 1 GPU
DGL 4 GPUs
MariusGNN 1 GPU

Figure 1.3: Average per-GPU utilization of our MariusGNN system compared
to the state-of-the-art system DGL during one epoch of GraphSage GNN
training on OGBN-Papers100M. Details are provided in Section 3.4.

in the MariusGNN framework (Mohoney et al., 2021; Waleffe and Mohoney,
2024; Waleffe et al., 2023) to maximize GPU utilization and minimize the
cost and runtime of mixed CPU-GPU GNN training. In the same setting for
which the state-of-the-art system DGL achieves only 45% GPU utilization,
MariusGNN achieves 100% utilization (Figure 1.3) and can train to the same
model accuracy 4× faster, even when DGL uses multiple GPUs. In fact, we
find that MariusGNN in-memory training can be up to 7× faster than the
best existing systems. Additional details are discussed in Section 3.4.
Scalable Min-Edge-Cut Graph Partitioning We present a novel
memory-efficient min-edge-cut partitioning algorithm called GREM (Greedy
plus Refinement for Edge-cut Minimization) that aims to address the bot-
tleneck of partitioning in existing out-of-core or distributed GNN pipelines.
GREM can efficiently scale to massive graphs on common hardware by
processing streaming chunks of graph edges and returns partitions with
edge cuts comparable to state-of-the-art offline methods (e.g., METIS). For
example, in the same setting in which METIS requires 8000s and 630GB,
GREM can partition the graph with similar edge cuts in 175s using 9.3GB.

GREM’s partitioning algorithm builds on existing streaming greedy

13

approaches (Abbas et al., 2018). Specifically, GREM iterates over the
graph edges in chunks and greedily assigns the vertices in each chunk to
partitions. The key idea behind GREM, however, is that it allows prior vertex
assignments to be modified throughout the process, rather than freezing
them after an initial greedy selection (as in existing algorithms). This
approach, inspired by offline algorithms, refines the partitioning by leveraging
lightweight statistics accumulated during streaming (these statistics provide
estimates of the number of neighbors per node in each partition).

We analyze theoretically GREM’s expected number of edge cuts versus
chunk size, providing insight into its expected behavior. This analysis,
confirmed by experiments, shows that refinement is critical for minimizing
edge cuts when using small chunk sizes (e.g., ≤10% of the edges) and thus
for minimizing GREM’s computational requirements (which are proportional
to chunk size): We show that GREM with a chunk size of 10% and METIS
cut a similar number of edges, but GREM does so with 8× less memory
and runtime. GREM even achieves comparable results with a chunk size
of 1%, leading to further reductions and enabling GREM to partition the
largest public graphs (e.g., Hyperlink-2012 (Meusel et al., 2014), which
contains 3.5B nodes and 128B edges) with only 500GB of memory. GREM
is described in detail in Waleffe et al. (2024) and in Chapter 4.
Min-IO, High-Accuracy Disk-Based Training We develop partition
replacement polices for disk-based GNN training that allow us to maintain
high GPU utilization and accuracy when scaling to large graphs that do
not fit in CPU memory (Chapter 5). Specifically, we introduce the Buffer-
aware Edge Traversal Algorithm (BETA), a partition replacement policy
that ensures all graph edges appear in memory for training each epoch with
near minimal partition swaps (and thus IO), outperforming locality-based
algorithms such as Hilbert orderings (Hilbert, 1891). We combine the BETA
ordering with an in-memory partition buffer that supports prefetching and
writing partitions to disk asynchronously to hide the remaining IO overheads.

14

BETA is described in detail in Mohoney et al. (2021) and in Section 5.2.
We study the effect BETA has on GNN model accuracy and find that

during training it leads to successive mini batches with correlated training
examples (i.e., mini batches processed close together during training contain
many of the same nodes and edges), a property that conflicts with the
independently distributed assumption of ML training data, leading to lower
GNN accuracy compared to training with the full graph in memory. To
close this accuracy gap, while still minimizing disk IO, we introduce a
partition replacement policy termed COMET (COrrelation Minimizing
Edge Traversal). COMET builds on BETA, but separates the granularity
of data storage and access from data transfer by utilizing two levels of
partitioning (physical and logical partitions). COMET also decouples mini
batch generation from partition replacement, allowing for the inclusion of
graph nodes (or edges) in mini batches to be deferred until later in an epoch
rather than always including them the first time they appear in memory.
This technique helps to further shuffle the order in which graph nodes (or
edges) are used for training. Additionally, to maximize throughput and
accuracy, we provide automated rules for setting COMET’s hyperparameters
(e.g., the number of physical and logical partitions) (Section 5.4). Using
COMET, we are able to reduce the gap between the accuracy of disk-based
training and that of training with the full graph in memory by up to 80%
compared to BETA without any increase in runtime. COMET is described
in detail in Waleffe et al. (2023) and in Section 5.3.

We couple the above disk-based partition replacement policies with the
efficient in-memory training included in MariusGNN (discussed above) to
introduce the first system for GNN training that utilizes the full memory
hierarchy (disk, CPU, and GPU). Our experiments show that MariusGNN’s
disk-based, single-GPU training can be 8× faster than eight-GPU deploy-
ments of existing systems. This improvement yields monetary cost reductions
of an order of magnitude. We find that for graphs where state-of-the-art

15

systems can take six days and $1720 dollars to train, MariusGNN needs only
eight hours and $36 dollars for training, a 48× reduction in monetary cost.
Moreover, we show that single-machine, disk-based training can be sufficient
for large-scale graphs: We use MariusGNN to train a GNN over the entire
hyperlink graph from the Common Crawl 2012 web corpus, a graph with 3.5B
nodes (web pages) and 128B edges (hyperlinks between pages) (Table 1.1).
MariusGNN can learn feature vectors for all 3.5B nodes using only a single
machine with one GPU, 60GB of RAM, and a large SSD, leading to a cost
of just $564/epoch. Experimental details and results for disk-based training
are provided in Section 5.5.
Cost-Effective, Scalable Distributed Training Finally, building on
all of the above contributions, we introduce Armada, a new distributed
architecture for large-scale GNN training, that disaggregates graph storage,
the CPU resources used for neighborhood sampling, and the GPU resources
used for model computation, in order to achieve memory-efficient, cost-
effective, and scalable GNN training on common hardware. Concretely,
Armada consists of: 1) A partitioning layer that implements GREM. 2)
A storage layer to store the partitioned graph, implemented over cheap
disk-based storage. 3) A distributed mini batch preparation layer consisting
of a set of workers running on cheap CPU-only machines; workers read graph
partitions from storage and prepare batches (i.e., perform neighborhood
sampling) for training. 4) A distributed model computation layer that utilizes
a set of GPU machines to perform training over the prepared batches.

We chose a disaggregated architecture to optimize resource utilization.
By independently scaling the batch preparation layer, we can ensure that
GPUs in the computation layer remain saturated with mini batches during
training. As a result, in the same setting for which existing systems achieve
only 2.3× and 1.7× speedup with eight instead of one GPU, Armada achieves
a 7.5× speedup. Additionally, for massive graphs, Armada can leverage
the storage layer for primary graph storage, rather than the CPU memory

16

of the batch preparation layer (or compute layer, as in existing systems),
providing the option to train with fewer machines, leading to lower cost,
memory-efficient training deployments (Armada with only one machine is
similar to MariusGNN).

Despite the flexibility of disaggregation, challenges arise due to the
communication overhead between various components. Thus, we carefully
design Armada with a focus on minimizing communication between and
within layers. In particular, Armada includes two optimizations to reduce
the data sent between mini batch preparation and compute workers: 1)
mini batch preparation workers group mini batches destined for different
GPUs on the same compute worker and transfer them together, rather
than independently, in order to enable greater compression (mini batch
grouping), and 2) compute workers in Armada maintain a cache of frequently
accessed data in their local CPU memory (feature caching). Together,
these optimizations enable Armada to scale each layer in the architecture
independently without communication bottlenecks.

We evaluate Armada’s disaggregated architecture for GNN training and
compare against existing state-of-the-art systems. Using popular GNN
architectures, we show that while existing systems scale sublinearly, Armada
does not, leading to runtime improvements of up to 4.8× and monetary cost
reductions up to 3.4× compared to the latest distributed systems. Armada
is discussed in detail in Waleffe et al. (2024) and Chapter 6

1.4 Organization
The rest of this dissertation is organized as follows. In Chapter 2 we provide
background on GNNs and GNN training and expand on the challenges for
large-scale training discussed in Section 1.2. In Chapter 3, we focus on
maximizing GPU utilization during in-memory training on a single machine
and discuss pipelined training, OAC, and the DENSE data structure for
neighborhood sampling. In Chapter 4, we present GREM, a novel algorithm

17

for efficient min-edge-cut partition over massive graphs. In Chapter 5, we
focus on partition replacement policies for disk-based training to scale to
graphs which do not fit in CPU memory while still using only a single
machine. In Chapter 6, we present the Armada system for disaggregated,
distributed GNN training. Finally, Chapter 5 discusses potential areas for
future work and then concludes this dissertation.

18

2 background and challenges

In this chapter, we discuss necessary background on GNNs and GNN mini-
batch training, and highlight the challenges for GNN training over large-scale
graphs that this dissertation aims to address.

2.1 Background on GNNs
This dissertation focuses on training GNNs for node classification and link
prediction. These tasks are defined as follows: Given a graph G = (V, E)
with nodes V and edges E, the task of node classification is to assign the
correct label to a given node v ∈ V from a set of possible labels. The task
of link prediction entails predicting whether a pair of nodes (v1, v2) ∈ V × V

should be connected by an edge or not.
GNNs achieve state-of-the-art accuracy on the above tasks by learning to

combine local information about graph nodes (e.g., features of each specific
node) with information from their neighborhood in G. Local information
for each node is encoded in a feature vector : For a node v ∈ V , we denote
its feature vector as h0

v. These feature vectors can be either fixed (e.g., the
conference of a paper in a citation graph) or learned parameters part of the
GNN model itself (e.g., a learned representation of the type of an entity
node in a knowledge graph) (feature vectors that are learned are commonly
called embeddings). In fact, learnable feature vectors are commonly used for
link prediction. All feature vectors for the graph are stored together in a
lookup table indexed by node ID.

Given the feature vectors for graph nodes, GNN models learn to combine
this local information with information from neighboring nodes: For a
given node v, the k-th layer of a multi-layer GNN model computes a new
vector representation for v, called hk

v , that is defined recursively as hk
v =

AGG(h(k−1)
v , {h(k−1)

u : u ∈ Nv}; Θk). Here, Nv is the set of one-hop neighbors
for node v and AGG denotes the aggregation function, parameterized by Θk,

19

A B

DC F

E

Target Node

Input Graph Feature Vectors Two-Layer GNN Aggregation

h0
A

h0
B

h0
C

h0
D

h0
E

h0
F h0

B h0
C h0

C h0
E h0

D h0
C h0

E h0
A h0

B

h1
C h1

D h1
A h1

B

h2
A h2

B

Figure 2.1: Example two-layer GNN aggregation for nodes {A, B} using a
sample of their two-hop incoming neighborhood (two neighbors per node).

used to combine the local representation of a node with the representations
of its neighbors. For example, a simple GNN layer may compute hk

v =
Wk ∗ (h(k−1)

v + ∑
u∈Nv

h(k−1)
u) with a learned weight matrix Wk. As a result

of the recursive definition of hk
v , observe that the representation of a node v

after k layers depends on the k-hop neighborhood of node v. An example
two-layer GNN aggregation is shown in Figure 2.1.

GNN model computation completes by feeding hk
v to a task specific

classifier or score function. To perform node classification, hk
v can be fed

into a fully-connected layer followed by a softmax, while for link prediction,
hk

v1 and hk
v2 are given as input to a score function (typically referred to as a

decoder, e.g., DistMult (Yang et al., 2014)) which decides whether the two
nodes should be connected by an edge or not. For example, a common score
function is the simple vector dot product f(hk

v1 , hk
v2) = hk

v1 · hk
v2 with the

requirement that the two vectors are such that f(hk
v1 , hk

v2) ≈ 1.0 if nodes v1

and v2 are connected via an edge and f(hk
v1 , hk

v2) ≈ 0.0 otherwise.

2.2 GNN Mini-Batch Training
GNN training is similar to standard supervised neural network training; it
is performed using labeled training examples and gradient descent. In the
case of node classification, a single training example consists of a target node

20

v ∈ V and its associated class label. For link prediction, a single training
example consists of a pair of target nodes (v1, v2) ∈ V ×V and a binary class
label indicating whether these two nodes are connected by an edge or not
in G. Given a training example, a k-layer GNN computes a prediction for
the training example by computing hk

v for node classification or hk
v1 and hk

v2

for link prediction (and then uses a classifier or score function as described
above). The prediction can then be compared to the expected label in order
to compute gradients and update the learned GNN parameters.

GNN training, however, contains unique challenges not present for con-
ventional neural networks (Chami et al., 2021; Thorpe et al., 2021; Gandhi
and Iyer, 2021; Kaler et al., 2022). First, for large graphs, the storage
overhead for the feature vectors can require hundreds of GBs to TBs of
memory (as shown in Table 1.1). For example, storing the feature vectors
requires 385GB for a common paper citation graph and 1.4TB for the 2012
web hyperlink graph with 3.5B nodes. Thus, for medium to large-scale
graphs, the storage overheads required for GNN training exceed the memory
capacity of GPU accelerators, and the feature vectors must be stored in
CPU memory. Moreover, computing hk

v for a node v requires the feature
vectors for all nodes in the k-hop neighborhood of v; the number of nodes
in this neighborhood grows exponentially in size as k increases. As a result,
the storage overhead of the feature vectors for all nodes in the multi-hop
neighborhood can also exceed the GPU memory capacity. To mitigate
this issue, it’s necessary to employ multi-hop neighborhood sampling for
large-scale GNN training (Hamilton et al., 2017; Kaler et al., 2022) (in which
a subset of the full k-hop neighborhood is randomly select and used for
computing the GNN aggregation).

Together, the above challenges necessitate the use of mixed CPU-GPU
mini-batch training for learning GNN models over large-scale graphs. Mini-
batch training consists of two phases. The first phase, referred to as mini
batch preparation, begins by randomly sampling (generally without replace-

21

ment) a set of training examples from the input graph. The next step is to
sample the necessary multi-hop neighborhoods for all target nodes in the
batch. A mini batch (or just batch) is prepared once the feature vectors for
all target nodes and their neighbors have been loaded. Given the storage
overhead of the feature vectors requires that they are stored in CPU memory
(as highlighted above), mini batch preparation typically occurs on the CPU.
After a batch is prepared, it can be transferred to the GPU to perform
the GNN forward pass (e.g., to compute hk

v) and to compute the loss and
gradients needed for updating the model parameters (e.g., the per-layer
GNN weights Θ used to parameterize the aggregation functions); these
model parameters are generally stored in GPU memory. We refer to this
second phase of GNN training on the GPU as mini batch computation. If
applicable, updates for learnable feature vectors are transferred and written
back to CPU memory so they can be read by future batches. One round of
training (i.e., one epoch over the whole graph) completes when all nodes or
edges have been sampled and used as training examples.

2.2.1 Challenge: Data Movement and Staleness
A consequence of mixed CPU-GPU training is that it introduces data
movement overheads due to feature vectors being stored off device (i.e., on
the CPU instead of the GPU). Depending on whether training proceeds
synchronously or asynchronously, these overheads can lead to low GPU
utilization or reduced model accuracy. We review the difference between
these two training paradigms and discuss these challenges in detail next.
Synchronous Training Conventional machine learning algorithms pro-
ceed in a synchronous manner. In this setting, only one mini batch is
processed at a time. That is, one mini batch is prepared on the CPU, then
transferred to the GPU for computation, and then used to update the model
parameters (and, if applicable, any learned feature vectors) before prepara-
tion on the subsequent batch begins. For example, in Figure 2.3a, we show

22

0 200 400 600 800 1000 1200 1400
Time (s)

0

50

100

G
P

U
 U

ti
l (

%
)

PBG
DGL-KE

Figure 2.2: The GPU utilization of DGL-KE and PBG for one training
epoch on the Freebase86m (Google, 2018) knowledge graph. These systems
exhibit low GPU utilization due to data movement overheads.

a mini batch which reads three feature vectors {a, c, f} and updates them
to {a′, c′, f ′}. A second mini batch will wait to start until the first batch
is completed. This second batch may read, for example, vectors {a′, b, h}
and update them to {a′′, b′, h′}. Notice that the second batch is guaranteed
to see the update from a to a′ from the first batch. This is the strength of
synchronous training—all updates from one batch are seen by all subsequent
batches—and leads to fast model convergence (i.e., the model requires fewer
mini batches to learn).

Synchronous ML is the default in many training frameworks but it suffers
from low throughput (fewer batches are processed per unit time) because
the GPU is idle during mini batch preparation and data transfer (steps 1, 2,
4, and 5 in Figure 2.3a) (i.e., the GPU utilization is low). In fact, current
state-of-the-art systems, including DGL-KE (Zheng et al., 2020b), and
Pytorch BigGraph (PBG) (Lerer et al., 2019), exhibit poor GPU utilization
due to synchronous data movement overheads: Figure 2.2 shows the GPU
utilization during one training epoch when using a single GPU for DGL-KE
and PBG. As shown, DGL-KE only utilizes 10% of the GPU, and the average
utilization for PBG is less than 30%.
Asynchronous Training To improve utilization, asynchronous (or
pipelined) training is a common approach. In this case, multiple worker
threads continuously prepare and transfer batches to the GPU in parallel.

23

Once on the GPU, mini batches are pushed onto a queue, which is con-
stantly polled by a GPU worker thread performing the GNN computation.
The goal is to keep the GPU busy: as soon as it finishes computation on
one batch, ideally another batch is waiting in GPU memory and ready for
processing. By preparing and transferring batches in parallel, asynchronous
training overlaps data preparation and data movement of future batches
with computation on the current batch, leading to improved throughput
and GPU utilization compared to synchronous training.

While asynchronous training can increase throughput, it can negatively
affect model convergence and accuracy in the presence of learnable feature
vectors. This is because a key property of synchronous training no longer
holds—it is no longer the case that all feature updates from one batch are
seen by all subsequent batches. In fact, any mini batches prepared and
transferred concurrently that share the same nodes (and thus feature vectors)
will miss any updates to these features generated by the other concurrent
mini batches—in other words, these feature vectors are stale.

Consider the example in Figure 2.3b. Two batches are prepared in
parallel. One reads {a, c, f} and another reads {a, b, h}. Notice that these
batches overlap, i.e. they both read the same feature vector, a in this case.
The updates from the first batch (e.g., {a, c, f}) have not made it back to
CPU memory before the second batch (e.g., {a, b, h}) is started. This is in
contrast with the synchronous setting. When both batches reach the GPU,
one will be pulled of the queue and processed first, followed by the second
batch. In this example, both batches will update a to their own version
of a′ (we differentiate each version of a′ by a′(1) or a′(2) when needed).
When these batches subsequently write their updates back to CPU memory,
only the last write will persist, for example a′(1). The processing of these
two batches in the asynchronous setting has resulted in a different state of
features {a′(1), b′, c′, d, e, f ′, g, h′} than the result of processing these batches
one at a time in the synchronous setting {a′′, b′, c′, d, e, f ′, g, h′}.

24

CPU GPU

a
b
c
d
e
f
g
h

Parameters
(feature vectors) a

c
f

Mini Batch

1) read

a
c
f

a
c
f

a’
c’
f’

a’
c’
f’

a’
c’
f’

2) transfer 3) compute + update

4) transfer
5) write

(a) Synchronous Training

CPU GPU

a
b
c
d
e
f
g
h

Parameters
(feature vectors) a

c
f

Mini Batch

1) parallel
reads

a
c
f

a
c
f

a’(1)
c’
f’

a’ (1)
c’
f’

a’ (1)
c’
f’

2) parallel transfers 3) compute + update

4) parallel transfers

5) parallel
writes

a
b
h

a
b
h

a
b
h

a’(2)
b’
h’

a’(2)
b’
h’

a’(2)
b’
h’

(b) Asynchronous Training

Figure 2.3: Example of synchronous versus asynchronous mixed CPU-GPU
mini-batch training. Synchronous training proceeds one batch at a time,
whereas asynchronous training processes multiple batches in parallel. These
parallel batches can overlap (access the same parameters) leading to staleness.

As such, asynchronous training can require more mini batches to be
processed compared to synchronous training to reach the same accuracy,
or may even fail to reach that accuracy all together. The exact accuracy
difference depends on many factors including: the number of feature vectors
per batch, the total number of feature vectors, the feature vector access
pattern across batches, the number of parallel threads, etc. It is possible to
tune some of these parameters to reduce parallel batches with overlapping
features and improve the convergence of asynchronous training, but changing

25

1 2 3 4 5
GNN Layers

1

2

3

4

5

lo
g 1

0(
Sa

m
pl

in
g

Ti
m

e
(m

s)
)

DGL
PyG

Figure 2.4: The time for multi-hop sampling in DGL and PyG for GNNs
of varying depth on the OGBN-Papers100M citation graph. Multi-hop
sampling overheads grow exponentially with the number of GNN layers.

these parameters can also affect model accuracy and throughput. In general,
asynchronous training can reach similar accuracy to synchronous training
when the overlap between concurrent batches is low (Niu et al., 2011), but
in other cases, it can result in degraded convergence, potentially rendering it
unusable. We remark that all GNN weights (e.g., the Θs used to parameterize
aggregation functions) are updated for every mini batch (i.e., the overlap of
these parameters is always 100% across batches). Thus, these parameters
always need to be update synchronously, regardless of whether mini batches
are prepared and transferred in a synchronous or asynchronous manner.

In Section 3.1 and 3.2, we present a pipelined architecture for GNN
training that allows for asynchronous mini batch preparation and transfer
together with synchronous updates to GNN model parameters. We then
introduce Optimistic Asynchrony Control (OAC) a method to ensure that
our pipelined training is guaranteed to reach the same model accuracy as
synchronous training even in the presence of learned feature vectors stored
in CPU memory and transferred in parallel to the GPU.

26

2.2.2 Challenge: Multi-Hop Neighborhood Sampling
In addition to data movement, multi-hop neighborhood sampling overheads
on the CPU can also bottleneck mixed CPU-GPU mini-batch training
and lead the GPU to sit idle. As described above, these overheads grow
exponentially with the number of GNN layers. For example, in Figure 2.4
we show the time for multi-hop sampling in two state-of-the-art systems as
the number of GNN layers increases. With just three layers, both systems
require roughly one second for the requisite neighborhood sampling; with
five layers, sampling takes almost 100 seconds. These timings can be an
order of magnitude slower than GNN computation. For example, the GPU
operations for training take only 170ms when using the three-layer GNN.
Even if multiple mini batches are prepared in parallel (e.g., asynchronous
training), the overhead of multi-hop neighborhood sampling limits the overall
throughput of GNN training. We present the DENSE data structure to
mitigate these overheads in Section 3.3.

2.3 Scaling Training Beyond CPU Memory
When the storage overhead of a graph exceeds the CPU memory capacity of
a single machine, or when parallelization across multiple machines is desired
to accelerate training, prior works rely on graph partitioning (Lerer et al.,
2019; Shao et al., 2024). In this case, graph nodes (and their features) are
split into p disjoint partitions. According to the node partitions, the graph
edges are grouped into p2 edge buckets, where all edges in edge bucket (i, j)
have their source node in partition i and their destination node in partition
j (see example in Figure 2.5). To perform training, these partitions and
edge buckets can either be 1) stored on disk and periodically brought into
CPU memory for training (called disk-based training) or 2) loaded into CPU
memory on separate machines for distributed training.

Both disk-based and distributed training build on single-machine, mixed
CPU-GPU mini-batch training with the full graph in memory, but with a few

27

3210

(3, 0) (3, 3)(3, 1) (3, 2)

(2, 3)(2, 0) (2, 1) (2, 2)

(1, 1)(1, 0) (1, 3)(1, 2)

(0, 3)(0, 2)(0, 1)(0, 0)

Node Partitions

Destination Node
Partition

So
ur

ce
 N

od
e

Pa
rti

tio
n

Edge Buckets

Figure 2.5: Partitions and edge-buckets with p = 4. All edges in edge-bucket
(0, 2) have a source node in node-partition 0 and a destination node in
node-partition 2.

notable differences: For disk-based training, mixed CPU-GPU mini-batch
training, particularly mini batch preparation (e.g., multi-hop neighborhood
sampling), is performed only over the partitions (and the edge buckets
between them) that are loaded in CPU memory. Thus, a single training
epoch over all nodes (or edges) in the graph requires swapping partitions
into and out of CPU memory as needed. Disk-based training in this manner
has the following advantages: random access to graph features (e.g., as a
result of neighborhood sampling) occurs only over graph data in memory,
but not over graph data stored on disk (where random access is prohibitively
expensive); instead, access to graph data stored on disk consists of only
large reads and writes to graph partitions and their edge buckets (which are
also stored sequentially).

Similarly, for distributed training, each machine is responsible for run-
ning mixed CPU-GPU training in parallel. Unlike in disk-based training,
however, mini batch preparation can still be performed over the whole
graph; that is, mini batch preparation is also distributed—Each machine
is responsible for preparing batches in parallel and sampling the required

28

multi-hop neighborhoods across the whole graph, by communicating with
other machines as needed.

2.3.1 Challenge: Scalable Min-Edge-Cut Partitioning
Cross-machine neighborhood sampling and feature loading can lead to a
communication bottleneck that fundamentally limits the scalability and
throughput of distributed GNN training across a set of machines (Kaler
et al., 2023). Yet at the same time, neighborhood sampling across just a
subset of graph partitions in CPU memory (e.g., as in disk-based training),
can lead to lower model accuracy as a result of reduced neighborhood
information available for nodes during GNN training.

To mitigate these issues, existing systems rely on partitioning algorithms
that minimize the number of edges with endpoints in different partitions
(and thus machines) (Zheng et al., 2022). Such edges are known as cut
edges. Min-edge-cut partitioning ensures that graph nodes have as many
neighbors together with them in the same partition as possible, and thus
that these neighbors are available in memory during disk-based training or
available on the same machine (without communication across machines)
during distributed training. Thus, min-edge-cut partitioning is widely used
in GNN systems; In fact, for distributed training it can lead to an order of
magnitude faster training compared to random partitioning (Merkel et al.,
2023; Zheng et al., 2022).

Min-edge-cut partitioning, however, becomes increasingly expensive
with graph size. For instance, many systems utilize the offline algorithm
METIS (Karypis and Kumar, 1997) due to its ability to effectively minimize
edge cuts by iteratively refining partitions across the whole graph and its
comparatively efficient implementation (Merkel et al., 2023; Shao et al., 2024;
Lin et al., 2023); yet, METIS takes 8000s and requires a special machine with
630GB of memory to partition a common benchmark graph (the 1.6B edge
OGBN-Papers100M), whereas GNN training takes only 549s (10 epochs,
one GPU) and can run on cloud machines with 244GB of memory (Waleffe

29

et al., 2023) (details in Section 6.3). Although the partitioning overhead can
be amortized across models, it still presents a bottleneck to GNN training.
To address this issue, streaming algorithms iterate over the graph and assign
vertices to partitions greedily (Abbas et al., 2018). While these algorithms
offer improved scalability (e.g., FENNEL (Tsourakakis et al., 2014)), they
tend to result in more edge cuts (Zhang et al., 2018); e.g., we find a streaming
greedy approach cuts up to 4× more edges than METIS.

In Chapter 4, we present GREM, a novel min-edge-cut partitioning
algorithm to address the bottlenecks of graph partitioning in existing disk-
based or distributed GNN training pipelines.

2.3.2 Challenge: Disk-Based Training
Given a partitioned graph, a key remaining challenge for disk-based training
is that partition swaps can lead to IO-bound training; recall that in order
to complete one epoch, all training examples (e.g., graph nodes or edges)
need to be brought into memory for training, which requires swapping
partitions and their edge buckets to and from disk as needed, according
to a partition replacement policy. We find that these partition swaps can
be expensive and lead GPUs to sit idle in existing systems which utilize
disk-based training (Lerer et al., 2019). Thus, to efficiently scale training
beyond CPU memory using disk, it is necessary to mitigate the overheads
that arise from swapping partitions.

To address this issue, prior work in IO-bound settings leverage buffer
management techniques (e.g., prefetching, asynchronous reads/writes to
disk) to hide and reduce IO (Ramakrishnan et al., 2003; Hellerstein et al.,
2007). In particular, these works highlight the importance of the order in
which data is accessed on overall throughput (for GNN training, this order
corresponds to the order in which training examples are used to generate
mini batches during one epoch) (McSherry et al., 2015). When the data
order exhibits good locality (i.e., many successive mini batches access nodes
from the same partitions), overall epoch IO is typically reduced (due to

30

less swaps), yielding improved throughput and utilization. Additionally, if
the data order is known ahead of time, the CPU can prefetch partitions
needed in the near future and use Belady’s optimal replacement algorithm
to decide which partitions to evict (Belady, 1966), helping to further hide
and minimize IO overheads.

While existing locality-aware data orderings over graphs (e.g., Hilbert
space filling curves) have been shown to improve locality of accesses and
performance of common graph algorithms such as PageRank (McSherry
et al., 2015; Maass et al., 2017), we find that these orderings still result in
IO-bound GNN training due to a non-optimal amount of swaps (Section 5.2).
Moreover, when data orderings which only focus on minimizing IO are applied
to GNN training, they lead to reduced model accuracy (these orderings
heavily conflict with the random orderings preferred by stochastic gradient
descent). In fact, we find that accuracy can drop by up to 16% on common
GNN benchmarks with using disk-based training instead of training with
the entire graph in CPU memory. To address these challenges, in Chapter 5
we propose BETA, a buffer-aware partition replacement policy and data
ordering which results in a near-optimal number of swaps, and COMET,
a policy which build on BETA but increases the amount of randomness
present in the order in which examples are used for training, leading to
increased accuracy for GNN training.

2.3.3 Challenge: Scalable Distributed Training
As highlighted above, multi-hop neighborhood sampling overheads on the
CPU are a major challenge for mixed CPU-GPU mini-batch training; this
challenge becomes even more apparent for distributed GNN training over
multiple GPUs. In fact, we find that even when there is zero communication
involved, and we use our optimized sampling implementation introduced in
Chapter 3, mini batch preparation can bottleneck distributed GNN training,
leading to GPU underutilization and unnecessarily expensive training. This
problem is exacerbated on common cloud machines with fast GPUs and

31

1 GPU 8 GPUs
0

500

1000

Av
er

ag
e

Ba
tc

h
Ru

nt
im

e
(m

s) Neighbor Sample
Feature Load
CPU-to-GPU
Compute

Figure 2.6: Breakdown of the average runtime per training iteration
in our state-of-the-art system MariusGNN (GraphSage-Large on OGBN-
Papers100M; details in Section 6.3). Despite optimized implementations,
neighborhood sampling plus feature loading on the CPU dominates GNN
runtime as compute resources are scaled.

fixed CPU resources.
For example, in Figure 2.6 we show the average time for mini batch

preparation and computation across training iterations on a common GNN
benchmark. Figure 2.6 shows that multi-hop sampling (even when optimized
as described in Waleffe et al. (2023) and Chapter 3) and feature loading—
which together encompass mini batch preparation—dominate overall training
time as the number of GPUs increases. This occurs because distributed
data parallel training with weak scaling, commonly used to distribute GNN
training, requires preparing one mini batch per GPU for each training
iteration. For example, eight GPU training requires preparing eight times
more data, leading to an increase in neighborhood sampling and feature
loading times, but not an increase in GNN computation time because each
mini batch is processed in parallel across the eight GPUs.

Given the runtime discrepancy, it’s necessary to increasingly parallelize
mini batch preparation across CPUs as the number of GPUs increases in
order to keep them busy with computation. Existing systems, however,
rely only on the fixed set of CPU resources attached to GPU machines
for this parallelization, fundamentally hindering their ability to prepare
batches (Kaler et al., 2022; Zheng et al., 2022). To highlight this issue,
in Figure 2.7, we show the CPU utilization of the state-of-the-art system

32

0 10 20 30 40 50 60 70
Epoch Runtime (s)

0

50

100

CP
U

Ut
il.

 (%
)

Salient++ 1 GPU
Salient++ 4 GPU

Figure 2.7: CPU utilization in the state-of-the-art system Salient++ when
training a GraphSage-Small GNN on OGBN-Papers100M (details in Sec-
tion 6.3). Nearly all CPU resources are used to parallelize mini batch
preparation and minimize training time with one GPU; the CPU resources
are insufficient for multi-GPU training, leading to sublinear speedups.

Salient++ (Kaler et al., 2023) during GNN training. Salient++ requires
more than 80 percent of the CPU to prepare batches in parallel and fully
utilize one GPU. When training with four GPUs, the CPU is fully saturated,
limiting the throughput of mini batch preparation, leading to sublinear
scaling (1.6× instead of the possible 4×), and resulting in expensive GPUs
sitting partially idle.

The above observations motivate a disaggregated system for large-scale
GNN training that supports scaling each part of the workload independently.
While disaggregation has improved resource efficiency in traditional ML
settings (Graur et al., 2022; Jin et al., 2024), prior work on disaggregated
GNN training (Dorylus (Thorpe et al., 2021)) has focused only on utilizing
serverless functions and full multi-hop neighborhoods (i.e., no sampling).
Full neighborhoods, however, lead to expensive communication for multi-
layer GNNs and a serverless architecture limits the type of models that
can be trained efficiently without GPUs. On a common GNN benchmark,
we find that Dorylus plateaus at 89.6s/epoch ($3.75/epoch); GPU-based
systems can be 12× faster and 53× cheaper (details in Table 6.1 left).

In Chapter 6, we present Armada, a new system for GNN training which
disaggregates CPU-based mini batch preparation from GPU-based GNN
computation, allowing the resources dedicated to parallelizing each part of

33

the workload to be scaled independently, and enabling scalable distributed
GNN training over multiple GPUs.

2.4 Weather Prediction: A Motivating
Application

As a motivating application for large-scale GNN training, in this Section
we consider the task of global weather forecasting, which has significant
implications ranging from predicting the surface temperature at various
locations around the globe to predicting the path of a hurricane. Below,
we describe how this task can be implemented using GNNs as well as the
challenges and benefits in doing so.
How to Use GNNs for Weather Prediction To map the task of weather
forecasting to GNN training and inference, the first step is to define the
input graph and feature vectors. In this case, a natural choice is to use graph
nodes to represent latitude and longitude grid points and to use edges to
connect nearby grid points together (potentially with edge weights describing
distance and location). Node feature vectors can then be used to describe
physical data variables (e.g., temperature) at each latitude and longitude
grid point and at some specific time. This implies that the total number of
graph features is num_time ∗ num_lat ∗ num_long ∗ feature_dim (if the
graph contains data about num_time timestamps, num_lat latitude grid
points, num_long longitude grid points, and feature_dim data variables).
These feature vectors can be downloaded from historical records (e.g., ERA5
reanalysis (Hersbach et al., 2020)).

Given the input graph and feature vectors, a GNN can be trained to
forecast the weather in similar fashion to the task of node classification as
described above. In this setting, a single GNN input example consists of a
node and its feature vector at some timestamp t (and the necessary feature
vectors of neighboring nodes at timestamp t) and the "label" consists of the
node features at some later timestamp t+α. In this way, the GNN is trained

34

to predict the weather for each node at some later timestamp t + α given the
weather at that node and its neighbors at some earlier timestamp t. Once
the GNN is trained, it can be fed the weather (features) for a timestamp t

and used to forecast the weather (features) for timestamp t + α.
We remark that the above is meant to provide only a high level overview.

In practice, more sophisticated modeling is used (e.g., different grids better
suited for the globe, multi-resolution grids to capture local and global
weather patterns, etc.). More details can be found in Lam et al. (2022).
Workload Challenges GNN training for the application of weather
prediction is primarily limited by the ability to efficiently scale to the large
corpus of existing weather data, a task which is necessary to perform both
research and achieve state-of-the-art results. This limitation prevents only
a select few from working on GNN-based weather forecasting models. For
example, just a single year’s worth of basic training data (one degree latitude
and longitude grid, 84 data variables) is over 200GB, but realistic training
scenarios require many TBs (e.g., 53TB as described in the introduction).
This Dissertation: Towards Democratizing GNN Training Moti-
vated by the need to support GNN training in the presence of TBs of node
feature vectors, as described in Chapter 1, this dissertation aims to enable
cost-effective, scalable GNN training over massive graphs, even with limited
resources. As a demonstration of the algorithms and systems described in
this thesis, we apply them to the task of weather forecasting.

We used six data variables (temperature, geopotential, humidity, east-
ward wind, northward wind, vertical wind) at 13 pressure levels in the
atmosphere and a one degree latitude and longitude grid (plus six additional
features: 1) the day of the year, 2) the time of day, 3) sin(longitude), 4)
cos(longitude), 5) sin(latitude), 6) cos(latitude)). We use an α of six hours.
In this setting, the MariusGNN system introduced in this dissertation (Wal-
effe et al., 2023), can perform training over an entire years worth of data
(with feature vectors at every hour in the year) in just four minutes using

35

Figure 2.8: Example six hour GNN-based temperature forecast for the
United States given an initial state in January 2023. The GNN model used
to make this prediction was trained using the MariusGNN system described
in this thesis on a single machine with a single GPU.

just a single machine (and disk) and a single NVIDIA V100 GPU.
In Figure 2.8, we visualize a sample weather forecast using our trained

GNN model. Starting from an initial state at timestamp t (top), we show
the temperature forecast six hours in the future (bottom right) and compare
to the actual temperature that truly occurred at that time (bottom left).
Implications GNN-based weather forecasts have potential to improve
accuracy due to their ability to capture patterns in the spatial data which
may not be represented in the explicit physical equations used by current
numerical weather prediction algorithms. It also offers the potential for
greater efficiency; for example, GraphCast needs just one minute to generate
a forecast compared with six hours for existing state-of-the-art numerical
weather prediction algorithms Lam et al. (2022). These efficiency improve-
ments allow for the use of larger ensemble models (the combination of many
predictions using slightly different initial states) which helps to better predict
rare weather events and provide early warnings when they do occur.

36

We hope that the contributions in this thesis help to enable researchers
to more quickly, easily, and cheaply continue to develop GNN-based weather
prediction models. Yet, while we have used this application as an example
in this section, GNNs are being applied to many applications beyond global
weather forecasting which can have different requirements and challenges
(e.g., learnable feature vectors). Thus, we focus primarily in this thesis on
general, abstract GNN training over arbitrary graphs.

2.5 Related Work
We highlight works related to this dissertation which seek to address similar
challenges to those described above in Section 2.2 and 2.3.
Systems for ML over Graph Data Many systems support GPU
training of GNNs (Gandhi and Iyer, 2021; Jia et al., 2020; Kaler et al.,
2022; Zhu et al., 2019; Lin et al., 2020; Dong et al., 2021; Wu et al., 2021).
Two such popular systems are DGL (Wang et al., 2019) and PyTorch
Geometric (Fey and Lenssen, 2019). Complementary to these systems, many
works focus on scaling different dimensions of GNN training: To reduce the
overhead of mixed CPU-GPU training, some works highlight the importance
of GPU-oriented data communication or caching (Min et al., 2021a,b; Kaler
et al., 2022; Lin et al., 2020; Dong et al., 2021). Additional works focus on
optimized GPU kernels (Wang et al., 2021b). In general, these works focus
on orthogonal challenges of GNN training than those discussed here and
these ideas can be incorporated into our systems (MariusGNN and Armada).
Finally, there are works that focus on scaling the training of non-GNN based
graph models (Zheng et al., 2020b; Lerer et al., 2019; Akyildiz et al., 2020).
Large-Scale Training To scale GNN training to graphs that exceed the
CPU memory capacity of a single machine, many works opt for a distributed
multi-machine approach (Zheng et al., 2022; Gandhi and Iyer, 2021; Jia et al.,
2020; Zhu et al., 2019; Wang et al., 2021a). Some of these works share design
choices with the systems discussed in this dissertation. For example, recent

37

work introduces DistDGLv2 as a distributed version of DGL (Zheng et al.,
2022) and utilizes METIS partitioning, colocation of data with mini batch
computation, and asynchronous mini batch preparation, but they do not
use GREM or disaggregation to scale training. Several of these works aim
to reduce cross-machine communication during multi-hop sampling, either
by using min-edge-cut partitioning (Zheng et al., 2022) or by employing
feature replication on each machine (Liu et al., 2023; Kaler et al., 2023).
Other works distribute training in a serverless manner (Thorpe et al., 2021).
Still other works focus on scaling training using disk storage; these works
primarily focus on training for link prediction using non-GNN models (Sun
et al., 2021; Lerer et al., 2019). In this dissertation, we focus on disk-based
GNN support for both node classification and link prediction as well as
scalable distributed GNN training for these tasks.
Neighborhood Sampling Many works focus on reducing the overhead
of neighborhood sampling. Initial approaches sample a fixed number of
neighbors per node (Hamilton et al., 2017), while follow-up works sam-
ple a fixed number of neighbors per layer (Chen et al., 2018; Zou et al.,
2019). Other works decouple the sampling frequency from the mini batch
frequency (Ramezani et al., 2020). In this dissertation, we focus on sampling
a fixed number of neighbors per node with minimal redundancy. Still other
works focus on making mini-batch training more efficient by increasing the
density of edges between nodes in a mini batch (Zeng et al., 2020; Chiang
et al., 2019). These contributions can be incorporated in our work and are
orthogonal to our study. Finally, recent works utilize GPUs to speed up
sampling (Dong et al., 2021; Jangda et al., 2021). The systems introduced in
this dissertation support GPU-based sampling but use CPU-based sampling
to scale to large graphs.

38

3 efficient mixed cpu-gpu mini-batch
training

In this Chapter, we focus on techniques to maximize GPU utilization, and
thereby minimizing cost and runtime, during mixed CPU-GPU mini-batch
training. In Section 3.1, we present a pipelined architecture for asynchronous
training that overlaps data preparation and movement with computation
to achieve high throughput. Then, in Section 3.2 we introduce Optimistic
Asynchrony Control (OAC) to ensure that asynchronous training results
in models with accuracy equivalent to those obtained through synchronous
training. In Section 3.3, we introduce the DENSE data structure to minimize
the redundant computation present in multi-hop neighborhood sampling,
and thus the overhead of this mini batch preparation step.

We implement the above techniques in a new system which we call
MariusGNN (Waleffe et al., 2023); in Section 3.4, we present end-to-end
results for mixed CPU-GPU GNN training in MariusGNN and compare
to existing state-of-the-art systems. We show that MariusGNN with one
GPU can train to the same accuracy 4× faster than existing systems, even
when these systems use multiple GPUs. We also show that DENSE enables
in-CPU multi-hop sampling that is up to 14× faster than the corresponding
implementations in state-of-the-art baselines.

3.1 Asynchronous Pipelined Training for
High Throughput

MariusGNN uses a pipelined architecture for mixed CPU-GPU GNN training.
We discuss the overall design and then the details of each pipeline stage.
Pipeline Design Our architecture divides mixed CPU-GPU mini-batch
training into a five-stage pipeline with queues separating each stage (Fig-
ure 3.1). Four stages are responsible for data preparation and movement

39

operations, and one stage is responsible for GNN model computation and
on-GPU parameter updates. The four data movement stages have a config-
urable number of worker threads, while the model computation stage uses
only a single worker to ensure that GNN parameters stored on the GPU
are always updated synchronously (see Section 2.2). We next describe the
different stages of the pipeline and responsibilities of each during training:
Stage 1: Prepare The first pipeline stage is responsible for mini batch
preparation and occurs on the CPU. As described in Section 2.2, this
step consists of sampling and loading a set of training examples (e.g.,
nodes or edges) from the input graph, sampling the necessary multi-hop
neighborhoods for these training examples, and loading the corresponding
feature vectors that form the input to GNN models. Once a batch is prepared
by a worker thread, it is pushed onto a queue, which we call the GPU transfer
queue, and the worker can begin preparing another mini batch.
Stage 2: Transfer The input to this stage consists of prepared mini
batches from the previous stage. Worker threads in this stage continuously
read mini batchs from the GPU transfer queue and asynchronously transfer
them from CPU memory to GPU memory using CUDA Steams (Nickolls
et al., 2008). Once on the GPU, the are added to the GNN input queue.
Stage 3: Compute The compute stage is the only stage that takes
place entirely on the GPU. The compute worker thread reads prepared mini
batches off of the GNN input queue and computes the GNN output for the
target nodes, using the latest GNN model weights that are stored in GPU
memory. The GNN output is then used to compute gradients and update
the GNN model parameters. Any updates to learnable feature vectors (i.e.,
gradients that need to be added to the previous version of these vectors)
are added to the GNN output queue to be transferred from GPU memory
back to CPU memory. After completing the GNN computation for one mini
batch, the GPU proceeds immediately to computation on the next batch
available in the GNN input queue in GPU memory.

40

Node
Feature
Vectors

Compute GNN Model
Parameters

CPU Memory GPU Memory

Graph Edges

Transfer

TransferPrepare

Update

Legend
Queue Batch Data flow Stage

Transfer Queue Input Queue

Update Queue Output Queue

Figure 3.1: Overview of pipelined GNN training in MariusGNN.

Stage 4: Transfer The updates to feature vectors generated in Stage
3 and placed in the GNN output queue are read by worker threads and
transferred from GPU memory back to CPU memory. We use similar
mechanisms as in Stage 2. Once on the CPU, the feature vector updates
are added to the update queue in CPU memory.
Stage 5: Update The final stage in our pipeline consists of worker
threads which read updates to learnable feature vectors from the update
queue and apply them to the feature vector lookup table in CPU memory
so that they can be read by future batches.

This pipelined architecture allows MariusGNN to asynchronously prepare
and transfer mini batches from the CPU to the GPU (and any updates back
if needed), ensuring that the GPU does not sit idle while waiting for data
preparation or data movement, helping to optimize GPU utilization and
throughput during GNN training.

3.2 OAC: Optimistic Asynchrony Control
for High Accuracy

As described in Section 2.2, the main challenge when using a pipelined archi-
tecture is that, for learnable feature vectors, asynchronous processing of mini
batches introduces staleness that can lead to lower model accuracy (Kyrola

41

et al., 2012). We now introduce Optimistic Asynchrony Control (OAC), a
protocol for mixed CPU-GPU training that allows for parallel preparation
and transfer of batches but eliminates staleness and guarantees that asyn-
chronous training reaches the same model accuracy as synchronous training.
OAC can be applied to any mixed CPU-GPU training pipeline in which
learned parameters are stored in CPU memory but transferred and updated
on the GPU during training (i.e., not just GNN training); thus, here we use
more general language and refer to feature vectors and GNN computation
simply as parameters and model computation respectively.

3.2.1 Overview and Key Ideas
OAC is motivated by database concurrency control which solves an analogous
challenge. To increase throughput, databases allow multiple transactions to
run in parallel, but they ensure that the final result is equivalent to a serial
execution of each transaction. Initial approaches relied on locking of data
objects to prevent two simultaneous transactions from running in parallel and
modifying the same records (known as pessimistic approaches). Optimistic
methods for concurrency control (termed OCC (Kung and Robinson, 1981;
Tu et al., 2013)), however, always allow transactions to be processed in
parallel, but validate that no concurrent transactions conflict before writing
updates to the database. If validation fails, two transactions accessed the
same data concurrently and one transaction must abort to prevent updating
the database to an inconsistent state.

For OAC, rather than adopting a pessimistic approach and preventing
batches which overlap (i.e., access the same parameters in CPU memory)
from running in parallel, we take an optimistic approach and allow all
batches to run concurrently but validate parallel batches against each other
for overlap before model computation. Unlike in conventional OCC where
overlapping transactions require aborts, in OAC we show how batches which
access the same parameters concurrently can be updated just before the
model computation step to have the correct parameters. Here, the correct

42

parameters refer to the values each batch would have had if they had been
processed one at a time (i.e., if synchronous training had been used).
Key Ideas Specifically, the key contributions of OAC are as follows. First,
we highlight that in pipelined mixed CPU-GPU training, the order in which
batches pass through the GPU computation step defines a one-by-one, serial
order over batches. Given this order, the goal of OAC is to ensure that
asynchronous training results in the same updates to model parameters
as synchronous training would have produced according to this order. To
achieve this goal, we introduce timestamps for each parameter to track
different versions and allow us to easily decide which value to accept for a
parameter in the presence of multiple options. Finally, we add an on GPU
parameter cache to track the parameter sets of concurrent batches. This
cache allows us to validate that a batch has the correct parameter values
just before it enters computation to produce model updates.

3.2.2 OAC: Optimistic Asynchrony Control
We now discuss the OAC protocol in detail. To aid in the description, we
continue with the running example of two batches which access parameters
labeled {a, c, f} and {a, b, h}, the synchronous and asynchronous processing
of which has previously been described in Section 2.2 (Figure 2.3).

3.2.2.1 The Serial Order

The goal of OAC is to ensure that asynchronous training produces updates
to model parameters that are equivalent to synchronous training according
to some order of batches. The first question is then: what order of batches?
Recall from Section 3.1 that in our pipelined architecture, batches are read
and transferred in parallel from the CPU to an on GPU input queue. The
GPU then reads batches one by one from this queue for computation. We
refer to this one by one order of mini batches as the computation order.

This existence of the computation order is necessary for OAC. Given
the computation order, the goal is to ensure that asynchronous training

43

produces the same parameters in CPU memory as those that would have been
produced had mini batches been prepared and transferred synchronously
according the computation order. We remark that even though batches are
processed by the GPU sequentially in asynchronous training, by default
asynchronous training does not result in the same parameters in CPU
memory as synchronous training (see Section 2.2).

3.2.2.2 Equivalence to The Serial Order

Given the computation order defined in Section 3.2.2.1, we now seek to
ensure that asynchronous training is equivalent to synchronous training
according to this sequence of batches.

Parameter Timestamps To achieve this goal, OAC introduces times-
tamps for each CPU parameter (Figure 3.2a). Parameter timestamps are
used to determine the correct parameter value in the presence of multiple
versions. The OAC protocol requires that parameter timestamps are read
together with parameters themselves. Critically, to write a parameter, OAC
requires that the writer has a larger timestamp for the parameter of interest
than the timestamp for which it is trying to overwrite. Smaller timestamps
are not allowed to overwrite larger timestamps. The importance of this
point will be highlighted below. Timestamps are initialized to minus one.

Parameter Locks OAC also introduces per-parameter locks which must
be acquired before reading or writing a parameter and its corresponding
timestamp (Figure 3.2a). These locks ensure that each read and write of a
parameter value plus its timestamp is atomic, and are needed in the presence
of concurrent reader/writer threads; a parameter may be more than just a
single float (e.g., a feature vector for GNN training), thus reading or writing
it may require more than just one atomic harware operation.

Given parameter timestamps and locks, mini batch preparation and
transfer in OAC proceeds as before in asynchronous pipelined training—
batches of parameters can be read and transferred to and from the GPU

44

in parallel (Figure 3.2a). The key difference between OAC and standard
pipelined training comes once batches reach the GPU.

On-GPU Parameter Validation When a batch is removed from the
GPU input queue for computation, OAC requires that it first check an
on-GPU cache of parameter values; this cache serves to track the parameters
and updates of concurrent batches. If any parameters in the batch are present
in the cache, and the values in the cache have a larger timestamp, then the
parameters in the batch must be replaced by the values in the cache. Then,
after the model computation and the parameters in the batch have been
updated, they are assigned a new timestamp according to a GPU timestamp
counter, which is then atomically incremented. Assigning timestamps to
parameters immediately after they are update by the GPU means timestamps
capture the computation order. Finally, before being placed on the GPU
output queue to be transferred back to the CPU, updated parameter values
and their timestamps are written to the GPU cache. Batches which were
prepared and transferred in parallel can then subsequently validate against
the cache and ensure that their parameters have the correct values according
to synchronous training with the computation order.
Example Returning to our running example, we assume batch {a, c, f} is
first to be removed from the GPU input queue (i.e., first in the computation
order). As shown in Figure 3.2a, based on the OAC protocol, this batch
checks the cache before proceeding. In this case, there is nothing to do,
as it is the first batch to be processed. The batch can then proceed with
the model computation and parameter updates (e.g., {a, c, f} → {a′, c′, f ′}).
After the parameters have been updated, the GPU assigns these updates a
new timestamp (e.g., {a′, c′, f ′} are assigned timestamp zero in Figure 3.2a).

The other batch in our running example, {a, b, h}, is next to be processed
by the GPU. Thus, it is the second batch in the computation order and the
OAC protocol must ensure that the computation for this batch is equivalent
to the computation that would have occurred had training waited for the

45

CPU GPUParameters
a
c
f

Mini Batch
a
c
f

a’
c’
f’

1) check
cache

a
b
h

a
b
h

Timestamps

-1
-1
-1

-1
-1
-1

-1
-1
-1
-1
-1
-1

-1
-1
-1

0
0
0

-1
-1
-1
-1
-1

Cache

2) compute update

3) write
update

a
c
f

a
b
c
d
e
f
g
h

-1
-1
-1

-1

-1
-1
-1
-1

lock

(a) The first of two parallel batches is processed by the GPU. It is then assigned
the timestamp zero and its parameter updates are written to the on-GPU cache.

CPU GPU

a
b
c
d
e
f
g
h

Parameters
a
c
f

Mini Batch
a
c
f

a
c
f

a’
c’
f’

1) check
cache

a
b
h

a
b
h

a’
b
h

a’’
b’
h’

-1
-1
-1

-1

-1
-1
-1
-1

Timestamps

-1
-1
-1

-1
-1
-1

-1
-1
-1
-1
-1
-1

0
-1
-1

-1
-1
-1

1
1
1

0
0
0

a’
c’
f’

0
0
0
-1
-1

Cache

2) compute update

3) write
update

(b) The second of two parallel batches is processed by the GPU. It notices a newer
version of parameter a in the cache, and thus updates its value a → a′ before
model computation. In doing so, this batch ensures it has the same parameter
values as it would have had according to synchronous training after the first batch.

CPU GPU

a’’
b’
c’
d
e
f’
g
h’

Parameters
a
c
f

Mini Batch
a
c
f

a
c
f

a’
c’
f’

a’
c’
f’

a’
c’
f’

1) check
cache

a
b
h

a
b
h

a’
b
h

a’’
b’
h’

a’’
b’
h’

a’’
b’
h’

1
1
0

1

-1
-1
0
-1

Timestamps

-1
-1
-1

-1
-1
-1

-1
-1
-1
-1
-1
-1

0
-1
-1

-1
-1
-1

1
1
1

0
0
0

0
0
0

1
1
1

1
1
1

0
0
0

a’’
c’
f’
b’
h’

1
0
0
1
1

Cache

2) compute update

3) write
update

(c) The two parallel batches write their updates to CPU memory. Only the value
of a with the larger timestamp will persist, ensuring that the final parameter
states are equivalent to those obtained through synchronous training.

Figure 3.2: Example of OAC parallel batch processing while ensuring equiv-
alence to a synchronous execution of batches.

46

updates {a, c, f} → {a′, c′, f ′} to make it back to the CPU before preparing
and transferring {a, b, h}. Processing of this batch is depicted in Figure 3.2b.
Based on the OAC protocol, the batch must validate its parameters against
concurrent batches by checking the GPU cache. In this case, there is a
conflict for parameter a versus a′. In other words, a concurrent batch has
modified a → a′. The timestamp of a′ in the cache is zero while the batch
has timestamp minus one for its version of a. Thus, the value of a′ is the
more recent version for this parameter according to the computation order
and the batch must replace a with a′ before it proceeds with computation.
As such, the batch {a, b, h} is first updated to {a′, b, h}, and then updated
by the model computation to {a′′, b′, h′}. As before, after the computation
step the parameters are assigned timestamp one, and the parameter updates
are added to the cache. The value for a′ with timestamp zero is replaced
by a′′, the newer timestamp version of this parameter. The resulting cache
state is shown in Figure 3.2c.

To complete our running example, the two batches can be transferred back
to the CPU in parallel. They can also write their updates to CPU memory
in parallel, but must grab per-parameter locks and obey the timestamp rules.
If the batch with timestamp one acquires the lock to parameter a first, it
will update a → a′′ and update the timestamp to one. When the batch with
timestamp zero subsequently acquires the lock to parameter a (now a′′), it
will notice that the CPU timestamp is larger than its timestamp. Thus, it
must not overwrite this value. It is required to do nothing and release the
lock. This ensures that older updates according to the computation order
do not overwrite newer updates. Notice that the final state of our CPU
parameters is {a′′, b′, c′, d, e, f ′, g, h′}—this is equivalent to the final state
achieved with synchronous training using the computation order of batches
(as described initially in Section 2.2).

47

3.2.2.3 Implementation

The main OAC protocol has been presented in the previous section. We
now discuss several considerations required to implement OAC in practice.

Cache Eviction While we have discussed adding parameter values and
their timestamps to the on-GPU cache, we have not discussed when to
evict values. Eviction is required to prevent the cache size from growing
indefinitely, as it is assumed for mixed CPU-GPU training that the full set of
parameters is too large to fit in GPU memory. Intuitively, a parameter can
be evicted when we can ensure that all subsequent batches to be processed
by the GPU will have already had the chance to see this parameter value
when they were prepared on the CPU. In other words, a parameter with
timestamp x on the GPU can be evicted when we can guarantee that future
batches seen by the GPU which contain this parameter will have read a
timestamp greater than or equal to x for this value from CPU memory.

In OAC, we utilize additional metadata to help implement cache eviction.
First, the CPU tracks the maximum finished consecutive timestamp (MFCT)
received from the GPU. This value is updated atomically after each batch
finishes writing updates to CPU memory. It corresponds to the largest
continuous batch timestamp which has finished. For example, if batches
with timestamp {0, 1, 2, 5, 6} have completed, regardless of the order in
which they finished, the MFCT is 2. If batches 3 and 4 later arrive on the
CPU, the MFCT will then be 6. Just before the parameters in a batch are
read, this value is read atomically and added to the batch metadata. In this
way, each batch knows the maximum timestamp for which it can guarantee
that all updates equal or prior to this value in the computation order were
present in CPU memory when it began reading parameter values. Thus, a
batch with MFCT equal to y will not need to read parameter values with
timestamp less than or equal to y from the GPU validation cache.

The final metadata required for cache eviction is a dictionary of outstand-
ing batches (batches that are somewhere in the pipeline) and their MFCT

48

values. Upon creation, each batch is assigned an ID (not necessarily the same
as its computation order timestamp); the pair {BatchID : BatchMFCT}
is then atomically added to an outstanding batches dictionary. When batches
finish writing updates back to CPU memory, their key-value pair is atomi-
cally removed from this data structure. For cache eviction, when a batch
reads its MFCT value and adds its key-value pair to the outstanding batches
dictionary, it also atomically calculates the minimum MFCT value across
all batches in the dictionary. This value is stored in the batch’s safe to evict
(STE) metadata field. When batches are read by the GPU, all parameter
values with timestamp less than or equal to the STE metadata field can be
evicted. In OAC, the GPU performs this eviction for each batch it processes.

When a batch calculates its safe to evict timestamp, even if this batch
somehow beats all other outstanding batches to the GPU queue, it is still
okay to perform eviction as described above. This is because all subsequent
outstanding batches have an MFCT greater or equal to the STE value. That
means that they were prepared on the CPU after the entries we wish to
evict had already been persisted in CPU memory. Any future batches that
will be prepared on the CPU will also have an MFCT greater than or equal
to this value. Thus no batch will ever again reach the GPU and find a
timestamp for a parameter less than the STE value but greater than than
the timestamp it read from CPU memory. Therefore, no batch will ever
again need to read timestamps less than or equal to the STE value from the
cache and they can be safely evicted.

Deadlock Prevention When implementing OAC, one also needs to
consider whether the per-parameter locks introduced for ensuring atomic
reads and writes to parameter values and their timestamps can introduce
deadlocks. In principle the answer is yes, however we have not observed
this phenomena in practice. One possible reason is that these locks are
extremely lightweight. They are held only for the time it takes to read
or write a few bytes from CPU memory. For this reason, currently we do

49

nothing to prevent deadlocks in OAC. If deadlocks were prevalent, a simple
solution would be to require that all batches read and write the parameters
in a global order. For example, this could be achieved by assigning the
parameter values IDs and then reading and writing in sorted ID order.

3.2.3 Empirical Evaluation of OAC
In this section, we evaluate OAC by comparing its throughput and conver-
gence with standard synchronous and asynchronous training. We show that
OAC achieves synchronous convergence while maintaining asynchronous
throughput, offering the best of both methods for mixed CPU-GPU training.

3.2.3.1 Experimental Setup

We evaluate OAC on the task of link prediction and use learned feature
vectors for all nodes in the input graph (see Section 2.1). We run experiments
on the Freebase86m knowledge graph (Google, 2018). This graph has roughly
86 million nodes, and we use a feature vector of size 50 for each node (called
the embedding dimension). This leads to 17GB of storage overhead for these
features (each parameter is four bytes). We store features in CPU memory.
We measure link prediction accuracy using the metric Mean Reciprocal
Rank (MRR) (Mohoney et al., 2021). This quantity tries to capture how
well learned feature vectors can be used to recover the edges of the graph
and takes values between zero and one—the higher the better. We run
experiments on two machines. One with 80 CPU cores and one with 20
CPU cores. Both machines have one NVIDIA Tesla V100 GPU.

We compare OAC with synchronous and asynchronous training in terms
of convergence, i.e., the accuracy with respect to the number of training
iterations (batches that have passed through the GPU computation step),
and time-to-accuracy, i.e., how long (wall clock training time) does it take
for a model to reach a given accuracy. Time-to-accuracy is the primary
practical metric of interest. For example, if asynchronous training increases
throughput by a factor of two, it can process twice as many batches as

50

2000 4000 6000 8000 10000 12000
Training Time (Seconds)

0.690

0.695

0.700

0.705

0.710

0.715

0.720

0.725

0.730

M
RR

OAC
Async
Async (T)
Sync

(a) Setup 1: We train a one-layer Graph-
Sage (Hamilton et al., 2017) plus Dist-
Mult (Yang et al., 2014) GNN with em-
bedding dimension 50 using 20 neigh-
bors per node and a batch size of 50k
examples. Training was performed on
a machine with 80 CPU cores and one
NVIDIA Tesla V100. Each batch ac-
cesses roughly 2 million feature vectors.

0 1000 2000 3000 4000 5000 6000 7000
Training Time (Seconds)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
RR

OAC
Async (T)
Sync

(b) Setup 2: We train a zero-layer Dist-
Mult GNN (feature vectors are passed
directly into the DistMult score func-
tion) with embedding dimension 50
using a batch size of 500k examples.
Training was performed on a machine
with 20 CPU cores and one NVIDIA
Tesla V100. Each batch access roughly
1 million feature vectors.

Figure 3.3: Time-to-accuracy for OAC versus asynchronous and synchronous
approaches in two different settings. In both cases, OAC provides the best
time-to-accuracy for mixed CPU-GPU GNN mini-batch training. For these
experiments, accuracy is measured using MRR.

synchronous training per unit time. However, if it also requires twice as
many batches to converge to the desired accuracy, then the overall training
time of the two methods will be the same.

3.2.3.2 Time-To-Accuracy

We plot model accuracy versus wall clock training time for OAC, asyn-
chronous, and synchronous training using two different setups in Figure 3.3.
Using each method, we trained for ten epochs and measure the MRR (ac-
curacy) after each one. Recall that one epoch refers to one full pass over
the training examples and results in a fixed number of batches. Thus all
methods see the same total number of batches pass through the GPU.

51

In Figure 3.3a, asynchronous training is shown by the orange line (labeled
Async) and is barely visible in the bottom middle of the plot. The reason for
this is that for asynchronous training we maximize the number of parallel
threads and queue sizes to maximize pipeline throughput (see Section 3.1).
Blindly running asynchronous training, however, causes a severe degradation
in model accuracy. Thus, we also include a tuned version of asynchronous
training (Async (T)), where we manually tune the number of threads and
queue sizes for each pipeline stage in order to find the best configuration.
This tuning allows us to regain much of the lost accuracy of asynchronous
training with very little throughput loss. Both Async and Async (T) finish
the ten epochs roughly twice as fast as synchronous training (roughly 6500s
versus 12500s), but synchronous training ends with a higher MRR (accuracy).
OAC outperforms all other methods and does not require the manual tuning
of Async (T). For OAC, we simply maximize the number of threads and
queue sizes in the pipeline and use the method described in Section 3.2.2.
Figure 3.3a shows that OAC achieves the fastest time-to-accuracy. This is
because it maintains the throughput of asynchronous training, also finishing
the ten epochs in 6500s, while matching the convergence of synchronous
training (which we highlight below).

Figure 3.3b shows a second experiment using a different model and
hardware configuration. In this case, tuned asynchronous training manages
to achieve similar accuracy to synchronous training while learning more than
three times faster. We do not show the default asynchronous training as it
is roughly equivalent to the tuned setup. The reason asynchronous training
is able to perform well in this case is twofold: First, batches access roughly
half the number of features of the setup in Figure 3.3a. Second, the machine
has one quarter of the CPU resources, limiting the number of batches it can
process concurrently. Both of these differences result in fewer concurrent
batches which overlap—recall that the fewer conflicts there are, the more
likely asynchronous training is going to perform well. That said, however,

52

2 4 6 8 10
Epochs

0.690

0.695

0.700

0.705

0.710

0.715

0.720

0.725

0.730

M
RR

0.4

0.5

0.6

0.7

OAC
Async
Async (T)
Sync

(a) Setup 1 (Figure 3.3a)

2 4 6 8 10
Epochs

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
RR

OAC
Async (T)
Sync

(b) Setup 2 (Figure 3.3b)

Figure 3.4: Convergence of OAC versus asynchronous and synchronous
approaches for the experimental settings described in Figure 3.3. In both
cases, OAC converges at the same rate as synchronous training; this is not
true for asynchronous training, particularly in Setup 1.

in Figure 3.3b, OAC also trains over three times faster than synchronous
training and is guaranteed to reach the same model quality.

3.2.3.3 Convergence

To highlight that OAC converges at the same rate as synchronous training,
we plot the accuracy from the experiments in Section 3.2.3.2/Figure 3.3
again in Figure 3.4, but this time versus epoch number rather than versus
training time. Recall that for each epoch, all methods see the same number
of batches pass through the GPU, thus Figure 3.4 shows the accuracy with
respect to the number of processed batches.

Figure 3.4 shows that OAC matches the convergence of synchronous
training. In contrast, in Figure 3.4a, asynchronous training converges
so poorly, that it requires its own scaling of the vertical axis. Tuned
asynchronous training converges faster, reaching 0.6925, 0.725, and 0.7275
MRR after 1, 5, and 10 epochs respectively. Synchronous training and OAC
both achieve 0.7175 MRR after one epoch and 0.73 MRR after 10 epochs.
In this case, OAC converges slightly faster than synchronous training during

53

the middle epochs. This is because OAC is guaranteed to be equivalent to
some synchronous order, not necessarily the exact synchronous order that
was used for training by the synchronous experiment in Figure 3.4a.

The convergence of each method for the training setup of Figure 3.3b
is shown in Figure 3.4b. As described above, in this case asynchronous
training actually performs quite well—it converges at nearly the same rate as
synchronous training. Again, however, OAC is guaranteed to converge at the
rate of some synchronous order; in Figure 3.4b, the OAC and synchronous
lines nearly perfectly overlap.

3.3 DENSE: Efficient Multi-hop
Neighborhood Sampling

Given a pipelined architecture plus OAC for mixed CPU-GPU GNN training,
we now focus on minimizing the overhead of multi-hop neighborhood sam-
pling to improve the throughput of mini batch preparation, and thus training
overall, in this architecture. To do so, we introduce the Delta Encoding
of Neighborhood SamplEs data structure or DENSE for short. DENSE’s
key idea is to minimize single-hop sampling redundancy while constructing
multi-hop neighborhoods by caching and reusing previous samples. Dense
also allows for efficient GNN forward passes using dense kernels for linear
algebra operations. We discuss each in turn.

3.3.1 Neighborhood Sampling With DENSE
Recall from Section 2.1 that to compute the representation of a set of target
nodes after k GNN layers, we need to sample their k-hop neighborhood.
For example, in Figure 2.1, we showed how to compute the representation
of target node A after two layers. To compute h2

A we used h1
C and h1

D

by sampling C and D from A’s one-hop neighborhood. Computing h2
A,

however, uses h1
A which requires sampling the one-hop neighborhood of node

A again. Performing these two one-hop sampling operations independently

54

E

A B

DC F

E

Target

Input Graph Sampled Two-hop Incoming Neighborhood DENSE After Two-Hop Sampling

C D BA

C D A B
Layer 1

Layer 2
A B

sampled edges

self edges

D
Δ1
Δ0

A
B

3
5

C 0
1

E
1

Δ2

node_id_offsets

node_ids

nbr_offsets

nbrs

C
D

C
E

0

3

B

A

Figure 3.5: Example two-hop neighborhood sample for target nodes {A, B}
and the corresponding DENSE data structure. For one-hop neighbors, we
sample at most two nodes from incoming edges.

requires traversing the one-hop neighborhood of node A multiple times,
introducing redundant computation. We identify that such redundant
sampling computations contribute to the overheads of multi-hop sampling
in existing systems (see Section 2.2).

Using DENSE, we sample one-hop neighbors for each node in the k-hop
neighborhood only once. We take advantage of the fact that k-hop sampling
is recursive: we can construct a sample of the (i + 1)-hop neighborhood
for a set of target nodes by sampling the one-hop neighbors of all nodes
N in the i-hop neighborhood. However, we may have previously sampled
one-hop neighbors for some nodes P ⊆ N . We use this property to construct
the (i + 1)-hop neighborhood by sampling one-hop neighbors only for the
nodes N \ P . We define these nodes to be ∆k−i. The rest of the (i + 1)-hop
neighborhood is completed by reusing the previous one-hop samples for
nodes in P . To track the nodes for which one-hop samples are required at
each iteration, we uses the DENSE data structure. DENSE is constructed
by stacking the k + 1 ∆’s and the corresponding one-hop neighbors. We
show an example for the two-hop neighborhood of the target nodes {A, B}
in Figure 3.5. DENSE consists of three ∆’s: ∆2 = {A, B}, ∆1 = {C, D},
∆0 = {E}. Notice that unlike in Figure 2.1, here, the sampled one-hop
neighbors of A, {C, D} are used in both GNN layers.

55

Algorithm 1 DENSE Multi-hop Neighborhood Sampling
Require: target_nodes: unique node IDs for k-hop sampling;

fanouts: max # of neighbors to sample per hop
1: node_id_offsets = [0]; node_ids = target_nodes
2: nbr_offsets = []; nbrs = []; ∆k = target_nodes
3: for i ∈ [k . . . 1] do
4: ∆i_nbrs, ∆i_offsets = oneHopSample(∆i, fanouts[i])
5: nbr_offsets = cat(∆i_offsets, nbr_offsets + len(∆i_nbrs))
6: nbrs = cat(∆i_nbrs, nbrs)
7: ∆i−1 = computeNextDelta(∆i_nbrs, node_ids)
8: node_id_offsets = cat([0], node_id_offsets + len(∆i−1))
9: node_ids = cat(∆i−1, node_ids)

10: return DENSE(node_id_offsets, node_ids, nbr_offsets, nbrs)

DENSE is built using four arrays: 1) node_ids contains all graph node
IDs involved in the sample, 2) nbrs contains the sampled one-hop neighbors
for nodes in node_ids, 3) nbr_offsets identifies where the neighbors for
each node ID start in nbrs, and 4) node_id_offsets identifies groups of
node IDs in node_ids corresponding to each ∆. Given a set of target node
IDs and a k-layer GNN, we sample the k-hop neighborhood for each target
node and creates the four arrays in DENSE according to Algorithm 1. We
define the target nodes to be ∆k and initialize each array in DENSE as shown
(Line 1-2). Sampling then proceeds for k rounds (Line 3). Each iteration
i ∈ [k . . . 1] starts by sampling the one-hop neighbors for the nodes in ∆i

(Line 4). Given the set of nodes ∆i and a maximum number of neighbors
to sample per node f (the layer fanout), one-hop sampling returns up to
f neighbors for each node j ∈ ∆i as a list ∆i_nbrs with the neighbors for
each node j sequential starting at the offset given by ∆i_offsets. When a
node has more than f neighbors, only f will be sampled, but if a node has
less than f neighbors, all neighbors will be returned.

We perform one-hop sampling using CPU multi-threading. We store two
sorted versions of the in-memory edge list: 1) sorted in ascending order of
source node ID, and 2) sorted in ascending order of destination node ID.
We create an array that, for each node ID in memory, stores the offsets

56

corresponding to its outgoing and incoming edges in each of the two edge
lists. Given these structures, we can sample incoming and outgoing edges
for any set of nodes in parallel using all available CPU threads.

Given the one-hop neighbors for ∆i, the next step in Algorithm 1 is to
stack these one-hop samples on the existing arrays in DENSE (Line 5-6). At
this point, we computes ∆i−1 as the unique nodes in ∆i_nbrs that do not
appear in the DENSE node_ids array (Line 7). As with one-hop sampling,
we compute ∆i−1 using multi-threading on the CPU. The nodes in ∆i−1

are then added to DENSE (Line 8, 9). Multi-hop sampling completes after
adding ∆0 to DENSE (neighbors are not needed for ∆0).

While one-hop sample reuse in DENSE allows us to minimize redundant
computation in multi-hop sampling, it also leads to k-hop neighborhoods
with two noteworthy differences compared to existing sampling algorithms.
First, sample reuse implies that the resulting neighborhood fanouts (max
number of neighbors per node per hop) are not guaranteed to match the
requested fanouts (input to Algorithm 1). Instead, the fanout for a node
j at each hop is equal to the fanout requested for the first hop which
required neighbors of j. As such, in the common case where GNN fanouts
are requested according to a decreasing sequence away from the target
nodes, DENSE provides at least as many neighbors as requested for a node
j at each layer. Second, sample reuse in DENSE reduces randomness in
multi-hop neighborhoods compared to existing algorithms by preventing
different subsets of the one-hop neighbors for a given node from existing in
the same multi-hop neighborhood. We study the implication of this reduced
randomness on the accuracy of GNN training in Section 3.4 but find that
training with DENSE can reach comparable accuracy to existing systems.

3.3.2 Forward Pass Computation With DENSE
After sampling is completed, we transfer DENSE to the GPU so it can
be used to compute the GNN forward pass. We also transfer an array H0

containing the feature vectors for each node ID in the DENSE node_ids

57

array. On the GPU we create and add a fifth array to DENSE called
repr_map that stores the index in H0 containing the feature vector for each
node ID in the DENSE nbrs array.

To complete a forward pass over a k-layer GNN, we iterate over each
layer i ∈ [1 . . . k] and perform the next two steps:
(Step 1) We compute the output H i of layer i. Given DENSE and the
representations in H i−1, the output of layer i is the representation for all
nodes in the DENSE node_ids array which occur after node_id_offsets[1].
For example, in Figure 3.5, the output of the first GNN layer is h1 for the
nodes {C, D, A, B}. The output representations are computed according to
the ith GNN layer’s aggregation function.
(Step 2) We update DENSE on the GPU as shown in Algorithm 2: We remove
nodes and their one-hop neighbors that are no longer needed for subsequent
layers. This step ensures that the output nodes from this iteration, which
will be used as input to compute the representations of the nodes in Step
1 for the next iteration, correspond to all nodes in the DENSE node_ids
array. This property allows us to use the same implementation across GNN
layers. In Figure 3.5, node E and the neighbors of {C, D} are not needed
after layer one and can be removed from DENSE.

DENSE allows use to use optimized dense GPU kernels for the linear
algebra operations in each GNN layer. For example, in Algorithm 3, we
show how to use DENSE and Hk−1 to compute the output of the kth GNN
layer Hk for the GNN aggregation: h

(l+1)
i = h

(l)
i + ∑

j∈Nbrsi
h

(l)
j . We first

use the repr_map array in DENSE to select the node representations for all
neighbors in the nbrs array (Line 1). Neighborhood aggregation can then be
performed using a dense segment sum that is well suited for parallelization
on GPU hardware (Line 2): Recall that the one-hop neighbors for the nodes
in DENSE are stored sequentially and separated by the nbr_offsets array.
After selecting the neighbor representations in Line 1, the representations
for the one-hop neighbors of each node will also be sequential in GPU

58

Algorithm 2 On GPU DENSE Update After Layer i

Require: node_id_offsets, node_ids, nbr_offsets, nbrs, repr_map
1: ∆i−1 = node_ids[: node_id_offsets[1]]
2: ∆i = node_ids[node_id_offsets[1] : node_id_offsets[2]]
3: ∆i_nbrs = nbrs[: nbr_offsets[len(∆i)]]
4: nbrs = nbrs[len(∆i_nbrs):]
5: repr_map = repr_map[len(∆i_nbrs):] - len(∆i−1)
6: nbr_offsets = nbr_offsets[len(∆i):] - len(∆i_nbrs)
7: node_ids = node_ids[node_id_offsets[1]:]
8: node_id_offsets = node_id_offsets[1:] - len(∆i−1)
9: return node_id_offsets, node_ids, nbr_offsets, nbrs, repr_map

Algorithm 3 kth GNN Layer Additive Aggregation
Require: DENSE; Hk−1: layer input vector representations
1: nbr_repr = Hk−1.index_select(DENSE.repr_map)
2: nbr_aggr = segment_sum(nbr_repr, DENSE.nbr_offsets)
3: self_repr = Hk−1[DENSE.node_id_offsets[1] :]
4: Hk = nbr_aggr + self_repr
5: return Hk

memory. Thus, neighborhood aggregation for each node consists of adding
a set of sequential vectors and all nodes can aggregate in parallel. The last
step to compute the layer output is to combine the aggregated neighbor
representations for each node with their own representations (Lines 3-4).

3.4 Results: Mixed CPU-GPU Training in
MariusGNN

We implement and evaluate pipelined training and DENSE in MariusGNN.
We evaluate MariusGNN on four large-scale graphs (see Table 1.1 for dataset
statistics), including two from the OGB large-scale challenge (Hu et al.,
2021), and compare against the popular state-of-the-art GNN systems DGL
and PyG. Our experiments show that:

1. For mixed CPU-GPU mini-batch training, MariusGNN reaches the
same level of accuracy 2-7× faster and cheaper than DGL and PyG

59

Table 3.1: AWS cloud GPU instances used for experiments.

AWS Machine ($/hr) GPUs CPUs CPU Mem (GB)

P3.2xLarge 3.06 1 8 61
P3.8xLarge 12.24 4 32 244
P3.16xLarge 24.48 8 64 488

across all datasets for both node classification and link prediction.

2. DENSE allows MariusGNN to reduce mini batch multi-hop neighbor-
hood sampling and compute times by up to 14× and 8× respectively
compared to DGL and PyG.

3.4.1 Experimental Setup
We discuss the setup used throughout the experiments.
Baselines We compare end-to-end GNN training over large-scale graphs
in MariusGNN against DGL 0.7 and PyG 2.0.3 (late 2021 releases). In
addition to end-to-end performance, we evaluate the effect of DENSE on
training by measuring the time for multi-hop sampling and GNN forward and
backward pass computation in these systems and MariusGNN (Section 3.4.3).
Furthermore, we compare the multi-hop sampling time in MariusGNN to
the state-of-the-art sampling implementation in NextDoor (Jangda et al.,
2021) (Section 3.4.3). We do not use NextDoor for end-to-end GNN training
as their open-source release supports only limited GNN computation over
small graphs which fit in GPU memory.
Hardware Setup We evaluate all systems using AWS P3 instances (Table
3.1). We use the cheapest P3 instance which has enough CPU memory for
training with the full graph in memory (for the graphs in these experiments,
that is either a P3.8xLarge or P3.16xLarge). We allow baseline systems
to use the maximum number of GPUs they support and available in the
instance. MariusGNN uses only one GPU for all experiments.

60

Node Classification: Datasets, Models, and Metrics We use the
two largest OGB node classification graphs: Mag240M and Papers100M
(Papers) (Hu et al., 2020, 2021). For Mag240M we use only the paper nodes
and citation edges, denoted as Mag240M-Cites (Mag). Based on the graph
memory overheads, Papers100M and Mag240M-Cites require a P3.8xLarge
and P3.16xLarge respectively for in-memory training. We train a three-layer
GraphSage (GS) (Hamilton et al., 2017) GNN on both datasets, a common
choice for these graphs (Kaler et al., 2022; Zheng et al., 2022). We use 30, 20,
and 10 neighbors per layer (ordered away from the target nodes) and sample
from both incoming and outgoing edges. We report multi-class classification
accuracy averaged over three runs and train for ten epochs. We find that
PyG multi-GPU training runs out of CPU memory for Mag240M-Cites,
hence, for PyG on this dataset we switch to single-GPU training.
Link Prediction: Datasets, Models, and Metrics For link prediction,
we use the largest OGB link prediction graph—WikiKG90Mv2 (Wiki) (Hu
et al., 2021). As a second graph for large-scale link prediction, we use
Freebase86M (FB) (Zheng et al., 2020b). Both datasets fit in CPU memory
on an AWS P3.8xLarge machine. We train a GraphSage GNN on both
datasets, and the more computationally expensive GAT (Veličković et al.,
2018) on Freebase86M (the smaller dataset). Both GNNs use a single
layer. We use 20 neighbors sampled from incoming and outgoing edges for
GraphSage and 10 incoming neighbors for GAT. We evaluate the accuracy of
link prediction models using the commonly reported MRR metric (Mohoney
et al., 2021; Zheng et al., 2020b; Lerer et al., 2019) using the DistMult (Yang
et al., 2014) score function and train all systems for a fixed number of epochs:
We use five epochs on Freebase86M and ten on WikiKG90Mv2. We report
the MRR for a single run due to cost considerations, but report runtime
averaged across all training epochs.

Both DGL and PyG provide limited support for training link prediction
at scale: PyG does not provide a negative sampler. We implemented negative

61

sampling in PyG based on the negative sampling used in MariusGNN. DGL
provides a negative sampler but the implementation limits the amount of
negative samples that can be used to train in a reasonable amount of time.
As such, for DGL we use five times fewer negative samples per training edge
compared to MariusGNN to prevent GPU out-of-memory issues. We find
that neither baseline supports multi-GPU training for this task: the data
loader implementation for link prediction in PyG supports only a single
GPU and DGL’s multi-GPU training ran out of CPU memory on the AWS
P3.8xLarge machines we used for these experiments.
Hyperparameters We use the same values for hyperparameters which
define the GNN model and training process across systems. We choose
these values to be those used by OGB or prior works (Hu et al., 2020, 2021;
Hamilton et al., 2017) to achieve high accuracy on each dataset. However, to
prevent GPU out-of-memory, for PyG on Mag240M-Cites, we use a smaller
batch size (half) than DGL and MariusGNN. While we make sure to request
the same number of neighbors per layer for each system, differences in
mini batches are expected due to the use of different sampling algorithms.
For throughput parameters specific to each system and independent of the
computation (e.g., the number of data loader threads), we tune each system
and use the best configuration.

3.4.2 End-to-End System Comparisons
We discuss end-to-end training results for MariusGNN, DGL, and PyG on
node classification and link prediction tasks.

Results are reported in Tables 3.2-3.4. For each experiment we train
all systems for the same fixed number of epochs and measure 1) the per-
epoch runtime, 2) model accuracy or MRR, and 3) the monetary cost per
epoch based on AWS pricing. Next, we highlight key takeaways among all
end-to-end results before focusing on each setting (Table) in more detail.
Key Takeaway MariusGNN provides the fastest and cheapest training

62

option to comparable accuracy for all dataset and model combinations on
both learning tasks. Differences in training time and cost can be orders of
magnitude: Baseline systems can take six days and $1720 dollars for training
(see training on Wiki in Table 3.3), yet MariusGNN needs only eight hours
or $94 dollars for the same dataset.
Node Classification We focus on end-to-end results for node classification
in more detail (Table 3.2). With graph data stored in main memory,
MariusGNN with one GPU trains 4× and 3× faster than DGL (the fastest
baseline) using four and eight GPUs on Papers100M and Mag240M-Cites
respectively. All three systems reach similar accuracy on both datasets.
There are two reasons for the reduced runtime of MariusGNN in this setting.
First, the DENSE data structure allows for faster CPU-based mini-batch
sampling and GPU-based GNN computation in MariusGNN compared to
baseline systems (evaluated in Section 3.4.3). Second, while both DGL and
PyG support multi-GPU training, they both underutilize the additional
compute resources: DGL and PyG four-GPU training on Papers100M are
only 1.4× and 1.1× faster than their single-GPU performance respectively,
and DGL eight-GPU training on Mag240M-Cites is only 2.2× faster than
with one-GPU (single-GPU baselines not reported in Table 3.2).

While all systems reach comparable accuracy for training with the
full graph in memory (within 1%), MariusGNN accuracy is 0.55% and
0.3% lower than the closest baseline (PyG) on Papers100M and Mag240M-
Cites respectively. We hypothesize that this is because DENSE reuses
previously sampled one-hop neighbors across layers when constructing multi-
layer GNN dataflow graphs. Sample reuse leads to fewer opportunities
for one-hop neighborhood randomness resulting in fewer unique nodes in
the sampled multi-hop neighborhood for each mini batch (quantified in
Table 3.5). Although this leads to an accuracy reduction for multi-layer
GNNs in MariusGNN, sample reuse is isolated to a single mini batch. Over
the course of training, the one-hop neighbors of each node are still randomized

63

Table 3.2: MariusGNN, DGL, and PyG for node classification on large-scale
graphs using a GraphSage GNN. Using a single GPU, MariusGNN can reach
the same level of accuracy as multi-GPU baselines 3-4× faster and cheaper.

Epoch (min.) Accuracy Cost ($/epoch)

Dataset Papers Mag Papers Mag Papers Mag

MariusGNN 0.77 2.57 66.38 63.17 0.16 1.05
DGL 3.07 7.83 66.98 63.73 0.63 3.19
PyG 8.01 19 66.93 63.47 1.63 7.75

Table 3.3: MariusGNN, DGL, and PyG for link prediction on large-scale
graphs. All systems use a GraphSage GNN and one GPU. MariusGNN
reaches comparable accuracy to baselines 6-7× faster and cheaper. (OOT:
out of time)

Epoch (min.) MRR Cost ($/epoch)

Dataset FB Wiki FB Wiki FB Wiki

MariusGNN 17.5 46.6 .7285 .4655 3.57 9.38
DGL 152 844 .7091 OOT 31.0 172
PyG 108 312 .7267 .4683 22.0 63.6

Table 3.4: Comparison of GraphSage (GS) and GAT GNN training in
MariusGNN, DGL, and PyG for link prediction on Freebase86M. Baselines
bottlenecked by CPU-based mini batch preparation result in similar training
time and cost on GraphSage and the more computationally expensive GAT.

Epoch (min.) MRR Cost ($/epoch)

Model GS GAT GS GAT GS GAT

MariusGNN 17.5 52.6 .7285 .7331 3.57 10.7
DGL 152 151 .7091 .6516 31.0 30.8
PyG 108 107 .7267 .7252 22.0 21.8

across batches, allowing MariusGNN to achieve comparable accuracy to
baselines while training with DENSE.
Link Prediction We now focus on the task of link prediction. End-to-end
results for all systems on Freebase86M and WikiKG90Mv2 are reported in
Table 3.3. MariusGNN in-memory training is 6× and 7× faster than the best

64

Table 3.5: Comparison of the time required for mini-batch neighborhood
sampling, GPU-based GNN computation, and the number of nodes/edges
sampled per mini batch in MariusGNN (which uses DENSE), DGL, and
PyG for GraphSage GNNs of varying depth on OGBN-Papers100M (Hu
et al., 2020). Using DENSE, in MariusGNN sampling is 14× and GPU
computation is 8× faster for a four-layer GNN. These speedups occur in
part because DENSE allows MariusGNN to sample fewer nodes/edges to
construct mini batches. (OOM: out of memory)

CPU Sampling Time (ms)

#Layers 1 2 3 4 5

MariusGNN 1.4 18 103 401 1.8k
DGL 5.7 28 376 5.4k 49k
PyG 2.2 59 1227 19k 96k

GPU Computation Time (ms)

1 2 3 4 5

4 6.1 21 153 OOM
4.7 29 215 1231 OOM
3.2 13 168 OOM OOM

Number of Nodes/Edges Sampled Per Mini Batch

1 2 3 4 5

MariusGNN 12k/13k 136k/181k 1M/2M 6M/17M 23M/91M
DGL 13k/20k 182k/278k 2M/4M 9M/37M 33M/222M
PyG 13k/20k 178k/258k 2M/4M 9M/32M 31M/174M

baseline on the two datasets respectively. While PyG and MariusGNN reach
comparable model quality, DGL is lower due to its use of fewer negative
samples. On WikiKG90Mv2, DGL does not complete the ten training epochs
within two days. To compare system performance for different models, we
report results for GraphSage and GAT GNNs on Freebase86M in Table 3.4.
Interestingly, DGL and PyG exhibit similar runtimes for GraphSage and the
more computationally expensive GAT. This result supports the fact that
baseline systems are bottlenecked by CPU-based sampling operations rather
than GPU-based model computation.

3.4.3 Effect of DENSE on Training
We have shown that end-to-end training in MariusGNN is faster than
existing systems. A key reason for this result is the efficient mini-batch

65

sampling and forward pass computation using the DENSE data structure.
In this section, we report the effect of DENSE on training. Recall that
training consists of two phases: 1) CPU-based mini batch construction via
neighborhood sampling and 2) GPU-based GNN forward and backward
pass computation. While DENSE is co-designed for both efficient sampling
and GNN computation, we seek to understand the effect of DENSE on
each individual training phase. As a result, we measure the average time
per mini batch for 1) CPU neighborhood sampling and 2) GPU training
in MariusGNN (using DENSE) and compare against the corresponding
methods used in DGL and PyG. For these experiments, we use a GraphSage
GNN on the OGBN-Papers100M dataset and vary the number of GNN
layers from one to five. For each layer, we request a max of 10 incoming
and 10 outgoing neighbors per node from each system. We use the same
hyperparameters for MariusGNN, DGL, and PyG and train all systems with
the graph in main memory using one GPU.

We report the average CPU-based neighborhood sampling time for each
system in Table 3.5. DENSE allows MariusGNN to sample multi-hop
neighborhoods faster than baseline systems for all configurations. For three,
four, and five layers, MariusGNN is 3.7×, 14×, and 26× faster than the best
baseline. GNN training on the GPU in MariusGNN is also faster than DGL
and PyG (Table 3.5). DENSE leads to 8× faster computation compared to
the best baseline for three- and four-layer GNNs. We find that for five-layer
GNNs, mini batches become too large and cause all three systems to run
out of memory on the AWS NVIDIA V100 GPUs with 16GB of memory
(but could be used on new GPUs with 80GB).

We investigate to what extent the sampling and computation improve-
ments in MariusGNN can be attributed to the reuse of neighborhood samples
in DENSE compared to implementation co-design choices, i.e., parallel sam-
pling on the CPU and dense kernels on the GPU. In Table 3.5, we report
the average number of unique nodes and edges sampled per mini batch for

66

Table 3.6: Comparison of the time required for GPU-based mini-batch
neighborhood sampling in MariusGNN (using DENSE) and NextDoor for
GraphSage GNNs of varying depth on LiveJournal. Sample reuse in DENSE
leads to better scaling with respect to the number of GNN layers, allowing
MariusGNN to outperform optimized sampling implementations.

GPU Sampling Time (ms)

#Layers 1 2 3 4 5

M-GNN 1 2.5 9.6 25 32
NextDoor 0.1 0.5 6.5 135 OOM

each system. DENSE allows for mini batch construction using fewer samples
than baselines. For example, constructing a three-hop neighborhood in
DENSE requires sampling half as many nodes and edges compared to DGL
and PyG (for the same number of target nodes). While sample reuse in
DENSE is evident, mini batch sizes in MariusGNN, DGL, and PyG are
all the same order of magnitude, yet DENSE sampling and computation
improvements are more significant (e.g., 14× and 8×). This result validates
the co-design of DENSE: parallel CPU sampling algorithms and the use
of dense GPU kernels, together with one-hop sample reuse, lead to the
improved throughput in MariusGNN.
Comparison Against Accelerated Sampling Kernels To further
evaluate the benefit of DENSE on GNN training, we compare multi-hop
sampling in MariusGNN to the state-of-the-art accelerated sampling im-
plementation of NextDoor (Jangda et al., 2021). NextDoor uses GPUs
to reduce sampling times and employs optimized GPU kernels for paral-
lelization, load balancing, and caching. These kernels allow NextDoor to
outperform multi-hop sampling implementations in existing systems, but
their open-source release requires that graphs fit in GPU memory. While
in MariusGNN we focus primarily on CPU-based multi-hop sampling for
mixed CPU-GPU training to scale to large graphs (as discussed throughout
this section), MariusGNN also includes support for GPU-based multi-hop

67

sampling with DENSE for end-to-end training on smaller graphs without
CPU involvement. Unlike our CPU-based sampling implementation which
uses optimized parallel algorithms to construct DENSE, our GPU-based
sampling implementation builds DENSE using only default PyTorch func-
tions. We compare GPU-based sampling using DENSE in MariusGNN
to the optimized sampling kernels in NextDoor by measuring the average
multi-hop sampling time per mini batch for a GraphSage GNN of varying
depth on the LiveJournal dataset (which fits in GPU memory with 4.8M
nodes and 69M edges) (Leskovec and Krevl, 2014). For each layer, we sample
20 outgoing neighbors per system.

GPU-based sampling times for MariusGNN and NextDoor are shown in
Table 3.6. The optimized sampling kernels in NextDoor have lower overhead
and better parallelization for one-hop sampling compared to the default
PyTorch functions used by MariusGNN. These kernels lead to faster sampling
for one- and two-layer GNNs. For deeper GNNs however, MariusGNN is
comparable to or faster than NextDoor. This is because as the number
GNN layers increases DENSE has more opportunities to minimize redundant
one-hop sampling compared to NextDoor by reusing previous samples across
layers. Table 3.6 shows that redundant sampling can bottleneck even the
most optimized sampling implementations. DENSE avoids this bottleneck
and can scale to five-layer GNNs with little sampling overhead.

3.5 Summary
In this Chapter, we introduced a pipelined architecture for asynchronous
mixed CPU-GPU training. We then presented OAC, a protocol to ensure
that asynchronous training reaches the same model accuracy as synchronous
training in the presence of learnable featured vectors stored in CPU memory.
We also introduced the DENSE data structure to minimize redundant
computations and data access during multi-hop neighborhood sampling.
Finally, we showed experimentally that MariusGNN, our system for GNN

68

training which implements the above contributions, exhibits the fastest and
cheapest mixed CPU-GPU mini-batch training when compared to popular
state-of-the-art systems for both node classification and link prediction tasks.

69

4 scalable min-edge-cut graph
partitioning

In this Chapter, we introduce GREM (Greedy plus Refinement for Edge-cut
Minimization), a novel algorithm that enables efficient min-edge-cut graph
partitioning over massive graphs on a commodity machine. We describe the
optimization objective and algorithm, then analyze it theoretically. Finally,
we present experimental results comparing GREM to existing state-of-the-art
min-edge-cut partitioning algorithms.

4.1 GREM: Greedy plus Refinement for
Edge-Cut Minimization

Optimization Objective Given a graph G = (V, E), we assume as
input an edge list (E) stored on disk in a random order. Our goal is to
partition the nodes V into a set of p partitions, each of size ⌈V/p⌉ (i.e., a
balanced partitioning), according to an algorithm that 1) minimizes the
number of cross-partition edges and 2) can scale to massive graphs given a
fixed amount of CPU memory (but unlimited disk space) (the edge list for
large graphs may not fit in memory on a single, or even multiple machines
(e.g., Hyperlink-2012’s 128B edges require 2TB (Meusel et al., 2014)).
Existing Solutions The above problem (balanced min-edge-cut partition-
ing) is NP-Hard, even for the case of just two partitions. Furthermore, for
p > 2, no finite approximation algorithm exists unless P=NP (Andreev and
Räcke, 2004). As such, existing algorithms for min-edge-cut partitioning rely
on heuristics: As highlighted in the introduction and Section 2.3, traditional
offline partitioning algorithms (e.g., METIS) operate over whole graph and
minimize edge cuts through iterative partition refinement. These methods
have been shown to approach the optimal partitioning in practice, but are
unable to scale efficiently to large graphs due to memory and runtime require-

70

ments. To reduce the computational requirements of partitioning, streaming
greedy algorithms iterate over the graph and assign vertices greedily to
partitions based on prior partition assignments and a subset of graph edges
currently buffered in the streaming process (Stanton, 2014; Alistarh et al.,
2015; Abbas et al., 2018; Patwary et al., 2019; Stanton and Kliot, 2012;
Faraj and Schulz, 2022; Petroni et al., 2015; Jain et al., 1998; Tsourakakis
et al., 2014). While these algorithms have better scalability, they often lead
to partitionings with lower quality (more edge cuts) than offline methods
due to their use of fixed greedy decisions (e.g., 4× more edge cuts than
METIS; experimental results provided in Section 4.3).
Key Idea To combine the advantages of offline and streaming methods,
GREM employs a streaming greedy approach, but with one key addition:
Rather than freezing the partition assignment for a node after an initial
greedy selection, GREM leverages running statistics accumulated during
streaming to continuously reevaluate prior assignments and refine the result.
Inspired by offline algorithms, this refinement is critical to minimizing edge
cuts in the resulting partitioning.
Detailed Algorithm GREM partitions an input graph into p = 2
partitions as described in Algorithm 4; we focus on p = 2 because GREM
returns a partitioning for p > 2 by first partitioning the graph into two parts,
and then recursively re-partitioning each part into two new parts as needed.
We identify the two partitions by index zero and one. Each node starts
unassigned (index minus one) and each partition starts with size zero (Line
1-2). We also initialize two numerical values for each node (nbr_counts,
Line 3); the purpose of these values is to provide a running estimate of the
number of neighbors each node has in each partition.

GREM then proceeds by iterating over the edge list in chunks (Line 4).
For each chunk, the edges are loaded into memory (c_edges) and the set of
unique nodes (c_nodes) contained in those edges is computed (Lines 5-6).
For the first chunk (Line 7), as there are no existing partition assignments

71

Algorithm 4 GREM Bipartite Graph Partitioning
Require: num_nodes: number of nodes in the graph; edges: graph edges; c_size:

chunk size for GREM; seed_algo: seed partition algorithm for GREM; P:
max partition size (in nodes)

1: parts = minus_ones(num_nodes)
2: part_sizes = zeros(2)
3: nbr_counts = zeros(num_nodes, 2)
4: for i = 0 to ceil(len(edges)/c_size) − 1 do
5: c_edges = read(edges[i ∗ c_size : (i + 1) ∗ c_size])
6: c_nodes = unique_nodes_in_edges(c_edges)
7: if i == 0 then
8: parts[c_nodes] = seed_algo(c_edges, num=2)
9: part_sizes = [num_zeros(parts), num_ones(parts)]

10: nbrs0, nbrs1 = cnt_nbrs(c_nodes, c_edges, parts)
11: nbr_counts[c_nodes] = [nbrs0, nbrs1]
12: else
13: for n ∈ c_nodes do
14: old_part = parts[n]
15: nbrs0, nbrs1 = cnt_nbrs(n, c_edges, parts)
16: if old_part ̸= −1 then
17: nbrs0 = (nbr_counts[n, 0] + nbrs0) / 2
18: nbrs1 = (nbr_counts[n, 1] + nbrs1) / 2
19: parts[n] = assign(nbrs0, nbrs1, part_sizes, P)
20: part_sizes = fix_sizes(parts[n], old_part, part_sizes)
21: nbr_counts[n] = [nbrs0, nbrs1]

that can be used to make greedy decisions, we use a seed partitioning
algorithm on the in-memory edges (e.g., METIS) to assign all nodes in
memory to one of the two partitions (Line 8). The partition sizes and the
estimated number of neighbors per node in each partition (calculated based
on the in-memory edges and existing partitioning; Algorithm 5 - cnt_nbrs)
are then updated (Lines 9-11).

For the remaining chunks (Line 12), GREM assigns nodes to partitions
greedily. For each node n (Line 13), we start by estimating the number of
neighbors in each partition using the current chunk’s edges and most recent
partition assignments (Line 15). If the node is unassigned (i.e., this is the

72

Algorithm 5 GREM Helper Functions
1: cnt_nbrs(nodes, edges, parts):
2: local_nbr_counts = zeros(len(nodes), 2)
3: for n ∈ nodes do
4: for (src, dst) ∈ edges do
5: if src == n or dst == n then
6: nbr = src if dst == n else dst
7: if parts[nbr] ̸= -1 then
8: local_nbr_counts[n][parts[nbr]] += 1
9: return local_nbr_counts

10:
11: assign(nbrs0, nbrs1, part_sizes, P):
12: if nbrs0 < nbrs1 and part_sizes[1] < P then return 1
13: if nbrs1 < nbrs0 and part_sizes[0] < P then return 0
14: return arg_min(part_sizes)
15:
16: fix_sizes(new_part, old_part, part_sizes):
17: part_sizes[new_part] += 1
18: if old_part ̸= −1 then part_sizes[old_part] −= 1

first chunk containing the node), these neighbor estimates are used directly:
To minimize edge cuts, we assign the node to the partition containing
most of its neighbors, unless the partition is full (Line 19; Algorithm 5
- assign). The partition sizes are then updated (Line 20; Algorithm 5 -
fix_sizes) and the neighbor estimates for the node are saved (Line 21).
The algorithm, as described so far, represents a streaming greedy approach
with fixed assignments.

Instead of fixing an initial greedy decision for each node, GREM reeval-
uates a node’s partition assignment each time it reappears in memory.
Specifically, for a previously assigned node n (Line 16), we refresh our
estimate of the number of neighbors in each partition using an average of
the estimate from the current chunk and the estimates accumulated from
prior chunks (Lines 17-18). Node n is then assigned to a partition greedily
using these updated estimates (Line 19), which are then saved for future

73

use (Line 21). We highlight that, by repeatedly averaging the accumulated
neighbor estimates with the most recent ones, we are computing a weighted
average of the estimates across all prior chunks containing the node, with
the weight of each preceding chunk decreasing by a factor of two.

Updating prior greedy assignments based on the weighted average of
neighbor estimates has the following advantages: First, nodes (which reap-
pear) are not greedily assigned based on the estimates from only one chunk
(as in existing algorithms)—these estimates can be noisy, particularly for
small chunks when nodes have only a few neighbors in memory. Second, by
weighting the average, more value is placed on recent estimates which are
likely to be more accurate (as partition assignments may have changed since
prior estimates were computed). The end result is a continuous refinement
of greedy decisions throughout the algorithm.

4.2 Theoretical Analysis of GREM
We now analyze the number of edge cuts returned by GREM versus chunk
size. We focus on chunk size as it directly affects the computational over-
head of the algorithm. As chunk size decreases, so does GREM’s memory
requirement and runtime; only the active chunk of edges needs to be in
memory and the time for the initial seed partitioning algorithm on the first
chunk dominates the time for the simple greedy processing of subsequent
chunks. We compare the expected number of edge cuts when using fixed
greedy assignments (as in existing algorithms) to that of the refined greedy
assignments employed by GREM.
Fixed Greedy Assignments We focus on the assignment of a specific
node n and assume all other nodes are assigned to partitions. Among all
edges, let node n have k neighbors, with k0 in partition zero, and k1 in
partition one. Without loss of generality, we assume k0 ≥ k1. Observe that,
with a chunk size of |E| (i.e., all edges), our greedy algorithm will assign
node n to partition zero to minimize edge cuts.

74

To analyze the effect of chunk size, we ask, what is the probability node
n will be assigned to partition zero if only |E| ∗ x edges (sampled uniformly)
are used to make the decision (i.e., if we use a chunk size of |E| ∗ x)? Let
k′

0 and k′
1 be the number of neighbors of node n in partition zero and one

that are present in the sampled |E| ∗ x edges. Then we seek to calculate
Pr(k′

0 ≥ k′
1|k0 ≥ k1, x). We assume that k′

0 + k′
1 = x ∗ k (i.e., sampling

|E| ∗ x edges leads to sampling k ∗ x neighbors). Then k′
0 (or k′

1) is a
random variable sampled from a Hypergeometric distribution describing the
probability of sampling (without replacement) a specific number of neighbors
in partition zero (one) from a finite population of size k, containing k0 (k1)
total neighbors in partition zero (one), using k ∗ x draws. We also have
that k′

1 = k ∗ x − k′
0 and Pr(k′

0 ≥ k′
1) = Pr(k′

0 ≥ k ∗ x − k′
0) = Pr(k′

0 ≥
0.5 ∗ k ∗ x) = 1 − Pr(k′

0 < 0.5 ∗ k ∗ x). The latter can be calculated using the
cumulative distribution function (CDF) of the Hypergeometric distribution
and describes the probability of correctly assigning node n given a chunk
size of |E| ∗ x (correct here means making the same greedy decision as the
one made if all edges are available).

Given the probability of correctly assigning node n, we can calculate the
expected number of correctly assigned nodes T in the whole graph. Assuming
nodes are independent, we have: E[T] = ∑|V |

i=1(1 − Pr(ki′
0 < 0.5 ∗ ki ∗ x))

with ki′
0 ∼ Hypergeometric(ki, ki

0, k ∗ x), ki the number of neighbors (among
all edges) of node i, and ki

0 the number of these neighbors in the partition
containing more of node i’s neighbors. Finally, the expected number of edge
cuts C is:

E[C] =
|V |∑
i=1

(ki − ki
0) ∗ (1 − Pr(ki′

0 < 0.5 ∗ ki ∗ x)) (4.1)

+ki
0 ∗ Pr(ki′

0 < 0.5 ∗ ki ∗ x)

since ki − ki
0 edges are cut for node i if it is correctly assigned and ki

0 edges
are cut otherwise. Equation 4.1 can be calculated given ki and ki

0 for each

75

node i (ki
0 can be estimated given an existing graph partitioning or by

making assumptions about a graph’s connectivity).
The Benefit of Refinement We now ask how the expected number
of edge cuts E[C] changes if greedy decisions are updated (refined) based
on a weighted average of neighbor estimates across chunks (as in GREM).
We focus on the simplest case: We assume two chunks (α and β), each
of size |E| ∗ x are used to assign a given node n to a partition. Let k′

0,α

and k′
0,β be the number of neighbors of node n in partition zero among the

sampled edges in chunk α and β respectively (and likewise for k′
1,α, k′

1,β and
partition one). In the two chunk case, the weighted average simplifies to a
regular average (which can be simplified to a sum): We seek to calculate
Pr(k′

0,α + k′
0,β ≥ k′

1,α + k′
1,β|k0 ≥ k1, x).

Observe that k′
0,α+k′

0,β is the number neighbors of node n in the 2∗(|E|∗x)
edges formed by the union of chunk α and β (each chunk is disjoint). Given
this, the expected number of cut edges E[C], when averaging over two
chunks each of size |E| ∗ x, can be calculated using Equation 4.1 with x

replaced by 2x. In other words, refinement across chunks increases the
effective chunk size (but not actual chunk size) of the algorithm, leading to
better neighbor estimates. Similar intuition applies when generalizing the
analysis beyond two chunks, which we omit for brevity.

In Figure 4.3, based on the analysis in this section, we plot the expected
number of edge cuts E[C] versus chunk size with and without refinement.
Figure 4.3 highlights that refining greedy assignments based on neighbor
estimates averaged across multiple chunks leads to fewer edge cuts, particu-
larly for small chunk sizes; in fact, with this refinement, GREM can partition
the graph with near minimal edge cuts even with chunk sizes ≤10%. See
Section 4.3 for more details.

76

Table 4.1: Statistics for graphs used in the experiments.

Graph Nodes Edges

FB15K-237 (Toutanova et al., 2015) 14.5k 272k
OGBN-Products (Hu et al., 2020) 2.5M 62M
OGB-WikiKG90Mv2 (Hu et al., 2021) 91M 601M
OGBN-Papers100M (Hu et al., 2020) 111M 1.62B

4.3 Empirical Analysis of GREM
We now evaluate GREM on common large-scale graphs and compare to
METIS, the SoTA min-edge-cut algorithm used by existing GNN systems.
Our experiments show that GREM can efficiently scale min-edge-cut parti-
tioning to large graphs, leading to up to 45× and 68× reduction in runtime
and memory overheads compared to METIS.
Experimental Setup We start by discussing the setup used in our
experiments. We report results using Open Graph Benchmark (OGB)
datasets (Hu et al., 2020, 2021); we use OGBN-Papers100M (111M nodes,
1.62B edges) and OGB-WikiKG90Mv2 (91M nodes, 601M edges) for large-
scale studies, and OGBN-Products (2.5M nodes, 62M edges) plus FB15K-
237 (Toutanova et al., 2015) (14.5K nodes, 272K edges) for microbenchmarks.
These graphs are summarized in Table 4.1. For all experiments, we measure
the resulting number of edge cuts, runtime, and peak memory usage and
average over three runs. For METIS, we use recursive partitioning and the
implementation provided by PyMetis (Kloeckner et al., 2022).
Partitioning Quality: Number of Edge Cuts In Figure 4.1, we show
the number of edge cuts that result from running GREM and METIS on
three common graphs. With a chunk size of 10%, GREM partitions the
graph with similar quality to METIS. For example, in the most challenging
case (p = 128 partitions), GREM cuts just 0.5% and 1% more of the graph
than METIS on OGBN-Products and OGB-WikiKG90Mv2 respectfully.
GREM even achieves comparable results with a chunk size of 1%. Overall,

77

2 4 8 16 32 64 128
Number of Partitions (log scale)

0

20

40

60

80

100
Ed

ge
s C

ut
 (%

) Graph
FB15K-237
OGBN-Products
OGB-WikiKG90Mv2

Algorithm
METIS
GREM-10% (ours)
GREM-1% (ours)

Figure 4.1: Percentage of edges cut when using GREM versus METIS on
three common graphs. GREM achieves comparable edge cuts to METIS,
even with a chunk size of just 10% or 1%.

0.0 0.5 1.0 1.5
Number of Edges 1e9

0

100

200

300

400

500

600

M
em

or
y

(G
B)

METIS
GREM-10% (ours)
GREM-1% (ours)
Memory Limit

0.0 0.5 1.0 1.5
Number of Edges 1e9

0

2000

4000

6000

8000

Ru
nt

im
e

(s
)

METIS
GREM-10% (ours)
GREM-1% (ours)

Figure 4.2: Memory usage and runtime of GREM and METIS when parti-
tioning subgraphs of OGBN-Papers100M of various size. GREM reduces
the computational requirements of partitioning.

Figure 4.1 shows that with small chunk sizes (e.g., ≤ 10%), GREM can
partition graphs with comparable edge cuts to METIS.
Partitioning Overhead: Runtime and Memory Next, we evaluate
the peak memory usage and runtime of GREM versus METIS. To do so,
we use both algorithms to partition subgraphs of varying size (number of
edges), taken from OGBN-Papers100M (1.6B edges total), into two parts
(p = 2). Results are shown in Figure 4.2. We plot only p = 2 for simplicity;

78

0 5 10 15 20 25 30
Chunk Size (% of Edges)

10

20

30

40
Ed

ge
s C

ut
 (%

)

12%
25%

Algorithm
Streaming Greedy
GREM (ours)
METIS

Analysis Method
Theoretical Analysis
Measured in Practice

Figure 4.3: Percentage of edges cut versus chunk size when using GREM
on FB15K-237 (the hardest graph to partition in Figure 4.1) compared to
standard streaming greedy approaches. We focus on chunk sizes ≤ 30%
where the computational benefit of these methods compared to METIS
(which is shown for reference, but partitions using the full graph, rather
than in chunks) is maximal.

as p increases, peak memory remains constant and the runtime of each
algorithm increases by the same factor (both GREM and METIS partition
recursively for p > 2). Figure 4.2 (left) shows that METIS is able to partition
600M edges on the machine used for these experiments (250GB of memory).
Based on the scaling of memory and runtime, we estimate that METIS
needs 8000s and requires a machine with 630GB of memory to partition the
entire OGBN-Papers100M graph; we confirmed this estimate on a special
machine with 750GB. GREM, however, can partition the entire graph in
just 976s with 73GB (8.2 and 8.3× reduction) or 175s with 9.3GB (46 and
65× reduction) when using a chunk size of 10% or 1% respectively.
The Benefit of Refinement Finally, we study the benefit of the refined
greedy assignments used by GREM compared to the fixed greedy assignments
of conventional streaming algorithms. For both approaches, we show in
Figure 4.3 the number of edge cuts versus chunk size when partitioning
FB15K-237 (the hardest graph to partition in Figure 4.1) into p = 2
partitions (given the recursive nature of GREM, similar results hold for

79

p > 2). We include both the expected number of edge cuts from the
theoretical analysis in Section 4.2, and the number of edge cuts measured
when running the algorithms in practice.

Figure 4.3 shows that for small chunk sizes (e.g., ≤10%), refinement is
critical to minimizing edge cuts; we observe a reduction of up to 25% of
the graph (at a chunk size of 1%). These improvements allow GREM to
use smaller chunk sizes (e.g., 1-10%) without suffering a significant increase
in edge cuts compared to METIS. For example, with a chunk size of 5%,
GREM and METIS differ in edge cuts by <1% of the graph; this difference
would be 13% with fixed greedy assignments. The consequence of these
additional edge cuts is slower and more expensive GNN training—We observe
that training in Armada (Chapter 6) is up to 2.4× slower when using the
streaming greedy algorithm rather than GREM (for a chunk size of 1%).
This confirms recent results which highlight that high quality partitioning
algorithms (e.g., METIS), can lead to faster GNN training compared to
streaming greedy approaches (e.g., LDG) (Merkel et al., 2023).
Summary GREM can partition large-scale graphs with comparable quality
to METIS but with orders of magnitude less computational resources, helping
to address the bottleneck of min-edge-cut partitioning for disk-based or
distributed GNN training.

80

5 min-io and high-accuracy disk-based gnn
training

In this Chapter, we focus on disk-based GNN training to scale to large graphs
which do not fit in CPU memory on a single machine. Disk-based training
has one key benefit: it leverages all available resources on a given machine,
including the cheap and high capacity disk for primary graph storage,
eliminating the need to pay for additional machines to scale training.

We implement disk-based training in MariusGNN (Waleffe et al., 2023).
As described in Section 2.3, we store graph partitions on disk and load
a subset of them into a buffer in main memory. In-buffer partitions are
then used to construct mini batches according to mixed CPU-GPU training
(Chapter 3). We provide an overview of MariusGNN’s architecture for disk-
based training in Section 5.1. We then develop partition replacement polices
for swapping partitions between the buffer and disk that allow MariusGNN
to iterate over all available training examples in the graph. In Section 5.2, we
introduce the Buffer-aware Edge Traversal Algorithm (BETA) to minimize
IO while ensuring that all graph edges appear in memory for training each
epoch. Then, in Section 5.3 we highlight that BETA can lead to low GNN
model accuracy due to the non-random data ordering it introduces (i.e., the
order in which edges are used as training examples; see Section 2.3). We
introduce the COrrelation Minimizing Edge Traversal (COMET) partition
replacement policy to build on BETA, but help shuffle the order in which
graph edges are used for training each epoch. In Section 5.4, we provide
automated rules for tuning COMET’s hyperparameters.

As highlighted in the introduction, in Section 5.5 we show with experi-
ments over four datasets using popular GNN architectures that MariusGNN’s
disk-based, single-GPU training can be 8× faster than eight-GPU deploy-
ments of state-of-the-art systems. This improvement yields monetary cost
reductions of an order of magnitude. We find that for graphs where existing

81

Storage Layer Processing Layer

Disk CPU
Feature Vectors

Physical Node Partition

Edge List

Edge bucket (i,j): edges with
endpoints in node partitions (i,j)

…

…

Logical Node Partition
(groups of physical partitions)

Partition Buffer Subgraph
Training

Examples

Buffer and IO Manager
Prefetch

COMET

 Mini batch
training example

selection

Feature Vector
Update

DENSE

Delta
encoding
of sample

Features

Mini batch

Feature Vector Updates

CPU GPU

Forward pass
using DENSE

Compute loss
& gradients

Update GNN
weights (GPU) &

write feature
updates to CPU

…

1. 2. 3.

4.

5.

6.

In-Memory
Edge

Buckets

A.

B.

C.
D.

Figure 5.1: MariusGNN disk-based training. The lifecycle of a mini batch
consists of Steps 1-6. According to a partition replacement policy (e.g.,
COMET), the storage layer periodically updates graph partitions in memory
during training (Steps A-D).

systems can take six days and $1720 dollars to train a GNN, MariusGNN
needs only eight hours and $36 dollars for training, a 48× reduction in mon-
etary cost (WikiKG90Mv2, Table 5.2). Moreover, we show that single-GPU,
disk-based training can be sufficient for large-scale graphs: We use Mar-
iusGNN to train a GNN over the entire hyperlink graph from the Common
Crawl 2012 web corpus, a graph with 3.5B nodes (web pages) and 128B
edges (hyperlinks between pages) (Table 1.1). MariusGNN can learn vector
representations for all 3.5B nodes using only a single machine with one
GPU, 60GB of RAM, and a large SSD, leading to a cost of just $564/epoch.

5.1 Overview: Disk-Based Training in
MariusGNN

MariusGNN implements out-of-core pipelined training using two modules:
1) a processing layer and 2) a storage layer. Figure 5.1 shows a diagram of
disk-based GNN training in MariusGNN.

MariusGNN represents a graph as an edge list. In addition, feature
vectors for nodes are stored sequentially in a lookup table split into p

physical partitions on disk. The edge list is organized according to edge
buckets: Given a pair of partitions (i, j), we define edge bucket (i, j) to be
the collection of all edges in the graph with a source node in partition i and

82

a destination node in partition j (see Figure 2.5). Edges in each edge bucket
are stored sequentially on disk.

Disk-based training in MariusGNN proceeds in epochs. We start each
epoch with all partitions on disk. We consider an epoch completed only
when all training examples in the graph have been processed once. At the
beginning of each epoch, MariusGNN groups the physical partitions into
a collection of l ≤ p logical partitions. The grouping is randomized and
each physical partition is assigned to one logical partition. Grouping occurs
without data movement: only an in-memory dictionary between logical and
physical partitions is maintained. This two-level partitioning scheme is key to
achieving high-accuracy GNNs (Section 5.3). Given the logical partitions, let
Si be a set of logical partitions such that all corresponding physical partitions
fit in memory. According to a partition replacement policy, MariusGNN
constructs a sequence S = {S1, S2, . . . } (to be consecutively loaded into
memory during training) such that each training example appears in at least
one Si. We then use S to obtain a sequence X = {X1, X2, . . . }. Xi is a
subset of training examples in Si such that when Si is in memory, all (and
only) training examples from Xi are used to generate mini batches. We
describe the techniques used by MariusGNN to select Xi in Section 5.3.

Sequences S and X are generated in a task-aware manner. In the
case of node classification, training examples are graph nodes and in the
case of link prediction, they are pairs of nodes (see Section 2.1). Thus,
for link prediction, pairs of node partitions need to be accessed at the
same time, while for node classification node partitions can be considered
individually. For link prediction, MariusGNN uses the COMET partition
replacement policy to generate S and X. COMET ensures that all edges in
the graph, which correspond to training examples, will appear in at least
one Si ∈ S. COMET also allows MariusGNN to minimize disk-to-CPU IO
while maximizing accuracy for disk-based training. We describe COMET
in Section 5.3. For node classification, MariusGNN defaults to a simple

83

policy that caches all labeled nodes used as training examples in memory
to achieve both high accuracy and throughput, although other policies can
be used (Section 5.3.2). Finally, the above design also allows MariusGNN
to support training with the full graph in memory: S1 contains the whole
graph and X1 contains all training examples.

To complete one epoch (for either task), the storage layer in MariusGNN
uses the sequence S to determine which node partitions and edge buckets
to bring into the CPU partition buffer and in what order. MariusGNN uses
a buffer with a capacity of c physical partitions. When the set of c physical
partitions in Si are placed in the buffer, all c2 pairwise edge buckets are also
loaded into memory. After loading Si, Xi is passed to the processing layer.

The processing layer generates mini batches from Xi in a random order.
At this point, training proceeds according to mixed CPU-GPU mini-batch
training as described in Chapter 3: MariusGNN performs multi-hop neigh-
borhood sampling using the DENSE data structure to construct a mini
batch (Section 3.3). To improve throughput, DENSE allows MariusGNN to
minimize redundant computation during sampling by reusing neighborhood
samples required as input to different GNN layers. Neighborhood sampling
is performed only over graph nodes and edges in main memory. DENSE
and the corresponding feature vectors are then transferred to the GPU to
complete processing of the mini batch. DENSE is co-designed such that
the forward pass for the GNN is computed using kernels that are optimized
for dense linear algebra operations. After the forward pass, MariusGNN
computes the loss and gradients. We update GNN parameters on the GPU
and if applicable, updates to learnable feature vectors are transferred back
to CPU memory and used to update the node features in the partition buffer.
As described in Section 3.1, we perform all data preparation and transfers
in a pipelined manner (also shown in Figure 5.1).

After training completes on the mini batches generated from Xi, the
storage layer updates the partitions in the buffer from Si to Si+1 by swapping

84

the necessary logical partitions between disk and CPU memory (one or more
physical partitions) together with the corresponding edge buckets. This
process repeats until the epoch is completed.

5.2 BETA: A Partition Replacement Policy
with Minimal IO

In this section, we describe how to minimize IO overheads during disk-based
training. In particular, we introduce BETA, a partition replacement policy
that ensures all edges appear in memory each epoch with a near-minimal
number of partition swaps (and thus IO) from disk to CPU memory.

5.2.1 Buffer-aware Edge Traversal Algorithm (BETA)
We develop a partition replacement policy that minimizes the number of
swaps for edge-based training examples. As described in Section 5.1, we
assume as input a graph that is partitioned into p2 edge buckets correspond-
ing to p node partitions (in this section, we assume that logical partitions
and physical partitions are the same). Then, one training epoch requires
iterating over all edges in the p2 edge buckets.

We start by deriving a lower bound on the number of swaps necessary to
complete one training epoch for a buffer of size c and p (p >= c) partitions.
To derive the lower bound, we view the partition replacement policy as
a sequence of partition buffers S over the epoch, where each item in the
sequence Si describes what node partitions are in the buffer at that point
in training. Each successive buffer differs by one swapped partition. Given
such a sequence, all edges in edge bucket (i, j) can be used for training when
partitions i and j appear together in the buffer (edges in self edge buckets
(i.e. (i, i)) can be processed when jus i appears in the buffer). Note that i

and j must appear together at least once in some Si otherwise not all edge
buckets (and thus edges) in the graph can be processed. Viewed in this
light, we seek the shortest (minimum swaps) buffer sequence where all node

85

partition pairs appear together in the buffer at least once.
Lower Bound We assume that initializing the first full buffer does not
count as part of the total number of swaps as all partition replacement
policies must incur this cost. Thus, there are p(p−1)

2 (the total number of
partition pairs) minus c(c−1)

2 (the number of partition pairs we get in the first
buffer) remaining partition pairs that must appear together in the partition
buffer. On any given swap, the most new pairs we can cover is if the partition
entering the buffer has not been paired with anything already in the buffer
(everything in the buffer has already been paired with everything else in
the buffer). Thus, for each swap, the best we can hope for is to get c − 1
pairs we have not already seen. With this in mind a lower bound on the
minimum number of swaps required is:

p(p−1)

2 − c(c−1)
2

c − 1

 (5.1)

We use this lower bound to evaluate the performance of different policies
in the next section. We experimentally show that the new policy we propose
(BETA) is nearly optimal with respect to this bound.
BETA We describe the Buffer-aware Edge Traversal Algorithm (BETA),
an algorithm to compute the sequence of partition buffers S that ensures all
partition pairs (i, j) appear together in at least one buffer with a close to
optimal number of partition swaps.

Algorithm 6 describes how BETA generates the sequence of partition
buffers. Consider a partition buffer that was initialized with the first c node
partitions in the graph (Line 2). The remaining p − c node partitions start
on disk (Line 3). To generate the partition buffer sequence we then proceed
as follows: First we fix the leading c − 1 node partitions in the buffer and
swap each of the outstanding partitions into the final buffer spot, one at a
time (Line 6-8). Each swap creates a new partition buffer in the sequence.
Once this is complete, the fixed c − 1 partitions have been paired in the

86

Algorithm 6 BETA Partition Replacement Policy
Require: p partitions stored on disk index by [0 . . . p]
1: S = {}
2: in_memory = [0 . . . c − 1]
3: on_disk = [c . . . p − 1]
4: S.append(in_memory)
5: while on_disk.size() > 0 do
6: for i in range(on_disk.size()) do
7: swap(in_memory[−1], on_disk[i])
8: S.append(in_memory)
9: n = 0

10: for i in range(c − 1) do
11: if i ≥ on_disk.size() then
12: break
13: n = n + 1
14: in_memory[i] = on_disk[i]
15: S.append(in_memory)
16: on_disk = on_disk[n : end]
17: return S

buffer with all other node partitions in the graph and are therefore no longer
needed this epoch. We refresh our buffer by replacing the finished c − 1
partitions with new node partitions from the unfinished set on disk (Line
10-15). The incoming partitions can then be deleted from the on-disk set
(Line 16) since they are now in the buffer. As before, each swap results in a
partition buffer added to the sequence. We repeat this process until there
are no remaining unfinished node partitions (Line 5 and 11-12).

Note that the final partition buffer sequence S can be easily converted
into an iteration (ordering) over edge buckets that can be used for training.
For BETA, we add edge bucket (i, j) to the order the first time partitions i

and j appear together in a buffer. This ordering includes all edge buckets
and thus all graph edges. Stated in the language of Section 5.1, we obtain
the sequence X = {X1, X2, . . . }, where Xi is the set training examples used
to generate mini batches when Si is in memory, by adding all edges in edge
bucket (a, b) to the first Xi for which Si contains both a an b. We show an

87

Partition Buffers

0, 1, 2 0, 1, 3 0, 1, 4 0, 1, 5 2, 1, 5 2, 3, 5 2, 3, 4 5, 3, 4

fix: {0, 1}, cycle: {2, 3, 4, 5} replace: {0, 1} with {2, 3}, cycle: {4, 5}swap 2 with 3

Destination Node Partition

So
ur

ce
 N

od
e

Pa
rti

tio
n 0 1 2 3 4 5

0
1
2
3
4
5

Edge Bucket Ordering Node Partitions: {0, 1, 2, 3, 4, 5}
0 1 2 3 4 5

0
1
2
3
4
5

0 1 2 3 4 5
0
1
2
3
4
5

0 1 2 3 4 5
0
1
2
3
4
5

0 1 2 3 4 5
0
1
2
3
4
5

0 1 2 3 4 5
0
1
2
3
4
5

0 1 2 3 4 5
0
1
2
3
4
5

50 1 2 3 4
0
1
2
3
4
5

replace: {2, 3} with {5}

Figure 5.2: Example of BETA for p = 6 and c = 3. The sequence of
partition buffers corresponds to first fixing {0, 1}, then replacing {0, 1} with
{2, 3}, fixing {2, 3}, and finally replacing {2, 3} with {5}. Each successive
buffer differs by one swap. The corresponding edge buckets that are used
for training are shown above the buffers: For each partition buffer in the
sequence, all previously unused edge buckets which have their source and
destination node partitions in the buffer are used for training.

example of the BETA policy in Figure 5.2.
We observe that BETA has a number of useful properties that make it

advantageous to implement in practice. Since all partitions are symmetrically
processed we do not need to track any extra state or use any priority
mechanisms. Further, for every disk IO (swap) with a fixed set of c − 1
partitions (Line 7 in Algorithm 6), the incoming node partition has yet
to be paired with any other partition in the buffer. This means there are
c − 1 new edge buckets available for training before we need to perform
another swap—the most possible (excluding self edge buckets)—allowing us
to overlap IO operations behind longer compute times. The only bottleneck
arises when the fixed c − 1 partitions are replaced, but this only happens at
most

⌊
p−c
c−1

⌋
+ 1 times in one epoch. Additionally, BETA can be randomized

to create different graph traversals by shuffling which partitions start in
the buffer, by permuting the buffer and/or on disk set before Line 6 in
Algorithm 6, or by permuting the on disk set before Line 10 in Algorithm 6.

Finally, we analyze the number of swaps generated by BETA: given p

88

partitions and a buffer of size c the number of swaps is

(p − c) + (x + 1)
[
(p − c) − 1

2x(c − 1)
]

where x =
⌊

p − c

c − 1

⌋
.

(5.2)

Comparison with Hilbert and Lower Bound We compare the
number of swaps incurred by BETA with the analytical lower bound and
with the number of swaps incurred by iterating over graph edge buckets
(and thus edges) according to space-filling curves: Space filling curves like
Hilbert (Hilbert, 1891) attempt to define a graph traversal where edges
buckets located close together in the n×n matrix of all edge buckets are also
close together in the ordering (e.g., Figure 5.3a). During traversal, whenever
an edge bucket is encountered for which both partitions are not in the buffer,
a swap is required (since the ordering is known ahead of time, the optimal
eviction policy can be used which evicts the partition used again farthest in
the future (Belady, 1966)). We also compare to a second version of Hilbert,
termed Hilbert Symmetric, which modifies the former by including edge
buckets (i, j) and (j, i) successively in the order. A key advantage of BETA
when compared to these methods is that it is buffer-aware, i.e., the algorithm
knows the buffer size and specifically aims to minimize partition swaps. In
contrast, space-filling curve based orderings are unaware of this information,
aiming instead to process edge buckets with locality in the n × n matrix
close together during training.

We illustrate how BETA compares to a Hilbert space-filling curve on a
small p = 4, c = 2 case in Figure 5.3. We see that while Hilbert requires nine
swaps, BETA only requires five. We also performed simulations to compare
each method. Figure 5.4 shows the number of swaps when varying p and using
a buffer with size p

4 for BETA, Hilbert, and Hilbert Symmetric, together
with the lower bound. BETA yields nearly optimal performance across
configurations and requires significantly less IO than the other methods. For

89

0 1 2 3

Destination Node Partition

0

1

2

3

So
ur

ce
 N

od
e

P
ar

ti
ti

on 0 1

23

4

5 6

7 8

9 10

11

1213

14 15

(a) Hilbert

0 1 2 3

Destination Node Partition

0

1

2

3

So
ur

ce
 N

od
e

P
ar

ti
ti

on 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(b) BETA

Figure 5.3: Comparison of the order in which edge buckets are used for
training (labeled by the number in each edge bucket) for Hilbert and BETA
with p = 4 and c = 2. Gray cells indicate a partition swap was required
before that edge bucket could be used for training.

a detailed empirical study of BETA versus Hilbert orderings during training,
we refer the reader to Mohoney et al. (2021).

We leave an investigation of a provably-optimal policy for future work.
Our initial studies have shown that there exist cases of p and c where no
policy can match the lower bound as well as cases where a policy which
requires slightly fewer swaps than BETA exists. Thus, the optimal algorithm
requires swaps somewhere between the lower bound and BETA in Figure 5.4.

Finally, we note that once a partition replacement policy (e.g., S) has
been selected, we can further mitigate IO overhead by using a prefetching
thread to load node partitions in the background as they are needed in the
near future. Correspondingly when a partition needs to be evicted from
memory, we perform asynchronous writes using a background writer thread.

90

20 40 60 80 100 120
Number of Partitions

0

200

400

600

800

1000

To
ta

l I
O

 (G
B

)

Hilbert
BETA
Hilbert Symmetric
Lower Bound

Figure 5.4: Simulated total IO performed during on epoch of training
on Freebase86m (Google, 2018) with a feature vector size of 100. BETA
outperforms existing algorithms and achieves near-optimal IO.

5.3 COMET and High-Accuracy Partition
Replacement Policies

We now discuss the partition replacement policies used by MariusGNN for
disk-based training. As described in Section 5.1, MariusGNN uses different
policies for link prediction and node classification. We discuss each in turn.

5.3.1 Policies for Link Prediction
MariusGNN uses the COMET policy to maximize throughput while main-
taining high accuracy when training link prediction models (where training
examples correspond to graph edges). Before we introduce COMET, we
discuss why BETA (and more generally any policy that only optimizes for
throughput without considering the order of examples for training) leads to
biased training and hence harms the accuracy of the learned GNN models.

Greedy policies, e.g., BETA, that focus on minimizing IO for high
throughput produce correlated training examples that bias learning and lead
to low model accuracy. Recall that we define S = {S1, S2, . . . } to be the
sequence of partition sets which will be loaded into memory during one epoch

91

: {0, 1, 2, 4}S2
: {0, 1, 2, 5}S3

Partitions
In Memory

: {0, 1, 2, 3} x {0, 1, 2, 3}X1
: (0,4) (1,4) (2,4) (4,0) (4,1) (4,2) (4,4)X2
: (0,5) (1,5) (2,5) (5,0) (5,1) (5,2) (5,5)X3
: (3,5) (5,3)X4
: (3,4) (4,3) (4,5) (5,4)X5

: {0, 1, 2, 3}S1

: {1, 2, 3, 5}S4
: {2, 3, 4, 5}S5Disk

Edge
Buckets

Partitions
0

1

2

3

4

5

(0, 0)

(5, 5)

Training Examples:
(all edges in the following edge buckets)

One Training Epoch: Greedy Policy

Figure 5.5: Greedy sequence of partitions in memory S and training examples
X that are correlated (e.g., those generated by BETA). For instance, the
examples in X2 all come from edge buckets containing partition four.

and X = {X1, X2, . . . } to be the sequence of training examples used to
generate mini batches for each Si ∈ S (Section 5.1). To minimize IO, greedy
policies swap partitions between Si and Si+1 such that the new partitions
brought into memory maximize the number of new training examples that
can be generated from the in-memory graph. For example, the BETA
policy minimizes IO by bringing one new physical partition p∗ in memory
to obtain Si+1 and uses the edges (training examples) that correspond to
node pairs formed by combining p∗ with all other partitions in memory
to construct Xi+1. This process makes all training examples in Xi+1 be
correlated: they all have one endpoint in the new partition p∗. We show
an example of this problem in Figure 5.5. As highlighted in Section 2.3,
performing training over correlated examples reduces randomness in the
order edges are processed each epoch and conflicts with the independently
distributed assumption of ML training data. In Section 5.5.4, we show that
using a greedy policy leads to accuracy degradation compared to training
with the full graph in memory.

COMET addresses the above shortcoming by introducing randomness in
the order that training examples are processed each epoch while simultane-
ously minimizing IO. To increase randomness, we design COMET around

92

Logical
Partitions

: {A, B}S1

: {A, C}S2

: {B, C}S3

Physical
Partitions

: {0, 1, 2, 3}S1

: {0, 1, 4, 5}S2

: {2, 3, 4, 5}S3

: (2,3) (1,0) (3,3) (1,3) (2,1) (2,0)
(1,1) (0,3) (3,1) (1,2) (0,2) (3,0)
X1

: (0,0) (0,5) (4,1) (5,1) (1,4) (4,5)
(1,5) (0,4) (0,1) (4,0) (5,0)
X2

: (4,2) (3,2) (3,4) (4,4) (5,3) (3,5)
(2,2) (5,4) (2,4) (2,5) (5,2) (4,3) (5,5)
X3Disk

Edge
Buckets

Partitions
0

1

2

3

4

5

(0, 0)

(5, 5)

Partitions In Memory

One Training Epoch: COMET

Training Examples:
(all edges in the following edge buckets)

Partition Mapping: A: 0, 1 B: 2, 3 C: 4, 5

Figure 5.6: Partition and training example sequences generated by COMET
to minimize training example correlation.

two mechanisms: 1) a two-level (logical and physical) partitioning scheme
and 2) randomized generation of training examples. Following the archi-
tecture from Section 5.1, the first mechanism generates the sequence of
partition sets S for one epoch and the second mechanism generates the
sequence of training examples X.

To decouple data storage and access from data transfer, COMET uses
physical partitions on disk but transfers groups of physical partitions—called
logical partitions—between disk and CPU memory. At the beginning of
each epoch, physical partitions are randomly grouped into logical partitions
(without data movement) (Section 5.1). COMET then generates S =
{S1, S2, . . . } by greedily swapping (according to BETA) one logical partition
between Si and Si+1 such that all pairs of partitions (and thus edges)
appear in at least one Si with minimal IO. By utilizing logical partitions,
COMET allows MariusGNN to improve randomness by utilizing small
physical partitions—which fix fewer nodes together in a partition for the
whole training process—yet also use large logical partitions to increase
turnover rate of graph data between each Si. In Section 5.4, we analyze how
to best set the number of physical and logical partitions to simultaneously
minimize IO and maximize accuracy.

Instead of using logical partitions to increase randomness in the sequence

93

of partitions sets S, an alternative design would be to create a new greedy
algorithm to minimize IO while considering multiple physical partition swaps
at once. In MariusGNN we opt to use logical partitions for the following
reasons. First, by swapping one logical partition at a time MariusGNN
can utilize existing one-swap greedy algorithms that have been shown to
minimize total epoch IO near the theoretical lower bound (i.e., BETA). Thus,
a multi-swap greedy algorithm can at best provide little IO benefit. Finally,
allowing for multiple swaps at once exponentially increases the number of
swap choices to consider between each set of partitions Si and Si+1, making
it challenging to develop an efficient multi-swap algorithm to generate S.
Thus, we focus on using a two-level partitioning scheme in MariusGNN.

Beyond introducing randomness in S, COMET also injects randomness
in the sequence of training examples X used to create mini batches. Given
that S is generated at the beginning of each epoch, MariusGNN performs
the following optimization: For each pair of partitions (i, j) in the graph,
MariusGNN identifies all partition sets S(i,j) ⊆ S that contain both i and j.
COMET then picks one S∗ at random from S(i,j) and assigns the training
examples corresponding to pairs of nodes between these two partitions—the
edges in edge bucket (i, j)—to X∗. This random assignment allows for the
deferred processing of training examples rather than greedily processing all
new examples immediately upon arrival in CPU memory. Beyond shuffling
training examples, this deferred execution scheme also balances the workload
across each Xi—each Xi contains in expectation the same number of training
examples. When prefetching is used to mask the IO latency required to
load Si+1 during mini-batch training on Si, balanced workloads enable
consistent overlapping of IO and compute. In contrast, greedy policies
generate unbalanced workloads where some Xi contain very few training
examples (e.g., Figure 5.5). For these cases, training on Xi completes before
Si+1 is loaded leading to IO bottlenecks.

94

5.3.2 Policies for Node Classification
For node classification we find that a simple replacement policy is generally
sufficient to maximize throughput without harming accuracy. To iterate over
all training examples during each epoch, we require that all labeled graph
nodes in the training set—called the training nodes—appear in memory at
least once (in at least one Si) (this is in contrast with link prediction, where
we aim to iterate over all edges each epoch). We find that in large-scale
graphs (Hu et al., 2021, 2020), it is often the case that the training nodes
make up only one to ten percent of all graph vertices. As such, the feature
vectors for the training nodes can fit in CPU memory, even when the storage
overhead for the full graph is many times larger. When this observation
holds, for disk-based node classification, MariusGNN performs static caching
of the training nodes and their feature vectors in CPU memory. While
prior works have also used static caching for GNN training (Lin et al., 2020;
Yang et al., 2022), these approaches focus on caching hot vertices in GPU
memory to minimize CPU to GPU data transfer rather than caching training
examples in CPU memory to minimize disk to CPU transfers.

More specifically, we perform disk-based node classification as follows:
We assign all training nodes sequentially to the first k physical partitions.
Non-training nodes are assigned to the remainin p − k physical partitions as
before. We generate one set of partitions to be loaded into memory each
epoch S = {S0}. S0 contains the k partitions with training nodes together
with c − k other randomly chosen physical partitions (buffer capacity c).
By construction, all training nodes are assigned to create mini batches in
X0. This policy leads to zero partition swaps (IO) during an epoch (IO
does occur between epochs), but assumes that k is less than c (all training
examples can fit in CPU memory). In the future, we plan to study how this
approach compares with other schemes (Liu et al., 2023) for dynamically
caching training examples in CPU memory.

If k ≥ c, MariusGNN has two options: First, we can partition the graph

95

Algorithm 7 Node Classification Partition Replacement Policy
Require: parts: logical partitions [0 . . . l − 1]

cl: number of logical partitions which can fit in memory
1: Sl

1 = ran_perm(parts)[0 : cl]
2: disk = parts \ Sl

1
3: i = 1
4: while disk.size() > 0 do
5: i = i + 1
6: Sl

i = copy(Sl
i−1)

7: r1 = randInt(cl)
8: r2 = randInt(disk.size())
9: Sl

i[r1] = disk[r2]
10: disk.pop(r2)
11: return {Sl

1 . . . Sl
i}

into p physical partitions as usual (in which case the training nodes will be
dispersed across all partitions) and use COMET to generate the sequence of
partition buffers S for training, but then generate X by randomly assigning
training nodes to each Xi rather than edges. COMET, however, generates
S with a stronger requirement than needed for node classification; it ensures
all pairs of partitions (and thus edges) appear in memory each epoch, rather
than just all partitions (and thus nodes and by extension training nodes).
As such, we can ensure the latter, which is sufficient for node classification,
with less IO according to the following policy to generate S (Algorithm 7):
We replace a random logical partition in memory (as before, the replacement
policy operates on logical partitions and MariusGNN maps them to their
corresponding physical partitions) with a random one from disk that has
not appeared in memory until all partitions have appeared in the buffer. For
the goal of bringing each partition into memory, this replacement policy is
guaranteed to have minimal disk-to-CPU IO as partitions are read from disk
exactly once. For this policy, X can be generated as above for COMET.

96

5.4 Hyperparameter Auto-Tuning Rules For
Disk-Based Training

MariusGNN provides auto-tuning for 1) the number of physical partitions p,
2) the number of logical partitions l, and 3) the buffer capacity c to minimize
training time and maximize model accuracy out of the box. We focus on p

and l since maximizing c best approximates training with the full graph in
memory and thus leads to better runtime and accuracy. We first connect p

and l to model accuracy, then focus on their effect on runtime, and conclude
by using this information to present auto-tuning rules (for p, l, and c).
Effect of p and l on Accuracy To study the effect p and l have on model
accuracy, we introduce a proxy metric which we term the Edge Permutation
Bias B. Recall that model quality can degrade if training consecutively
iterates over correlated examples (Section 5.3.1). This problem is general
to ML workloads (Haochen and Sra, 2019; De Sa, 2020; Hofmann et al.,
2015). We design B to capture the extent to which the sequence of training
examples generated by COMET exhibits this phenomenon. Figure 5.7a
illustrates the dependency between B and model accuracy. The depicted
results correspond to empirical measurements over a benchmark model
(GraphSage (Hamilton et al., 2017)) and dataset (FB15k-237 (Toutanova
et al., 2015)). We find the same behavior to hold across settings.

We now define B. Let X = {X1 . . . Xn} be the sequence of edge bucket
sets Xi assigned as training examples for each partition set Si (Section 5.3.1).
If Xi contains edges that focus on a small subset of nodes, then we have
the undesired correlation described above. We empirically measure this
occurrence as follows: Let V be the set of nodes in the graph. For each
node v ∈ V we keep a tally tv

i as we iterate over X which measures how
many edges we have seen containing this node after each Xi. Tallies are
cumulative and we assume a uniform degree distribution. We normalize
such that tv

n = 1. This implies tv
i ∈ [0, 1]. After each Xi we calculate

97

0.90 0.95
Edge Permutation Bias

0.25

0.26

0.27

Ac
cu

ra
cy

 (M
RR

)

(a) Model Accuracy vs. Bias B

0 20 40 60 80 100 120
Number of Logical Partitions (l)

0.7

0.8

0.9

Ed
ge

 P
er

m
ut

at
io

n
Bi

as

0

25

50

75

100

125

Nu
m

be
r o

f S
ub

gr
ap

hs

1.00

1.05

1.10

1.15

1.20

1.25

No
rm

al
ize

d
To

ta
l I

O

Edge Permutation Bias
Number of Subgraphs
Normalized Total IO

(b) Effect of logical partitions

0 20 40 60 80 100 120
Number of Physical Partitions (p)

0.71

0.72

0.73

0.74

Ed
ge

 P
er

m
ut

at
io

n
Bi

as

(c) Effect of physical partitions

Figure 5.7: Empirical measurements on the effect of COMET hyperparame-
ters using GraphSage on FB15k-237.

di = maxv1,v2∈V (tv1
i − tv2

i). Given this, B = maxidi ∈ [0, 1].
We are interested in how evenly the tallies are incremented during a

training epoch. Biased assignments will lead to processing many edges for a
subset of nodes at once while ignoring the remaining graph vertices. This
leads to high variance in model gradients across the epoch. With this in
mind, B = z means that z + a percent of the edges containing a certain
node have been processed before a percent of the edges of another node
have been processed (for a ∈ [0, 1 − z]).

Figure 5.7c shows that B decreases with increasing physical partitions.
The observed trends can be characterized by the equation B = O(p−α1)
for some constant α1 > 1. Figure 5.7b shows the effect of the number
of logical partitions on B. Decreasing the number of logical partitions
decreases the Edge Permutation Bias roughly according to B = O(lα2) for
0 < α2 < 1. While we do not provide a closed-form characterization of B

98

as a function of p and l we find that the aforementioned trends hold across
datasets. Moreover, describing the limiting behavior of B with respect
to p and l suffices to obtain a concrete methodology for optimizing these
hyperparameters (described below).
Effect of p and l on Training Time We now focus on how p and l affect
the per-epoch runtime T . To do so, we analyze three metrics that influence
training time: 1) the total IO in terms of bytes transferred from disk to CPU
memory (IO), 2) the number of partition sets generated per epoch (|S|),
and 3) the smallest size of disk reads (R) in bytes. As Quantities 1 and 2
increase, the total training time increases—recall from Section 3.3.1 that
preparing each Si for training requires creating single-hop sampling data
structures—while a decrease in Quantity 3 leads to an increased runtime.

By construction in COMET, the number of logical partitions affects
Quantities 1 and 2. Figure 5.7b shows that as l increases the total IO
decreases and the number of partition sets per-epoch increases. The limiting
behavior of IO and |S| with respect to l is: IO = O(l−α3) for α3 > 1 and
|S| = O(l). For the purposes of this work, we assume that the training time
is dominated by the number of partition sets (|S|) per epoch instead of the
total IO for two reasons: First, the relative difference between the best and
worst IO is usually only between 5-25 percent and second, prefetching can
overlap IO with compute. Thus, we take the training time T = O(l).

The training time T is also affected by the number of physical partitions
p through Quantity 3. As p increases, the size of each partition decreases
linearly and the size of each edge bucket decreases quadratically—the smaller
of these quantities is the smallest disk read size R. As a result, disk access
transitions from large sequential reads and writes to small random reads and
writes with increasing p. Given the hardware constraints of block storage,
the latter can become a bottleneck, particularly when read sizes R are less
than the disk block size D. Thus, we model the affect of p on training time
according to T = O(1) for p ≤ α4 and O(p) for p > α4, with α4 representing

99

the number of partitions which cause the smallest disk reads to be equal
the block size D.
Methodology for Setting Hyperparameters Given the effect of p and
l on accuracy and training time described above, together with the desire to
maximize the buffer capacity c, we now present rules for setting the COMET
hyperparameters. We assume a graph G = (V, E), that the feature vectors
of each node have dimension d, that CPU memory is of capacity CPU bytes,
and that the disk block size is D. First, we calculate the total overhead of
storing all features as NO = |V | ∗ d ∗ 4 bytes (using floating point numbers).
Likewise, the edge overhead EO can be calculated from |E| and the number
of bytes per edge. Then, the overhead of each node partition is PO = NO/p

and the expected size of each edge bucket is EBO = EO/p2.
With the above definitions, p affects the Edge Permutation Bias B and

training time T as follows: B = O(p−α1) for some constant α1 > 1 and
T = O(1) for p ≤ α4 and O(p) for p > α4 with α4 = min(NO/D,

√
EO/D).

Thus, to minimize B without increasing T , we set p = α4. We then maximize
c such that c ∗ PO + 2 ∗ c2 ∗ EBO + F < CPU . The edge term is multiplied
by two because MariusGNN utilizes two sorted versions of the edge list for
neighborhood sampling (Section 3.3.1) and we leave some extra CPU space
for working memory (fudge factor F). Finally, B and T are affected by the
number of logical partitions according to B = O(lα2) for 0 < α2 < 1 and
T = O(l). As such, we minimize both by minimizing l. COMET imposes
the constraint that the number of logical partitions in the buffer cl ≥ 2 and
that p/c = l/cl. Therefore l = 2 ∗ p/c.

5.5 Results: Disk-Based Training in
MariusGNN

We implement disk-based training in MariusGNN. Together with the code
for mixed CPU-GPU mini-batch training, MariusGNN totals 16k lines of
C++ and 5k lines of Python. We evaluate disk-based training on four large-

100

scale graphs (see Table 1.1 for dataset statistics) using the same setting
as Section 3.4 and compare against the results when using state-of-the-art
GNN systems (DGL and PyG) as well as MariusGNN with the full graph
in memory. We show that:

1. MariusGNN disk-based training reaches the same level of accuracy up
to 2-8× faster and 8-64× cheaper than DGL and PyG on all datasets
for both node classification and link prediction.

2. MariusGNN enables cheap and efficient training of GNNs using disk
storage. COMET yields fast runtime and high accuracy for link
prediction. Additionally, MariusGNN allows us to train GNNs for
node classification when datasets exceed commodity main memory.

3. MariusGNN auto-tuning rules for COMET yield configurations that
achieve the highest throughput and model quality, lowering the de-
ployment burden for training.

5.5.1 Experimental Setup
We highlight the setup used for disk-based experiments. All other experi-
mental details remain the same as described in Section 3.4.1.
Baselines We compare end-to-end GNN training over large-scale graphs
in MariusGNN against DGL 0.7 and PyG 2.0.3 (late 2021 releases).
Hardware Setup As before, we evaluate disk-based training using
AWS P3 instances (Table 3.1). We use an EBS volume with 1GBps of
bandwidth and 10000 IOPS as disk storage. In this section, we report
results for MariusGNN using two hardware configurations: one for disk-
based training (MariusGNNDisk) and one for training with the full graph
in memory (MariusGNNMem; these results are the same as reported for
MariusGNN in Section 3.4). For disk-based training, we minimize training
costs by using only a single P3.2xLarge machine—an instance that does not
have enough CPU memory to store any of the large-scale graphs used in

101

these experiments (having only 61GB of memory). For the latter, recall that
we use the cheapest P3 instance which has enough RAM for training with
the full graph in memory (either a P3.8xLarge or P3.16xLarge). Baseline
systems do not support training if graph data does not fit in CPU memory.
Thus, for each graph, we report results for DGL and PyG using the same
P3 instance that was used for MariusGNNMem. Recall also that we allow
baseline systems to use the maximum number of GPUs they support and
available in the instance. MariusGNNDisk and MariusGNNMem uses only
one GPU for all experiments.
Datasets, Models, and Metrics For node classification and link predic-
tion, we use the same datasets, models, and metrics described in Section 3.4.1
Hyperparameters We use the same hyperparameters as described in
Section 3.4.1. MariusGNN disk-based training hyperparameters are set
using the auto-tuning rules presented in Section 5.4.

5.5.2 End-to-End System Comparisons
We discuss end-to-end training results for MariusGNN disk-based training
compared to MariusGNN, DGL, and PyG with the full graph in memory
on node classification and link prediction tasks.

Results are reported in Tables 5.1-5.3 and Figure 5.8. As in Section 3.4.2,
for each experiment we train all systems for the same fixed number of
epochs and measure 1) the per-epoch runtime, 2) model accuracy or MRR,
and 3) the monetary cost per epoch based on AWS pricing. However,
we now report two configurations for MariusGNN—one with graph data
stored in main memory (MariusGNNMem) and one using disk-based training
(MariusGNNDisk). Next, we highlight key takeaways among all end-to-end
results before focusing on each setting (Table) in more detail.
Key Takeaway MariusGNN disk-based training is the faster and cheaper
training option to comparable accuracy compared to baseline systems (DGL
and PyG) for all dataset and model combinations on both learning tasks.

102

0 10 20 30 40 50 60 70 80
Time (min)

0
20
40
60
80

Ac
cu

ra
cy

4×
Node Classification (Papers100M)

M-GNN Mem 1 GPU
M-GNN Disk 1 GPU
DGL 4 GPUs
PyG 4 GPUs

0 200 400 600 800
Time (min)

0.0
0.2
0.4
0.6
0.8

M
RR

6×6×
Link Prediction (Freebase86M)

M-GNN Mem 1 GPU
M-GNN Disk 1 GPU
DGL 1 GPU
PyG 1 GPU

Figure 5.8: Time-to-accuracy for MariusGNN, DGL, and PyG. MariusGNN
reaches the same level of accuracy 4-6× faster and remains faster than
baseline systems even when using disk-based training.

Table 5.1: MariusGNN, DGL, and PyG for node classification on large-scale
graphs using a GraphSage GNN. Using a single GPU, MariusGNN can reach
the same level of accuracy as multi-GPU baselines 3-8× faster and up to
64× cheaper by leveraging disk-based training.

Epoch (min.) Accuracy Cost ($/epoch)

Dataset Papers Mag Papers Mag Papers Mag

MariusGNNMem 0.77 2.57 66.38 63.17 0.16 1.05
MariusGNNDisk 0.83 0.94 66.03 62.53 0.04 0.05

DGL 3.07 7.83 66.98 63.73 0.63 3.19
PyG 8.01 19 66.93 63.47 1.63 7.75

Moreover, cost reductions for all experiments are at least 8×. Disk-based
training can lead to differences in cost of almost two orders of magnitude:
Baseline systems can take six days and $1720 dollars for training (see training
on Wiki in Table 5.2), yet MariusGNN disk-based training needs only $36
dollars for the same dataset. These improvements allow MariusGNN to
efficiently scale GNN training to graphs more than two orders of magnitude
larger than existing benchmark datasets.
Node Classification We focus on end-to-end disk-based training results for
node classification in more detail (Table 5.1). We show the time-to-accuracy

103

Table 5.2: MariusGNN, DGL, and PyG for link prediction on large-scale
graphs. All systems use a GraphSage GNN and one GPU. MariusGNN
reaches comparable accuracy to baselines 6-7× faster and 13-18× cheaper
using disk-based training. (OOT: out of time)

Epoch (min.) MRR Cost ($/epoch)

Dataset FB Wiki FB Wiki FB Wiki

MariusGNNMem 17.5 46.6 .7285 .4655 3.57 9.38
MariusGNNDisk 34.2 69.9 .7216 .4156 1.74 3.56

DGL 152 844 .7091 OOT 31.0 172
PyG 108 312 .7267 .4683 22.0 63.6

on Papers100M in Figure 5.8. MariusGNN can train the same GraphSage
models for node classification as baseline systems using disk-based training
on a single AWS P3.2xLarge machine with one GPU, while still training 4×
and 8× faster than DGL (the fastest baseline). These timings occur even as
DGL stores the full graph in CPU memory and uses four and eight GPUs on
Papers100M and Mag240M-Cites respectively; recall that while both DGL
and PyG support multi-GPU training, they both underutilize the additional
compute resources: DGL and PyG four-GPU training on Papers100M are
only 1.4× and 1.1× faster than their single-GPU performance respectively,
and DGL eight-GPU training on Mag240M-Cites is only 2.2× faster than
with one-GPU (single-GPU baselines not reported in Table 5.1). The
combination of a cheaper machine, baseline systems scaling sublinearly, and
faster epoch runtimes lead MariusGNN disk-based training to be 16× and
64× cheaper on the two graphs. Moreover, disk-based node classification in
MariusGNN can actually be faster than in-memory training (e.g., Mag240M-
Cites). This occurs because neighborhood sampling operations are performed
over in-memory subgraphs, leading to fewer returned neighbors and smaller
mini batches. While this can improve throughput, it can also introduce
slight accuracy reductions (e.g., 63.17 to 62.53).
Link Prediction We now focus on end-to-end disk-based training for

104

Table 5.3: Comparison of GraphSage (GS) and GAT GNN training in
MariusGNN, DGL, and PyG for link prediction on Freebase86M. Baselines
bottlenecked by CPU-based mini batch preparation result in similar training
time and cost on GraphSage and the more computationally expensive GAT.

Epoch (min.) MRR Cost ($/epoch)

Model GS GAT GS GAT GS GAT

MariusGNNMem 17.5 52.6 .7285 .7331 3.57 10.7
MariusGNNDisk 34.2 56.9 .7216 .7251 1.74 2.90

DGL 152 151 .7091 .6516 31.0 30.8
PyG 108 107 .7267 .7252 22.0 21.8

link prediction. Results for all systems on Freebase86M and WikiKG90Mv2
are reported in Table 5.2 and 5.3. Time-to-accuracy on Freebase86M is
shown in Figure 5.8. COMET allows MariusGNN to train the same models
for link prediction on a 3× cheaper (P3.2xLarge) machine than baseline
systems by utilizing disk storage. For this task, disk-based training in
MariusGNN is slower than in-memory training for two reasons: 1) COMET
requires performing disk IO during every epoch, and 2) the P3.2xLarge
machine has 4× fewer CPU resources available for reading/writing feature
vectors to main memory. Yet, epoch runtimes remain 1.9×-4.5× faster
than baseline systems, yielding cost reductions of 7.5-18×. As described
in Section 5.3, achieving high-accuracy disk-based GNN models for link
prediction is a key challenge. On Freebase86M, COMET allows MariusGNN
to reach comparable model quality to the in-memory setting. Yet, recovering
in-memory accuracy remains an open problem for some datasets (e.g., Wiki).
We evaluate COMET in more detail in Section 5.5.4.

5.5.3 Extreme Scale GNN Training With One GPU
A core motivation of our work is to use the resources in a single machine
efficiently to scale GNN training to massive graphs. To evaluate our ability
to achieve this goal, we stress-test MariusGNN with respect to graph size:

105

We consider the task of learning feature vectors for link prediction over
the entire hyperlink graph from the Common Crawl 2012 web corpus, a
graph with 3.5 billion nodes (web pages) and 128 billion edges (hyperlinks
between pages) (Table 1.1). We use MariusGNN disk-based training on an
AWS P3.2xLarge instance with one GPU, 60GB of RAM, and 4TB of SSD
storage. To learn the features, we use a GraphSage GNN with 10 neighbors,
the DistMult score function with 500 negative samples, and an embedding
dimension of 50. We find that MariusGNN is able to train this GNN
model over the hyperlink graph—a graph with 210× more edges than the
largest graph in the Open Graph Benchmark large-scale challenge Hu et al.
(2021) (WikiKG90Mv2)—while maintaining a throughput of 194k edges/sec,
leading to a monetary cost of only $564 per epoch. Thus, MariusGNN costs
only 3.3× more per epoch while training on the hyperlink graph compared
to baseline systems training on WikiKG90Mv2. This experiment presents
an initial large-scale benchmark that can be used by the community to
measure the cost of training over large graphs and to understand the power
of optimized single machine deployments.

5.5.4 Evaluating COMET for Disk-Based Training
In Section 5.5.2, we showed that COMET allows for disk-based GNN training
on the link prediction task 7.5-18× cheaper than DGL and PyG. We now
evaluate COMET in more detail and compare to BETA. We perform disk-
based training using both methods and measure 1) the per-epoch runtime
and 2) the disk-based model accuracy (using MRR). We also report MRR for
in-memory training as a baseline for disk-based MRR. We use GraphSage and
GAT GNNs on the graphs FB15k-237 Toutanova et al. (2015), Freebase86M,
and WikiKG90Mv2. We include FB15k-237 (14541 nodes, 272115 edges) to
measure the bias present in disk-based training policies while utilizing all
neighbors for GNN aggregation and all negatives for computing MRR (as
opposed to using neighbor/negative sampling for large graphs). We also use
the DistMult knowledge graph embedding model to compare COMET and

106

Table 5.4: COMET versus BETA for disk-based link prediction using Graph-
Sage (GS) and GAT GNNs as well as the DistMult (DM) knowledge graph
embedding model. COMET leads to simultaneously faster training and
higher MRR (accuracy). (237: FB15k-237; Epoch time in seconds for 237)

Model Graph Mem
MRR

Disk-Based MRR Epoch (min.)

COMET BETA COMET BETA

DM 237 .2533 .2659 .2431 1.78 1.95
DM FB .7249 .7220 .7189 13.73 17.51
DM Wiki .3941 .4071 .3951 22.54 27.75

GS 237 .2825 .2736 .2369 3.07 3.28
GS FB .7342 .7123 .6976 47.45 50.08
GS Wiki .4658 .4078 .4080 76.66 82.34

GAT 237 .2869 .2341 .2076 3.51 3.90
GAT FB .7418 .7053 .6860 42.01 46.02

BETA on decoder-only models. We utilize a buffer capacity that can store
1/4 of all partitions in memory. We enable prefetching to overlap IO with
computation. COMET hyperparameters are set as described in Section 5.4.
For BETA, which has no auto-tuning rules, we manually tune the number
of partitions for best performance.

We report the runtime and MRR for all models and datasets in Table 5.4.
While the BETA policy achieves near in-memory MRR for the specialized
DistMult model, MRR drops by up to 16% for GraphSage and GAT GNNs.
By promoting mini-batch randomness, COMET reduces the gap to in-
memory training for GNN models by up to 80%. Moreover, COMET
actually results in improved disk-based MRR for DistMult as well. Overall,
COMET results in higher MRR compared to BETA for seven of the eight
model/dataset combinations. Yet completely recovering the in-memory
MRR for disk-based link prediction remains a challenge (e.g., GAT on
FB15k-237 or GS on Wiki) and area of interest for future work.

While COMET allows for higher MRR compared to BETA, it also
simultaneously allows for faster training. In particular, epoch time is reduced
for DistMult—a less compute intensive model—which is IO bottlenecked. For

107

0 1 2 3 4
Epoch Time (s)

0.15
0.20
0.25
0.30
0.35

M
RR

FB15k-237 Dataset

0 2000 4000
Epoch Time (min)

0.5
0.6
0.7
0.8

Freebase86M Dataset

COMET Auto-Tuning
Grid Search

Figure 5.9: MRR and runtime for GraphSage GNN disk-based training with
COMET using different hyperparameters. The auto-tuning rules used by
MariusGNN are near-optimal.

example, COMET is 1.28× faster than BETA for DistMult on Freebase86M.
In this setting, prefetching to overlapping IO with computation is needed
for high throughput. While both COMET and BETA minimize IO, by
decoupling mini batch generation from partition replacement and allowing
for the deferred processing of training examples, COMET evenly distributes
mini batches and IO across each epoch. This is in contrast to the greedy
BETA policy which results in most mini batch processing occurring during
the early part of each epoch, leaving little computation to overlap with IO
for the latter part of training.

5.5.5 Evaluating COMET Auto-Tuning Rules
We evaluate the effectiveness of the parameter auto-tuning rules used in
MariusGNN for disk-based training. To this end, we measure the runtime
and MRR of COMET obtained when training uses the rules described in
Section 5.4 and compare against the runtime and MRR obtained for each
configuration in a hyperparameter scan. We use a GraphSage GNN and
train on two datasets (FB15k-237 and Freebase86M). Results are shown in
Figure 5.9. The auto-tuning rules used by MariusGNN lead to a hyperparam-
eter setting that achieves near-optimal runtime and MRR simultaneously,
eliminating the need for expensive hyperparameter search.

108

5.6 Summary
In this Chapter we focused on disk-based training in MariusGNN in which
graph partitions are stored on disk and brought into CPU memory for
training. We described partition replacement policies for swapping partitions
between CPU memory and disk that allow MariusGNN to iterate over all
training examples in the graph with minimal IO (e.g., BETA) and with as
much randomness as possible (e.g., COMET). We also presented automated
rules for setting the hyperparameters involved in disk-based training. Finally,
we showed experimentally that disk-based training can reach comparable
accuracy to training with the full graph in memory in existing systems, while
training faster and for orders of magnitude less monetary cost—Disk-based
training provides the cheapest option to scale to large graphs by using the
entire memory hierarchy on a given machine instead of requiring additional
machines to scale training.

109

6 scalable distributed gnn training

We now focus on scalable, cost-effective, distributed GNN training over large
graphs using common cloud offerings; our goal is to enable GNN training
over multiple GPUs that are all fully utilized, to linearly reduce runtimes
compared to single-GPU deployments and avoid paying for idle GPUs.

To achieve this goal, we introduce Armada, a new end-to-end system for
large-scale distributed GNN training. Armada builds on the contributions
of previous chapters (e.g., disk-based training (Section 5), mixed CPU-
GPU pipelining (Section 3.1), DENSE multi-hop neighborhood sampling
(Seciton 3.3)) and introduces a disaggregated architecture that supports
scaling each part of the GNN workload (storage, mini batch preparation,
and mini batch computation; see Sections 2.2 and 2.3) independently. We
provide an overview of Armada in Section 6.1. Then in Section 6.2, we
discuss important optimizations in Armada to minimize communication
between and within disaggregated components and ensure that each layer in
the architecture can scale independently without communication bottlenecks.

Finally, we show in Section 6.3, that Armada’s disaggregated architecture
allows for optimized resource utilization. Specifically, Armada can elimi-
nate the bottleneck of mini batch preparation in existing state-of-the-art
distributed systems (Section 2.3) and ensure that GPUs remain saturated
with mini batches during training. In the same setting for which existing
systems achieve only 2.3× and 1.7× speedup with eight instead of one
GPU, Armada achieves a 7.5× speedup. This improved scaling leads to
runtime improvements of up to 4.8× and monetary cost reductions up to
3.4× compared to state-of-the-art systems.

110

m workers n workers

C.

B. Storage Layer D. Compute Layer

Disk

CPUNode Partitions

Edge List

Edge Bucket

…

Partition BufferPartition
Manager

+ Assignment

CPU

…

C. Mini Batch Preparation Layer

GPU

GNN
Model

GPU

GNN
Model

Pipeline Queue

A. GREM Min-Edge-Cut
Graph Partitioner

Mini
Batch

CPU
Partition
Manager

Bach Preparation Worker

Mini
Batch

…

…Mini
Batch

CPU GPU

GNN
Model

GPU

GNN
Model …

Mini
Batch

…Coordinator

…

Figure 6.1: Armada system diagram. A. Graph data is partitioned using
GREM (Section 4.1) and then B. stored on disk in the storage layer. C.
A disaggregated mini batch preparation layer loads graph partitions into
memory and prepares mini batches for workers in the compute layer. D.
The compute workers process these mini batches on GPUs and periodically
synchronize dense model parameters.

6.1 Overview: Armada’s Disaggregated
Architecture

Armada addresses the bottleneck of mini batch preparation in large-scale
distributed GNN training (Section 2.3) by employing a disaggregated ar-
chitecture (Figure 6.1) that separates graph storage from machines used
for training, uses a set of cheap CPU-only machines to perform mini batch
preparation, and uses a set of GPU machines to perform mini batch compu-
tation. Concretely, Armada consists of four components; we next discuss
the responsibilities of each during training, before describing optimizations
to reduce communication across the architecture in Section 6.2.

6.1.1 Disaggregated Architecture

GREM Partitioning Layer Given an input graph (stored on disk)
in the form of an edge list and a set of features for each node, Armada
partitions the nodes into a set of p physical partitions. To do so, Armada
employs GREM, a min-edge-cut partitioning algorithm that can scale to
massive graphs using a single commonly available machine (Chapter 4).
GREM returns a label for each node specifying its partition, and saves this

111

information to disk. Armada then uses this information to rearrange the
edge list and feature vectors in preparation for training according to the
format expected by the storage layer.
Storage Layer The storage layer in Armada can store the partitioned
graph using a variety of common backends (e.g., AWS S3, EBS, HDFS). As
for disk-based training in MariusGNN (Section 5.1), we store the feature
vectors for each node in a partition sequentially and group the graph edges
into buckets: For a pair of node partitions (i, j), edge bucket (i, j) contains
all edges from nodes in i to nodes in j. All edges in each bucket are then
stored sequentially as a list. This format allows sets of partitions and the
edges between them to be accessed using only sequential file reads/writes.
Mini Batch Preparation Layer Given the partitioned graph in the
storage layer, the mini batch preparation layer is responsible for preparing
mini batches for training. It consists of a distributed set of workers running
on cheap CPU-only machines. Each worker reads a set of partitions (and
the edges between them) from the storage layer into memory. The specific
partition assignment for each machine is made by a designated worker, called
the coordinator, according to a partition assignment policy (Section 6.2).
After loading their assigned partitions, workers construct batches for train-
ing. Armada supports both 1) local construction, where machines prepare
batches using only the data in their own CPU memory, leading to zero
communication across machines, and 2) distributed construction, where
multi-hop neighborhoods are sampled across the whole graph in the aggre-
gate CPU memory of the layer, by communicating across workers as needed.
To minimize communication between workers in the latter setting, Armada
relies on the min-edge-cut partitioning returned by GREM and supports
replicating high degree nodes on each worker (Section 6.2). Once batches
are prepared, each worker pushes them to a specified (when configuring Ar-
mada) worker in the compute layer. To minimize the data transferred to the
compute workers for each batch, Armada uses mini batch grouping—batches

112

destined for different GPUs on the same machine are grouped together for
transmission to enable greater data compression (Section 6.2).

Because the mini batch preparation layer is disaggregated, the number
of workers can be chosen independently from the other layers in Armada,
allowing workers to be allocated based on specific workloads and deploy-
ment scenarios. In particular, for workloads bottlenecked by mini batch
preparation, Armada can allocate enough CPU resources to ensure that all
compute workers (GPUs) remain saturated with computation. Additionally,
for massive graphs, Armada can rely on the storage layer for primary graph
storage, rather than on the CPU memory of the batch preparation (or com-
pute) layer, providing the option for lower cost, memory-efficient training
deployments (as in disk-based training). In this case (i.e., the full graph
does not fit in the aggregate CPU memory), Armada’s coordinator instructs
workers to swap graph partitions to and from the storage layer as needed to
ensure that all partitions (and thus nodes) still appear in memory at least
once per epoch (Section 6.2).
Compute Layer Armada’s compute layer consists of a set of machines
with attached GPU(s) and is responsible for model computation. Compute
workers listen for mini batches from specified worker(s) in the mini batch
preparation layer and then perform the GNN forward/backward pass on
received batches in parallel. To minimize the amount of data sent for each
mini batch, compute workers in Armada also maintain a feature cache of
frequently accessed features in their local CPU memory (Section 6.2). GNN
model parameters are replicated across GPUs and model gradients are
synchronized before each parameter update. If applicable, gradients for
learnable feature vectors are transferred to the CPU memory of the compute
worker and then sent back to the corresponding batch worker so it can
update its partitions in memory.

113

6.1.2 Mini-Batch Training in Armada
We now discuss one epoch of mini batch GNN training in Armada. Each
training round (epoch) in Armada begins with all graph data stored in the
storage layer. The coordinating batch construction worker then decides which
partitions should be loaded into memory on each batch construction worker
in order for training to proceed. By default, the coordinator ensures that all
partitions are loaded into memory on at least one worker at least once per
epoch, even when the full graph does not fit in the aggregate CPU memory
of all batch workers (see Section 6.2). More specifically, as for disk-based
training (Section 5.1), the coordinator defines a sequence Si = {Si

1, Si
2, . . . }

for each batch construction worker i, with each Si
j specifying a set of

partitions. This sequence defines which partitions each batch construction
worker should load into memory and in what order during training. The
coordinator also defines X i = {X i

1, X i
2, . . . } for each worker i, with each X i

j

specifying a subset of training examples (e.g., graph nodes; see Section 2.2)
in Si

j , such that when Si
j is in memory, all and only training examples in X i

j

are used to generate mini batches for training. Unique assignment ensures
that training examples are processed by only one worker once per epoch.

Given these definitions, training proceeds as follows: each batch con-
struction worker i loads Si

1 into memory from the storage layer (when a set
of c partitions are loaded, the edges in all c2 edge buckets between these
partitions are also loaded into memory, together inducing an in-memory
subgraph) and then uses the training examples in X i

1 to generate mini batches
for training. Armada generates mini batches from X i

1 in a random order
and performs multi-hop neighborhood sampling over graph nodes and edges
currently in CPU memory on worker i; that is, only over the nodes and
corresponding edges in Si

j, or over all graph nodes and edges currently
in CPU memory across all workers. After neighborhood sampling, batch
construction workers load the corresponding features for graph nodes in the
mini batch before transferring the mini batch to the one of the workers in

114

the compute layer for computation. Each GPU on the compute workers
then uses its local copy of the GNN model to compute the forward and
backward pass for mini batches in parallel. After gradient synchronization,
each GPU updates its dense GNN parameters for its respective GNN model.

Once training completes on X i
1, the batch construction worker updates

the partitions in memory from Si
1 to Si

2 by swapping partitions as necessary to
and from the storage layer. One epoch completes when all batch construction
workers have exhausted their sequences S and X.

6.2 Disaggregated Training -
Implementation Details

Given a min-edge-cut partitioned graph, Armada employs a disaggregated
architecture to enable cost-effective, distributed GNN training (Section 6.1).
We now describe important design details that allow Armada to indepen-
dently scale each layer and minimize communication in this architecture.
Partition Assignment to Batch Construction Workers We first
discuss how Armada’s designated worker, called the coordinator, assigns
partitions in the storage layer to machines in the mini batch preparation layer
in order to complete one round of training. To support scaling each of these
two layers independently, we require that the algorithm has the following
minimum guarantee: all partitions (and thus graph nodes) must appear in
memory at least once per epoch, regardless of whether the full graph (all
partitions) fits in the aggregate CPU memory of the batch construction
workers or not1 (this requirement is similar to those for disk-based training).

By default, the coordinator assigns partitions to workers as follows: First,
the partitions are randomly split into disjoint subsets, one for each worker.
This split occurs without data movement (only a mapping is maintained on

1If the full graph does not fit in the aggregate CPU memory of the batch construction
workers, then neighborhood sampling cannot be done over the full graph, but can instead
be done over the entire subgraph in the aggregate CPU memory of the layer.

115

partition split

Partition Buffer

Batch Construction
Worker

Partition Buffer

Batch Construction
Worker

Partitions

Distributed Partition Assignment

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

[0, 1, 3, 6, 10, 12, 14, 15] [2, 4, 5, 7, 8, 9, 11, 13]

S1 = [0, 6, 10, 12]
S2 = [0, 6, 10, 15]
S3 = [0, 6, 14, 15]
S4 = [0, 3, 14, 15]
S5 = [1, 3, 14, 15]

S1 = [2, 7, 8, 13]
S2 = [4, 7, 8, 13]
S3 = [5, 7, 8, 13]
S4 = [5, 7, 8, 11]
S5 = [5, 7, 9, 11]

Figure 6.2: Example of the default assignment of graph partitions to batch
construction workers during training in Armada. The example uses 16
partitions and two batch construction workers, each of which can fit four
partitions in CPU memory at once.

the coordinator). Given an assigned set of partitions for each worker, the
coordinator then decides the order in which each worker should load these
partitions into memory. The coordinator first assigns each worker to load as
many random partitions from its disjoint subset into memory as possible
and then to swap any remaining partitions into memory one by one in a
random order. We show a simple example of this algorithm in Figure 6.2.
Note that this policy is equivalent to running the policy for disk-based node
classification (Algorithm 7) on each machine’s assigned subset of partitions.
As for disk-based training (Section 5.3), to improve end-model accuracy
when all partitions are unable to fit in CPU memory, Armada supports
logical partitions and randomly assigning training examples to increase data
shuffling within and across epochs.

The default policy, while simple, satisfies two desired properties: 1)
opportunities for parallelism are maximized, as each batch worker operates
on a disjoint set of partitions, and 2) each partition is read from the storage
layer exactly once, ensuring all nodes appear in memory with minimal I/O
between the two layers. Armada, however, can easily support other partition

116

assignment policies. In particular, to further minimize communication
between workers due to cross-machine neighborhood sampling (in addition to
min-edge-cut partitioning), Armada supports partial or even entire (memory
permitting) feature replication across workers, as done in prior work (Cao
et al., 2023; Kaler et al., 2023). In this case, the nodes to be replicated are
placed in a special partition that is assigned to, and kept in memory, on all
workers. Min-edge-cut partitioning and randomized partition assignment
are then used on the remaining nodes.

Finally, we remark that while the default policy ensures that all nodes will
appear in memory at least once each epoch, it does not ensure that all edges
will appear in memory each epoch. With min-edge-cut partitioning, however,
most of the graph edges have their source and destination node in the same
partition, implying that most graph edges will appear in memory each epoch
(all partitions are guaranteed to appear in memory). If a guarantee on edges
is required, there are two options: 1) a partition assignment policy that
ensures all partition pairs will appear together in memory at least once
each epoch (and thus all edges will appear in memory) can be used (e.g.,
a distributed version of COMET (Section 5.3)), or 2) batch construction
workers can be allocated as needed to store the full graph in memory.
Mini Batch Grouping We next discuss mini batch grouping, the first of
two techniques used by Armada to minimize data transfer between batch
preparation and compute workers and improve throughput.

Mini batch grouping applies when a batch construction worker is respon-
sible for sending data to a compute worker that contains multiple GPUs. In
this case, the batch construction worker must prepare and transfer one mini
batch per GPU for each training iteration (such that each GPU can process
a batch in parallel). Armada groups these mini batches into a global batch,
as mini batches contained in a global batch may require the same nodes.
This allows Armada to optimize feature loading and transfer: Armada loads
and transfers the feature vectors for the unique nodes in a global batch only

117

once and copies them between GPUs as needed. For compute workers with 8
GPUs, we find mini batch grouping reduces batch preparation time by 1.13×
and transfer time by 1.72×, increasing overall throughput by 1.15× on the
common OGBN-Papers100M graph used in the experiments (Section 6.3).
Compute Worker Feature Caching Finally, Armada can further
minimize communication between the batch preparation and compute layers
by caching feature vectors for frequently accessed nodes locally on compute
workers (in CPU memory). In this case, Armada needs to send only the
non-cached features for each (global) batch between layers. Mini batches are
then augmented as needed with the additional feature vectors once they are
received in CPU memory by compute workers, before being transferred to
the GPU(s) for training. Batch construction workers remain informed of the
cache contents by listening to and acknowledging messages from the compute
workers that describe planned updates. By default, compute workers use a
simple LRU cache policy for eviction.

6.3 Results: Disaggregated Training in
Armada

We evaluate Armada’s disaggregated architecture on common large-scale
graphs and compare against the popular state-of-the-art GNN systems DGL
(version 1.1) (Wang et al., 2019; Zheng et al., 2020a), Salient++ (Kaler
et al., 2023), and our own MariusGNN (Chapter 3 and 5). Our experiments
show that disaggregation allows Armada to achieve scalable, cost-effective
GNN training—we achieve a 7.5× speedup when using eight instead of one
GPU when existing state-of-the-art systems yield 2.3× speedup at best.

6.3.1 Experimental Setup
We start by discussing the setup used in our experiments.
Armada and Baseline Details MariusGNN supports only single-GPU
training, thus we modify it to support multi-GPU training using a standard

118

distributed data parallel architecture. We report results for two versions
of Armada: 1) Armada and 2) Armada - Aggregated. The former uses the
disaggregated architecture described throughout the paper, while the latter
uses the CPUs on the GPU machine(s) used for training to prepare batches.
The two versions allow us to directly evaluate the benefit of disaggregation.
For partitioning, we use GREM with Armada and place one partition on each
batch construction worker; for baselines, we use their default partitioning
plus feature replication and caching (which are METIS-based).
Hardware Setup We partition and train all systems using AWS machines.
To measure scalability, we use p3.16xlarge instances with eight NVIDIA
V100 GPUs and vary how many GPUs are available to each system. These
machines contain 64 vCPUs, 488 GiB of CPU memory, and 128 GiB of
aggregate GPU memory. For Armada, we use additional m6a.16xlarge
machines for mini batch preparation. These machines have 64 vCPUs and
256 GiB of CPU memory.
Datasets, Models, and Metrics We report results using Open Graph
Benchmark (OGB) datasets (Hu et al., 2020, 2021); we use OGBN-Papers100M
(111M nodes, 1.6B edges) and OGB-WikiKG90Mv2 (91M nodes, 601M edges)
for large-scale studies, and OGBN-Products (2.5M nodes, 62M edges) plus
FB15K-237 (Toutanova et al., 2015) (14.5K nodes, 272K edges) for mi-
crobenchmarks. We train a three-layer GraphSage GNN on these datasets
with two different hidden sizes: 256 (GraphSage-Small) and 1024 (GraphSage-
Large). The former allows us to run experiments using a data-bound model
while the latter aims to represent a compute-bound model. In both cases,
we use 30, 20, and 10 neighbors per layer sampled from both incoming and
outgoing edges, as done in (Waleffe et al., 2023). For GNN training, we
run for 10 epochs and measure runtime and monetary cost. We do not
include the time to partition when reporting GNN training times. (we report
partitioning time independently). We average experiments over three runs.
Hyperparameters We use the same hyperparameters for GNN model

119

1 2 4 8
GPUs (log scale)

3
4
5
6
7

lo
g 2

(R
un

tim
e

(s
))

4.8×

GraphSage-Small

1 2 4 8
GPUs (log scale)

4

5

6

7

8

3.1×

GraphSage-Large

DGL
MariusGNN
Salient++

Armada - Aggregated
Armada (ours)

Figure 6.3: Epoch runtime versus number of GPUs for DGL, MariusGNN,
Salient++, and Armada using two different GraphSage GNNs on the OGBN-
Papers100M dataset. Disaggregation allows Armada to scale linearly with
respect to the number of GPUs.

architecture and training across systems (e.g., model hidden dimension,
number of neighbors, batch size, etc.). These hyperparameters are chosen
based on values from prior works (Hu et al., 2020; Waleffe et al., 2023). For
hyperparameters specific to the throughput of each system (e.g., the number
neighborhood sampling workers), we manually tune them and select the
best configuration.

6.3.2 GNN Training: System Comparisons
Given a partitioned graph, we now evaluate Armada’s disaggregated archi-
tecture for GNN training. Runtime and cost per epoch for two models on
OGBN-Papers100M with Armada and existing systems is shown in Table 6.1
and 6.2 . We plot the runtime versus the number of GPUs in Figure 6.3 to
show the scaling of each system. For these experiments, all systems sample

120

Table 6.1: Runtime of DGL, MariusGNN+DDP, Salient++, and Armada on
OGBN-Papers100M using a (left) GraphSage-Small and (right) GraphSage-
Large GNN. With disaggregated mini batch preparation, Armada can scale
training from one to eight GPUs while existing systems can not. Armada
uses 0, 1, 2, and 4 disaggregated CPU-only batch construction workers for
1-, 2-, 4-, and 8-GPU training respectively. Relative improvement compared
to single-GPU training for each system is shown in parentheses.

GraphSage-Small: Epoch Runtime (s) GraphSage-Large: Epoch Runtime (s) Acc

GPUs 1 2 4 8 1 2 4 8 -

DGL 186 177 161 79.4 (2.3×) 235 202 170 86.5 (2.7×) 67.4
M-GNN 84.0 77.1 62.1 61.5 (1.4×) 124 92.3 83.9 88.3 (1.4×) 67.1
Salient++ 61.5 54.5 38.1 35.6 (1.7×) 114 79.8 39.1 36.7 (3.1×) 68.2
Armada 54.9 33.3 14.2 7.35 (7.5×) 98.7 50.2 26.1 12.0 (8.2×) 67.2

Table 6.2: Training cost of DGL, MariusGNN+DDP, Salient++, and Ar-
mada for the experiments in Table 6.1. The extra machines used for dis-
aggregated mini batch preparation in Armada are cheap compared to the
GPU-based machines used for model computation and do not prevent reduc-
tions in total training cost. Relative cost reduction compared to single-GPU
training for each system is shown in parentheses.

GraphSage-Small: Epoch Cost ($) GraphSage-Large: Epoch Cost ($)

GPUs 1 2 4 8 1 2 4 8

DGL 1.26 1.20 1.09 0.54 (2.3×) 1.60 1.37 1.16 0.59 (2.7×)
MariusGNN 0.57 0.52 0.42 0.42 (1.4×) 0.84 0.63 0.57 0.60 (1.4×)
Salient++ 0.42 0.37 0.26 0.24 (1.7×) 0.78 0.54 0.27 0.25 (3.1×)
Armada 0.37 0.25 0.12 0.07 (5.3×) 0.67 0.38 0.22 0.12 (5.6×)

neighbors across the whole graph, and thus reach similar accuracy (e.g., see
Table 6.1 right). Next, we highlight key takeaways from these experiments
before focusing on the results for existing systems and Armada in detail.
Key Takeaways Across experiments and GPU counts, Armada is the
fastest and cheapest option; runtime and cost reductions are up to 4.8×
and 3.4× versus existing systems. Armada is also the only system that can
effectively scale training to multiple accelerators: the best existing system
achieves at most a 3.1× speedup when moving from one to eight GPUs, yet
Armada achieves an 8× speedup in the same setting.

121

Existing Systems We find that existing systems are unable to effectively
scale GNN training across multiple compute resources (i.e., GPUs). For
GraphSage-Small, the most scalable system (DGL) achieves only a 2.3×
speedup when moving from one to eight GPUs. Salient++, the fastest
baseline, achieves only 1.7× speedup. With a more compute-intensive model
(GraphSage-Large), baseline systems are able to scale better—e.g., Salient++
achieves a 3.1× speedup—but they still suffer from sublinear speedups as a
result of CPU-based mini batch preparation bottlenecks (Section 2.3).
Armada: The Benefit of Disaggregation Armada, however, achieves
near-perfect scalability. For GraphSage-Small and -Large respectively, Ar-
mada achieves a 7.5× and 8× speedup when moving from one to eight GPUs.
The key reason Armada can scale linearly is because of its disaggregated
architecture. In particular, Armada can scale the number of CPU resources
used to parallelize mini batch preparation independently from the number of
GPUs used for training, ensuring that even as the number of GPUs increases,
they all remain saturated with computation (Section 6.1). The effect of
disaggregation is evident by comparing Armada to Armada - Aggregated
in Figure 6.3. We also show the benefit of disaggregation in Figure 6.4; we
report the epoch runtime in Armada when training GraphSage-Large on
OGBN-Papers100M with eight GPUs and a varying number of disaggregated
batch construction workers. Figure 6.4 shows that as the number of CPU
resources used for mini batch preparation increases (by adding additional
batch construction workers), the runtime decreases until the accelerators are
fully saturated and the epoch runtime plateaus (as it becomes bottlenecked
by GPU-based computation rather than CPU-based mini batch preparation).

Although the additional machines needed for batch preparation incur
additional cost, these machines are cheaper than the GPU machines used
for computation. Thus, Armada is still able to achieve total training cost
reductions; we achieve a 5.3× and 5.6× reduction in cost when using eight
instead of one GPU for GraphSage-Small and -Large respectively. We

122

0 1 2 3 4
Disaggregated Batch Preparation Workers

20

40

60
Ru

nt
im

e
(s

)
Armada

Figure 6.4: Epoch runtime in Armada when training GraphSage-Large on
OGBN-Papers100M with eight GPUs and a varying number of disaggre-
gated batch preparation workers; independently scaling these workers allows
Armada to minimize runtime.

hypothesize that the cost of multi-GPU training could be further reduced
for Armada by using cheaper AWS machines for mini batch preparation.
Summary Armada’s disaggregated architecture allows resource utilization
to be optimized in the presence of GNN workload imbalance, leading to
linear scaling and cost-effective distributed GNN training over large-scale
graphs in commonly available cloud hardware.

123

7 conclusion

In this chapter, we conclude this dissertation by summarizing the key ideas.
The goal of this dissertation is to develop cost-effective, scalable GNN

training over large graphs with billions of nodes and edges and potentially
TBs of high-dimensional feature data. To move towards this goal, we pro-
posed a sequence of algorithmic and systems contributions, each progressively
building on the last.

First, in Chapter 2, we discussed necessary background on GNNs and
described GNN mini-batch training. We highlighted that GNN training
over large graphs is challenging because 1) the storage overhead for feature
vectors associated with graph nodes (which can be learned) necessitates that
these features are stored off device (e.g., in CPU memory) and 2) the node
representations at internal GNN layers depend on feature vectors in nodes’
multi-hop neighborhoods. We showed that these challenges can lead to low
GPU utilization, sublinear scaling, and higher than necessary training cost
and runtime over massive graphs as a result of data movement overheads
arising from the need to transfer feature vectors to and from GPU memory
and CPU bottlenecks arising from multi-hop neighborhood sampling.

Then, in Chapter 3, we presented techniques to maximize GPU utilization
during mixed CPU-GPU mini-batch training on a single machine. We
presented a pipelined architecture to overlap data preparation and data
movement with computation. We showed, however, that this pipelined
architecture can leaded to reduce model accuracy as a result of asynchrony;
thus, we introduced OAC, a new policy for pipelined training that ensures
equivalence to synchronous one by one execution, even as multiple mini
batches are prepared and transferred in parallel. To minimize the overhead
of CPU-based multi-hop neighborhood sampling in this setting, we also
introduced DENSE, a new data structure and algorithm for minimizing the
redundant computation and data access present when constructing multi-hop

124

neighborhoods. We implemented these contributions in MariusGNN and
showed that they enable sampling that is up to 14× faster and end-to-end
training that is up to 4× faster than existing state-of-the-art systems, even
as these systems use four GPUs and MariusGNN uses only one.

Next, in Chapter 4, we focused on efficient min-edge-cut graph parti-
tioning as a prerequisite to enable training GNNs over large graphs which
exceed the CPU memory capacity of a single machine. We introduced
GREM, a novel memory-efficient min-edge-cut partitioning algorithm that
builds on existing streaming greedy approaches, but continuously refines
prior vertex assignments rather than freezing them after an initial greedy
selection. Compared to METIS, widely used by existing state-of-the-art
systems for GNN training, we showed that GREM can reach comparable
quality but with 8-65× less memory and 8-46× faster.

Given a partitioned graph, in Chapter 5, we showed how to use cheap
and high capacity disk storage to scale GNN training to graphs which don’t
fit in CPU memory. We developed partition replacement policies for loading
and swapping graph partitions between disk and CPU memory such that 1)
the entire graph appears in memory with near-minimal IO and 2) training
in this setting leads to models with high accuracy. We implemented these
policies and disk-based training in MariusGNN. We showed that disk-based
training can reach the same level of accuracy up to 8× faster than existing
systems and enables scaling to large graphs that do not fit in memory using
just a single, cheap machine, leading to up to 64× monetary cost reductions
compared to existing systems which require paying for expensive machines
with additional CPU memory.

Finally, in Chapter 6, we focused on scalable distributed GNN training.
We introduced Armada, a new system for multi-GPU and multi-machine
training. We showed that by leveraging a disaggregated architecture, Armada
can independently allocate graph storage, CPU resources used for GNN
neighborhood sampling, and GPU resources use for model computation in

125

order to improve efficiency and ensure that expensive GPUs remain saturated
with computation. We showed that this design allows Armada to achieve a
7.5× speedup when using eight instead of one GPU in the same setting for
which the best existing system achieves only a 2.3× speedup.

Overall, this thesis highlights the promise of new algorithms and systems
to democratize large-scale GNN training and the need to progressively
optimize ML systems, from single-GPU implementations to multi-GPU
deployments, in order to minimize cost and maximize scalability. To this
end, many of the techniques and learnings included in this work can be
generalized beyond GNN training: mixed CPU-GPU pipelining and OAC
can be applied to any ML system which uses GPUs for computation but
stores learnable parameters off device, and GREM can be used to reduce
the computational requirements of min-edge-cut graph partitioning across
a diverse array of applications. Finally, the key ideas behind DENSE (to
minimize redundant computation), disk-based training (to leverage the
entire memory hierarchy with minimal IO), and Armada (disaggregation
to independently scale each part of the workload) can also be applied to
other settings in ML and computer science more generally. We leave such
research and exploration to future work.

126

references

Abbas, Zainab, Vasiliki Kalavri, Paris Carbone, and Vladimir Vlassov.
2018. Streaming graph partitioning: an experimental study. Proceedings of
the VLDB Endowment 11(11):1590–1603.

Akyildiz, Taha Atahan, Amro Alabsi Aljundi, and Kamer Kaya. 2020.
Gosh: Embedding big graphs on small hardware. In 49th international
conference on parallel processing - icpp. ICPP ’20, New York, NY, USA:
Association for Computing Machinery.

Alistarh, Dan, Jennifer Iglesias, and Milan Vojnovic. 2015. Streaming min-
max hypergraph partitioning. Advances in Neural Information Processing
Systems 28.

Andreev, Konstantin, and Harald Räcke. 2004. Balanced graph partitioning.
In Proceedings of the sixteenth annual acm symposium on parallelism in
algorithms and architectures, 120–124.

Belady, Laszlo A. 1966. A study of replacement algorithms for a virtual-
storage computer. IBM Systems journal 5(2):78–101.

Brohee, Sylvain, and Jacques Van Helden. 2006. Evaluation of clustering
algorithms for protein-protein interaction networks. BMC bioinformatics
7(1):488.

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners.
Advances in neural information processing systems 33:1877–1901.

Cao, Kaidi, Rui Deng, Shirley Wu, Edward W Huang, Karthik Subbian,
and Jure Leskovec. 2023. Communication-free distributed gnn training
with vertex cut. arXiv preprint arXiv:2308.03209.

127

Chami, Ines, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin
Murphy. 2021. Machine learning on graphs: A model and comprehensive
taxonomy. 2005.03675.

Chen, Jie, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with
graph convolutional networks via importance sampling. arXiv preprint
arXiv:1801.10247.

Chiang, Wei-Lin, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-
Jui Hsieh. 2019. Cluster-gcn. Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.

Ching, Avery, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and
Sambavi Muthukrishnan. 2015. One trillion edges: Graph processing at
facebook-scale. Proceedings of the VLDB Endowment 8(12):1804–1815.

De Sa, Christopher M. 2020. Random reshuffling is not always better.
In Advances in neural information processing systems, ed. H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, vol. 33, 5957–5967.
Curran Associates, Inc.

Derrow-Pinion, Austin, Jennifer She, David Wong, Oliver Lange, Todd
Hester, Luis Perez, Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett
Wiltshire, et al. 2021. Eta prediction with graph neural networks in
google maps. In Proceedings of the 30th acm international conference on
information & knowledge management, 3767–3776.

Dong, Jialin, Da Zheng, Lin F Yang, and George Karypis. 2021. Global
neighbor sampling for mixed cpu-gpu training on giant graphs. In 27th
acm sigkdd conference on knowledge discovery and data mining, kdd 2021,
289–299. Association for Computing Machinery.

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Min-

2005.03675

128

derer, Georg Heigold, Sylvain Gelly, et al. 2020. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Fairchild, Kimm, Steven E Poltrock, and George W Furnas. 1988. Graphic
representations of large knowledge bases. Cognitive science and its applica-
tions for human-computer interaction 201.

Faraj, Marcelo Fonseca, and Christian Schulz. 2022. Buffered streaming
graph partitioning. ACM Journal of Experimental Algorithmics 27:1–26.

Fey, Matthias, and Jan Eric Lenssen. 2019. Fast graph representation
learning with pytorch geometric. arXiv preprint arXiv:1903.02428.

Gandhi, Swapnil, and Anand Padmanabha Iyer. 2021. P3: Distributed deep
graph learning at scale. In 15th USENIX symposium on operating systems
design and implementation (OSDI 21), 551–568. USENIX Association.

Google. 2018. Freebase data dumps.
https://developers.google.com/freebase.

Graur, Dan, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramo-
han A Thekkath, and Ana Klimovic. 2022. Cachew: Machine learning input
data processing as a service. In 2022 usenix annual technical conference
(usenix atc 22), 689–706.

Hamilton, Will, Zhitao Ying, and Jure Leskovec. 2017. Inductive repre-
sentation learning on large graphs. In Advances in neural information
processing systems, ed. I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, vol. 30. Curran Associates,
Inc.

Haochen, Jeff, and Suvrit Sra. 2019. Random shuffling beats SGD after
finite epochs. In Proceedings of the 36th international conference on machine

129

learning, ed. Kamalika Chaudhuri and Ruslan Salakhutdinov, vol. 97 of
Proceedings of Machine Learning Research, 2624–2633. PMLR.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the ieee conference
on computer vision and pattern recognition, 770–778.

Hellerstein, Joseph M, Michael Stonebraker, and James Hamilton. 2007.
Architecture of a database system. Now Publishers Inc.

Hersbach, Hans, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi,
Joaquín Muñoz-Sabater, Julien Nicolas, Carole Peubey, Raluca Radu,
Dinand Schepers, et al. 2020. The era5 global reanalysis. Quarterly Journal
of the Royal Meteorological Society 146(730):1999–2049.

Hilbert, David. 1891. Über die stetige abbildung einer line auf ein flächen-
stück. Mathematische Annalen 38(3):459–460.

Hofmann, Thomas, Aurelien Lucchi, Simon Lacoste-Julien, and Brian
McWilliams. 2015. Variance reduced stochastic gradient descent with
neighbors. Advances in Neural Information Processing Systems 28.

Hu, Weihua, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and
Jure Leskovec. 2021. OGB-LSC: A large-scale challenge for machine learning
on graphs. In Thirty-fifth conference on neural information processing
systems datasets and benchmarks track (round 2).

Hu, Weihua, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph bench-
mark: Datasets for machine learning on graphs. Advances in neural
information processing systems 33:22118–22133.

Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. 2017. Densely connected convolutional networks. In Proceedings of
the ieee conference on computer vision and pattern recognition, 4700–4708.

130

Ilyas, Ihab F, Theodoros Rekatsinas, Vishnu Konda, Jeffrey Pound, Xi-
aoguang Qi, and Mohamed Soliman. 2022. Saga: A platform for continuous
construction and serving of knowledge at scale. In Sigmod 2022.

Jain, Sachin, Chaitanya Swamy, and K Balaji. 1998. Greedy algorithms for
k-way graph partitioning. In the 6th international conference on advanced
computing, 100. Citeseer.

Jangda, Abhinav, Sandeep Polisetty, Arjun Guha, and Marco Serafini.
2021. Accelerating graph sampling for graph machine learning using gpus.
In Proceedings of the sixteenth european conference on computer systems,
311–326.

Jia, Zhihao, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020.
Improving the accuracy, scalability, and performance of graph neural
networks with roc. In Proceedings of machine learning and systems, ed.
I. Dhillon, D. Papailiopoulos, and V. Sze, vol. 2, 187–198.

Jin, Xin, Zhihao Bai, Zhen Zhang, Yibo Zhu, Yinmin Zhong, and Xuanzhe
Liu. 2024. Distmind: Efficient resource disaggregation for deep learning
workloads. IEEE/ACM Transactions on Networking.

Jumper, John, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
Žídek, Anna Potapenko, et al. 2021. Highly accurate protein structure
prediction with alphafold. Nature 596(7873):583–589.

Kaler, Tim, Alexandros Iliopoulos, Philip Murzynowski, Tao Schardl,
Charles E Leiserson, and Jie Chen. 2023. Communication-efficient graph
neural networks with probabilistic neighborhood expansion analysis and
caching. Proceedings of Machine Learning and Systems 5.

Kaler, Tim, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Iliopoulos,
Tao Schardl, Charles E Leiserson, and Jie Chen. 2022. Accelerating training

131

and inference of graph neural networks with fast sampling and pipelining.
Proceedings of Machine Learning and Systems 4:172–189.

Karypis, George, and Vipin Kumar. 1997. Metis: A software package
for partitioning unstructured graphs, partitioning meshes, and computing
fill-reducing orderings of sparse matrices.

Kipf, Thomas N, and Max Welling. 2016. Semi-supervised classification
with graph convolutional networks. arXiv preprint arXiv:1609.02907.

Kloeckner, Andreas, Matt Wala, Nathan Hartland, Albert Danial, Fritz
Obermeyer, Cathy Wu, and Christoph Gohlke. 2022. PyMetis.

Kung, Hsiang-Tsung, and John T Robinson. 1981. On optimistic methods
for concurrency control. ACM Transactions on Database Systems (TODS)
6(2):213–226.

Kwak, Haewoon, Changhyun Lee, Hosung Park, and Sue Moon. 2010.
What is twitter, a social network or a news media? In Proceedings of the
19th international conference on world wide web, 591–600. WWW ’10.

Kyrola, Aapo, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-
Scale graph computation on just a PC. In 10th usenix symposium on
operating systems design and implementation (osdi 12), 31–46. Hollywood,
CA: USENIX Association.

Lam, Remi, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirns-
berger, Meire Fortunato, Alexander Pritzel, Suman Ravuri, Timo Ewalds,
Ferran Alet, Zach Eaton-Rosen, et al. 2022. Graphcast: Learning skillful
medium-range global weather forecasting. arXiv preprint arXiv:2212.12794.

Lerer, Adam, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt,
Abhijit Bose, and Alex Peysakhovich. 2019. Pytorch-biggraph: A large
scale graph embedding system. Proceedings of Machine Learning and
Systems 1:120–131.

132

Leskovec, Jure, and Andrej Krevl. 2014. Snap datasets: Stanford large
network dataset collection. http://snap.stanford.edu/data.

Lin, Haiyang, Mingyu Yan, Xiaochun Ye, Dongrui Fan, Shirui Pan, Wen-
guang Chen, and Yuan Xie. 2023. A comprehensive survey on distributed
training of graph neural networks. Proceedings of the IEEE.

Lin, Zhiqi, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020.
Pagraph: Scaling gnn training on large graphs via computation-aware
caching. In Proceedings of the 11th acm symposium on cloud computing,
401–415.

Liu, Tianfeng, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He,
Yanghua Peng, Hongzheng Chen, Hongzhi Chen, and Chuanxiong Guo.
2023. Bgl: Gpu-efficient gnn training by optimizing graph data i/o and
preprocessing. In 20th usenix symposium on networked systems design and
implementation (nsdi 23), 103–118.

Maass, Steffen, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mohan
Kumar, and Taesoo Kim. 2017. Mosaic: Processing a trillion-edge graph
on a single machine. In Proceedings of the twelfth european conference on
computer systems, 527–543. EuroSys ’17, New York, NY, USA: Association
for Computing Machinery.

McSherry, Frank, Michael Isard, and Derek G Murray. 2015. Scalability!
but at what {COST}? In 15th workshop on hot topics in operating systems
(hotos {XV}).

Merkel, Nikolai, Daniel Stoll, Ruben Mayer, and Hans-Arno Jacobsen. 2023.
An experimental comparison of partitioning strategies for distributed graph
neural network training. arXiv preprint arXiv:2308.15602.

133

Meusel, Robert, Oliver Lehmberg, Christian Bizer, and Sebas-
tiano Vigna. 2014. Web data commons - hyperlink graphs.
http://webdatacommons.org/hyperlinkgraph/.

Min, Seung Won, Kun Wu, Sitao Huang, Mert Hidayetoğlu, Jinjun Xiong,
Eiman Ebrahimi, Deming Chen, and Wen-mei Hwu. 2021a. Large graph
convolutional network training with gpu-oriented data communication
architecture. Proc. VLDB Endow. 14(11):2087–2100.

Min, Seung Won, Kun Wu, Sitao Huang, Mert Hidayetoğlu, Jinjun Xiong,
Eiman Ebrahimi, Deming Chen, and Wen mei Hwu. 2021b. Pytorch-direct:
Enabling gpu centric data access for very large graph neural network
training with irregular accesses. 2101.07956.

Mohoney, Jason, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and
Shivaram Venkataraman. 2021. Marius: Learning massive graph embed-
dings on a single machine. In 15th usenix symposium on operating systems
design and implementation (osdi 21), 533–549.

Nickolls, John, Ian Buck, Michael Garland, and Kevin Skadron. 2008.
Scalable parallel programming with cuda: Is cuda the parallel programming
model that application developers have been waiting for? Queue 6(2):
40–53.

Niu, Feng, Benjamin Recht, Christopher Ré, and Stephen J Wright. 2011.
Hogwild!: A lock-free approach to parallelizing stochastic gradient descent.
arXiv preprint arXiv:1106.5730.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774.

Patwary, Md Anwarul Kaium, Saurabh Garg, and Byeong Kang. 2019.
Window-based streaming graph partitioning algorithm. In Proceedings of
the australasian computer science week multiconference, 1–10.

2101.07956

134

Petroni, Fabio, Leonardo Querzoni, Khuzaima Daudjee, Shahin Kamali,
and Giorgio Iacoboni. 2015. Hdrf: Stream-based partitioning for power-law
graphs. In Proceedings of the 24th acm international on conference on
information and knowledge management, 243–252.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. 2019. Language models are unsupervised multitask
learners. OpenAI blog 1(8):9.

Ramakrishnan, Raghu, Johannes Gehrke, and Johannes Gehrke. 2003.
Database management systems, vol. 3. McGraw-Hill New York.

Ramezani, Morteza, Weilin Cong, Mehrdad Mahdavi, Anand Sivasubrama-
niam, and Mahmut Kandemir. 2020. Gcn meets gpu: Decoupling “when to
sample”from “how to sample”. In Advances in neural information processing
systems, ed. H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, vol. 33, 18482–18492. Curran Associates, Inc.

Shao, Yingxia, Hongzheng Li, Xizhi Gu, Hongbo Yin, Yawen Li, Xupeng
Miao, Wentao Zhang, Bin Cui, and Lei Chen. 2024. Distributed graph
neural network training: A survey. ACM Computing Surveys 56(8):1–39.

Stanton, Isabelle. 2014. Streaming balanced graph partitioning algorithms
for random graphs. In Proceedings of the twenty-fifth annual acm-siam
symposium on discrete algorithms, 1287–1301. SIAM.

Stanton, Isabelle, and Gabriel Kliot. 2012. Streaming graph partitioning for
large distributed graphs. In Proceedings of the 18th acm sigkdd international
conference on knowledge discovery and data mining, 1222–1230.

Sun, Ding, Zhen Huang, Dongsheng Li, Xiangyu Ye, and Yilin Wang. 2021.
Improved partitioning graph embedding framework for small cluster. In
Knowledge science, engineering and management, ed. Han Qiu, Cheng

135

Zhang, Zongming Fei, Meikang Qiu, and Sun-Yuan Kung, 203–215. Cham:
Springer International Publishing.

Thorpe, John, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu,
Zhihao Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, and
Guoqing Harry Xu. 2021. Dorylus: Affordable, scalable, and accurate
GNN training with distributed CPU servers and serverless threads. In 15th
usenix symposium on operating systems design and implementation (osdi
21), 495–514. USENIX Association.

Toutanova, Kristina, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi
Choudhury, and Michael Gamon. 2015. Representing text for joint embed-
ding of text and knowledge bases. In Proceedings of the 2015 conference
on empirical methods in natural language processing, 1499–1509. Lisbon,
Portugal: Association for Computational Linguistics.

Tsourakakis, Charalampos, Christos Gkantsidis, Bozidar Radunovic, and
Milan Vojnovic. 2014. Fennel: Streaming graph partitioning for massive
scale graphs. In Proceedings of the 7th acm international conference on
web search and data mining, 333–342.

Tu, Stephen, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. 2013. Speedy transactions in multicore in-memory databases.
In Proceedings of the twenty-fourth acm symposium on operating systems
principles, 18–32.

Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. 2018. Graph attention networks. In
International conference on learning representations.

Waleffe, Roger, and Jason Mohoney. 2024. Optimistic asynchrony control:
Achieving synchronous convergence with asynchronous throughput for
embedding model training. In 2nd workshop on advancing neural network

136

training: Computational efficiency, scalability, and resource optimization
(want@ icml 2024).

Waleffe, Roger, Jason Mohoney, Theodoros Rekatsinas, and Shivaram
Venkataraman. 2023. Mariusgnn: Resource-efficient out-of-core training of
graph neural networks. In Proceedings of the eighteenth european conference
on computer systems, 144–161.

Waleffe, Roger, Devesh Sarda, Jason Mohoney, Emmanouil-Vasileios
Vlatakis-Gkaragkounis, Theodoros Rekatsinas, and Shivaram Venkatara-
man. 2024. Armada: Memory-efficient distributed training of large-scale
graph neural networks. In Under submission.

Wang, Lei, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen, Wenyuan
Yu, Zihang Yao, and Jingren Zhou. 2021a. Flexgraph: a flexible and
efficient distributed framework for gnn training. In Proceedings of the
sixteenth european conference on computer systems, 67–82.

Wang, Minjie, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei
Li, Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao
Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J. Smola, and
Zheng Zhang. 2019. Deep graph library: Towards efficient and scalable
deep learning on graphs. CoRR abs/1909.01315.

Wang, Yuke, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie,
and Yufei Ding. 2021b. GNNAdvisor: An adaptive and efficient runtime
system for GNN acceleration on GPUs. In 15th usenix symposium on
operating systems design and implementation (osdi 21), 515–531. USENIX
Association.

Wu, Zonghan, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and Philip S. Yu. 2021. A comprehensive survey on graph neural networks.
IEEE Transactions on Neural Networks and Learning Systems 32(1):4–24.

137

Yang, Bishan, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014.
Embedding entities and relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575.

Yang, Jianbang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong
Chen, Wenyuan Yu, and Jingren Zhou. 2022. Gnnlab: a factored system
for sample-based gnn training over gpus. In Proceedings of the seventeenth
european conference on computer systems, 417–434.

Zafarani, Reza, Mohammad Ali Abbasi, and Huan Liu. 2014. Social media
mining: an introduction. Cambridge University Press.

Zeng, Hanqing, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,
and Viktor Prasanna. 2020. Graphsaint: Graph sampling based inductive
learning method. In International conference on learning representations.

Zhang, Wei, Yong Chen, and Dong Dai. 2018. Akin: A streaming graph
partitioning algorithm for distributed graph storage systems. In 2018 18th
ieee/acm international symposium on cluster, cloud and grid computing
(ccgrid), 183–192. IEEE.

Zheng, D., C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang,
and G. Karypis. 2020a. Distdgl: Distributed graph neural network training
for billion-scale graphs. In 2020 ieee/acm 10th workshop on irregular
applications: Architectures and algorithms (ia3), 36–44. Los Alamitos, CA,
USA: IEEE Computer Society.

Zheng, Da, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao
Xiong, Zheng Zhang, and George Karypis. 2020b. Dgl-ke: Training knowl-
edge graph embeddings at scale. In Proceedings of the 43rd international
acm sigir conference on research and development in information retrieval,
739–748.

138

Zheng, Da, Xiang Song, Chengru Yang, Dominique LaSalle, and George
Karypis. 2022. Distributed hybrid cpu and gpu training for graph neural
networks on billion-scale heterogeneous graphs. In Proceedings of the 28th
acm sigkdd conference on knowledge discovery and data mining, 4582–4591.

Zhu, Rong, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai,
Yong Li, and Jingren Zhou. 2019. Aligraph: A comprehensive graph neural
network platform. Proc. VLDB Endow. 12(12):2094–2105.

Zou, Difan, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan
Gu. 2019. Layer-dependent importance sampling for training deep and large
graph convolutional networks. Advances in neural information processing
systems 32.

	Contents
	Abstract
	Introduction
	Motivation
	Dissertation Goal
	Contributions
	Organization

	Background and Challenges
	Background on GNNs
	GNN Mini-Batch Training
	Scaling Training Beyond CPU Memory
	Weather Prediction: A Motivating Application
	Related Work

	Efficient Mixed CPU-GPU Mini-Batch Training
	Asynchronous Pipelined Training for High Throughput
	OAC: Optimistic Asynchrony Control for High Accuracy
	DENSE: Efficient Multi-hop Neighborhood Sampling
	Results: Mixed CPU-GPU Training in MariusGNN
	Summary

	Scalable Min-Edge-Cut Graph Partitioning
	GREM: Greedy plus Refinement for Edge-Cut Minimization
	Theoretical Analysis of GREM
	Empirical Analysis of GREM

	Min-IO and High-Accuracy Disk-Based GNN Training
	Overview: Disk-Based Training in MariusGNN
	BETA: A Partition Replacement Policy with Minimal IO
	COMET and High-Accuracy Partition Replacement Policies
	Hyperparameter Auto-Tuning Rules For Disk-Based Training
	Results: Disk-Based Training in MariusGNN
	Summary

	Scalable Distributed GNN Training
	Overview: Armada's Disaggregated Architecture
	Disaggregated Training - Implementation Details
	Results: Disaggregated Training in Armada

	Conclusion
	References

