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Stabilization of the Resistive Wall Mode and Error Field

Modification by a Rotating Conducting Wall

Carlos Alberto Paz-Soldan

Abstract

The hypothesis that the Resistive Wall Mode (RWM) can be stabilized by high-speed

differentially rotating conducting walls is tested in the laboratory. A solid rotating wall

capable of routine operation at speeds of 300 km/h, equivalent to a magnetic Reynolds

number (Rm) of 5, was designed, assembled, and fielded. Fast wall rotation is found

to decrease the RWM growth rate and increase the RWM stable operation window to

higher plasma current (Ip), thus demonstrating the stabilizing effect of the wall. The

interaction of the rotating wall with non-axisymmetric fields (error fields) is found to lead

to asymmetries in wall rotation direction. Analytic theory is used to demonstrate that as

wall rotation increases the error field is not necessarily shielded but can instead destabilize

the RWM. Error fields are also found to mediate MHD mode-locking bifurcations, which

are observed for the first time in a linear plasma column. A torque balance model which

includes the effect of the error field, plasma rotation, and wall rotation is developed and

applied to the experiment. Asymmetry in wall rotation is also found in the torque balance,

with one wall rotation direction eliminating the mode-locking bifurcation. Insertable

probes are used to characterize the plasma and show that the column is diamagnetic at

low Ip. This diamagnetic equilibrium enables the line-tying boundary condition at the

device anode to be verified. At high Ip a persistent helical state is found and reconstructed

using correlation techniques. Probes also illustrate that individual flux ropes from the

device’s discretized plasma gun array merge to form an axisymmetric profile within a

short axial distance.
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Definitions

Common definitions used throughout this thesis are presented:

MHD Magneto-hydrodynamics

RWM The resistive wall mode MHD instability

XK The external kink MHD instability

the device The Rotating Wall Machine at the University of Wisconsin-Madison

RFP The reversed field pinch

RFA/EFA Resonant/Error field amplification

rw The radius of an undefined wall

δw The thickness of an undefined wall

σw The conductivity of an undefined wall

rp The plasma radius in the top-hat model

ra The radius of the inner stationary wall (vacuum vessel)

rb The radius of the outer rotating wall

rc The radius of the rotating wall structural support

τa The wall time of the stationary wall

τb The wall time of the rotating wall

τc The wall time of the rotating wall structural support

q(rp) The safety factor at the plasma edge in the top-hat model

q(r) The safety factor experimentally measured at radius r

qcrit The critical safety factor for instability onset
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Ip The total plasma current driven by electrostatic bias between electrodes

L The device length

m The (integer) azimuthal wavenumber of an MHD mode

kz The axial wavenumber of an MHD mode

Bz The axisymmetric guide field applied by external solenoids

B0 The axisymmetric equilibrium field (Bz and Bθ)

δBz The m = 0 global perturbation to Bz due to plasma diamagnetism

B̃z The m = 0 localized perturbation to Bz by localized coils

Bext The primarily m = 1 error field, both intrinsic and actively applied

Beq The m = 1 field produced by the plasma current in response to Bext

Bmode The m = 1 field produced by MHD instabilities (XK or RWM)

Ωφ The plasma toroidal angular velocity in other devices

Ωw The angular velocity of the rotating wall

Ω0 The ‘natural’ angular velocity of the plasma column

ΩExB The ExB angular velocity of the plasma column

ω The angular velocity of the rotating plasma column

γ The (complex) growth or decay rate of the MHD mode

ω ≡ =[γ] The real frequency of the MHD mode

γr ≡ <[γ] The growth or decay rate of the MHD mode

Rm ≡ Ωwτb The magnetic Reynolds number of the rotating wall in the lab frame

Ra ≡ ωτa The magnetic Reynolds number of the static wall in the plasma frame

Rb ≡ (ω − Ωw)τb The magnetic Reynolds number of the rot. wall in the plasma frame
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Chapter 1

Introduction and Motivation

What happens when a conducting wall is rotated at high speeds around a
stable or unstable plasma column? Can wall rotation stabilize the Resistive
Wall Mode?

The hypothesis that the Resistive Wall Mode (RWM) can be stabilized by high-speed

differentially rotating conducting walls is tested in the laboratory. This work is motivated

by the fact that the RWM is a performance limiting instability, which can set the max-

imum achievable plasma pressure (β) or plasma current (Ip) in a magnetic confinement

device. Understanding the impact of rotating walls on the plasma and its instabilities

may thus contribute to the design of future devices, allow operation at higher perfor-

mance levels, and provide insight to phenomena seen in existing experiments.

This Chapter will introduce the thesis as follows: In Section 1.1, the early period of

RWM research is reviewed to give context to the work herein. Section 1.2 introduces the

wall rotation approach to RWM stabilization, from which this work’s central contribution

to current research arises (as discussed in Section 1.4). For completion, other progress in

RWM stabilization is briefly discussed in Section 1.3.1 The work of the previous generation

1For further elaboration on the development of RWM physics a very thorough review was recently
published [1].
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of graduate students on the project is described in Section 1.5. Finally, a map of this

thesis is given in Section 1.6.

1.1 Early Resistive Wall Mode Research

Experimental and theoretical study of the external kink (XK), and later resistive wall

mode (RWM), has been an important part of the fusion research program since its incep-

tion. The earliest Z-pinch linear experiments quickly discovered that a plasma column was

unstable to m = 0 (‘sausage’, where m is the axial wavenumber) instabilities. These in-

stabilities terminated the plasma and precluded high performance operation. The sausage

was found to be effectively stabilized by the addition of an axial guide field (Bz). This

configuration, with both Bz and axial current (Ip), was termed the screw pinch. It was

then found to be unstable to an m = 1 (‘kink’) instability.

Work in 1954 by Kruskal and Shafranov [2, 3], working independently, found that the

screw pinch plasma column was indeed unstable to lateral (m = 1) displacements despite

the presence of Bz. In their zero-pressure model, instability to the kink was found to be

determined by the parameter q = rBz/RBθ, and thus q is called the ‘safety factor.’ As

devices generally operate at fixed Bz, instability was normally found as Ip is increased

(q lowered). Further theoretical work around this period also found that several drives

for instability exist. The sausage instability was found to be driven by plasma pressure,

while the early kink was driven by Ip. The kink could also be destabilized by pressure,

with both kink stability boundaries observed in toroidal devices.

Later theoretical work in 1984 (in toroidal geometry) by Troyon [4] arrived at the

Troyon scaling for XK stability. This scaling stated that the stable operation range of

the tokamak was a triangular region in βT , Ip/aBT space, where βT is plasma pressure

normalized to the toroidal field energy, a is device minor radius, and BT is the toroidal
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Figure 1.1: Stable operating range as of 1994 across a variety of devices in βT , Ip parameter
space. Results from all devices obey the Troyon scaling [4] though with βN ≈ 3.5. Taken
from Strait et al. [5].

field. The Troyon result stated that critical βT for instability scaled linearly with Ip/aBT .

Furthermore, the actual slope of the line βN (≡ βTaBt/Ip, or ‘normalized beta’) was pre-

dicted to be constant across devices at βTroyon
N = 2.8.

Experimental work in the tokamak over the next decade (1984-1994) largely confirmed

the picture presented by Troyon, and the view that the XK limited device performance

became prevalent [5]. Figure 1.1 illustrates that the Troyon scaling was valid across a wide

swath of devices in operation at the time. Even the numeric coefficient was found to be

fairly accurate, with experiment giving βN = 3.5 vs βTroyon
N = 2.8. However, experimental

results showed that when βN = 3.5 was exceeded the resultant instability did not grow on

the predicted Alfvenic time-scale, but rather much more slowly. As the work of Troyon

and Kruskal-Shafranov did not include the conducting boundary and its induced eddy

currents, the resistive wall effect was proposed to explain the discrepancy. Previous work

by Pfirsch and Tasso had shown that such a wall could bring γ ≈ τ−1
w [6]. Here τw is

the vertical field penetration time of the resistive wall, and is defined as τw ≡ µ0σwδwrw
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(where σw, δw, and rw are the conductivity, thickness, and radius of the wall). Notwith-

standing, niether model predicted the correct stability limit, and sometimes growth was

found to be even slower than τ−1
w .

Concurrent research in the Reversed Field Pinch (RFP) also identified slowly growing

instabilities with γ � τ−1
A . The first identification of the RWM in the RFP was made in

the HBTX device [7]. There, for long discharges in which τpulse � τw, wall-locked (ω ≈ 0)

modes (at m = 1, many simultaneous n) were detected on the edge magnetic sensors,

and it was found that γ ≈ τ−1
w . This result corroborated theoretical work that predicted

inherent instability of a wide spectrum of RWMs in the RFP [8].

With an appreciation of the importance of the RWM firmly in place, several theoreti-

cal proposals to stabilize the RWM were presented around this time. Gimblett proposed

stabilization via differentially rotating walls [9], Bondeson and Ward predicted RWM sta-

bility with plasma rotation [10], and Bishop proposed stabilization using active feedback

coils [11]. Each method has garnered significant experimental and theoretical interest,

and will now be explored sequentially. The proposal of Gimblett is the central subject of

this thesis, and dedicated discussion is given in Section 1.2. For completion, progress in

RWM stabilization via plasma rotation and active feedback is summarized in Section 1.3.

1.2 Resistive Wall Mode Stabilization by Rotating

Conducting Walls

A novel proposal to stabilize the RWM was put forward in 1989 by Gimblett [9]. In this

short work he showed that a non-rotating plasma otherwise unstable to the RWM could

be made stable by allowing differential wall rotation. Essentially, stabilization is provided

by persistent eddy currents sustained by induction in the two-wall system. The figure

of merit for this approach is the magnetic Reynolds number of the wall (Rm), which
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Figure 1.2: Gimblett first showed that differentially rotating walls could stabilize a growing
instability. (a) Growth rate (γ) is shown to become negative at a critical value of Rm

while (b) mode rotation (ω) continues to increase. Taken from Gimblett et al. [9].

is defined as Rm ≡ Ωwτw (where Ωw is the angular rotation rate of the wall). In his

scheme, the differential wall rotation would be provided by a static, inner vacuum ves-

sel and associated mechanical supports, surrounded by a poloidally flowing liquid metal

coolant. This scheme yielded the benefit of passive plasma stability without the need for

momentum input to the plasma. Furthermore, stabilization should be fully robust once

the engineering challenge of designing such a system is overcome. To illustrate this effect,

Gimblett simply considered the behavior of the vacuum magnetic field across the static

and rotating walls. By defining a perturbation that was unstable without wall rotation,

he showed that the introduction of wall rotation brought the instability growth rate to a

stable value, as is shown in Fig. 1.2. Further theoretical development of this scheme will

be provided in Chapter 7.

The scheme of Gimblett was revisited by Freidberg et al. [14] and Umansky et al. [12]

over a decade later. Freidberg considered rigid rotation of a liquid metal wall surrounding

a static wall. It was found that this configuration was able to stabilize the RWM, though
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a) b)

Figure 1.3: Stabilization of the RWM by flowing liquid metal walls was calculated using
two different flow profiles. Solid walls can only generate the flow profile of (a). Taken
from Umansky et al. [12].

Figure 1.4: The Hegna model predicted that RWM growth rate should decrease as wall
rotation (Rc = Ωwτw) increased, and that the stable operation window should extend to
lower safety factor (≡ qa). Taken from Hegna [13].
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the required flow velocities were found to be larger than the single-wall RWM growth rate.

Umansky extended the analysis by considering various flow profiles (shown in Fig. 1.3)

and treated the liquid metal inlet and outlet, which required expansion to much larger az-

imuthal wavenumber m. As might be expected, a single flowing wall only Doppler shifted

the resulting RWM rotation (ω) and did not provide stabilization. In contrast, a flowing

wall in combination with a static wall provided robust stabilization. Interestingly, the

two-stream flow of Fig. 1.3b was found to be much more effective, though both profiles

required flows on the order of tens of m/s.

The experiment described in this thesis was preceded by a dedicated analytic study

carried out in 2004 by Hegna [13], which gave predictions on required wall geometries and

rates of rotation which then guided experimental construction. The geometry considered

differs from past studies due to the line-tied boundary conditions expected for the device,

in contrast to the periodic cylinder geometry used to model the torus. While the details

of this work will be provided in Chapter 7, the central conclusions are presented. Hegna

found that indeed the line-tied current-driven RWM could be stabilized up to the ideal-

wall limit for sufficiently fast wall rotation. For device experimental parameters as they

were defined in 2004, the predicted effect of wall rotation on the RWM growth rate is

shown in Fig. 1.4. Experimentally achievable wall rotation rates were predicted to yield

stabilization at up to ≈ 20− 40% lower q. Furthermore, the optimal spacing between the

two walls was predicted to be rb ≈ 1.2ra, which further guided experiment design.

1.3 Other Progress in RWM Stabilization

1.3.1 Stabilization by Plasma Rotation

RWM stabilization by plasma rotation was placed on a firm theoretical footing by the

seminal work of Bondeson and Ward [10]. In this work it was shown that with 1) a re-
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sistive wall, 2) plasma rotation, and 3) plasma dissipation, the RWM could be stabilized

at larger values of β than without these effects. Also introduced in the model was the

definition of βno-wall
N , the free-stability limit (equivalent to the Troyon calculation) and

βideal-wall
N the point where instability was present despite the conducting wall, dissipation,

and rotation. The model predicted that with a rotating plasma β can exceed βno-wall
N

(though not βideal-wall
N ), and the resultant modes would have γ ≈ τ−1

w and a real frequency

(ω) also ≈ τ−1
w despite the fact that the underlying plasma flow could be rotating much

faster (Ωφ � τ−1
w ).

As with previous models [8], RWM stabilization could not occur without plasma dissi-

pation, regardless of the value of Ωφ. Thus, subsequent theoretical effort was directed at

identifying and properly treating this dissipation. Bondeson and Ward’s computational

result employed coupling to sound waves and ion Landau damping. Later analytic theo-

ries proposed both sound wave coupling [15] and viscosity within an inertial later outside

the plasma [16], although both models ultimately yielded similar final results. Around

the same time a model proposed by Finn [17] showed that RWM stabilization could be

achieved if plasma resistivity was included. In the Finn model resistivity allowed for a

tearing-like response and the generation of magnetic islands, even though the (ideal) ex-

ternal kink was the underlying instability. All theories predicted Ωφ to be a few percent

of the Alfven speed (VA) for RWM stabilization.

The Bondeson and Ward picture was found to be consistent with experimental ob-

servations at DIII-D [18], shown in Fig. 1.5. Here the plasma rotates rapidly due to

imbalanced neutral beam injection imparting a large torque to the plasma. The plasma is

stable to the RWM above βno-wall
N for many τw. Eventually, the plasma rotation decreases

below a critical level (Ωφ,crit) and the RWM is found to grow. For much of the next decade

experimental and theoretical research were directed at measuring Ωφ,crit, determining its

scaling with plasma parameters, and developing a model for its prediction. As predicted,
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Figure 1.5: Stable operation above βno-wall
N until plasma rotation decreases below a critical

value. Taken from Garofalo et al. [18].

Ωφ,crit was found to be a few percent of VA.

In 2006, the introduction of balanced neutral beams at the DIII-D facility yielded for

the first time the ability to independently change Ωφ and βN . Surprisingly, the plasma

was found to be stable to the RWM down to a much lower value of Ωφ than previously

found [19]. Thus, two problems now existed. First, the old observations with unbalanced

beams needed to be explained (ie, the old Ωφ,crit ≈ 0.02VA), and secondly the new results

(which contradicted several theories) required explanation (ie, the new Ωφ,crit ≈ 0.003VA).

Mode-Locking Bifurcations

Study over the following few years identified the importance of the mode-locking bifurca-

tion in setting Ωφ,crit for the unbalanced torque, large Ωφ plasmas. A model put forward

by Fitzpatrick [20] included the non-linear interaction of the RWM with its own eddy

currents in the wall, and in so doing found that the plasma frequency could suddenly
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transition from a quickly rotating (unlocked) state to a nearly stationary (locked) state

as the RWM amplitude grew. This theory shared the same phenomenology as those put

forward over the preceding decades to model tearing-mode physics [21, 22, 23, 24] and

originally written for the induction motor [25].

Analysis of the experimental data with the Fitzpatrick model yielded better agreement

with the stated values of Ωφ,crit [26]. Thus, a new interpretation for the data of Fig. 1.5

would be that the rotation associated with the growth of the RWM (Ωφ,crit) was actually

the rotation value at which the bifurcation to a low-rotation state took place. Thus, the

true Ωφ,crit is somewhere between the mode locking threshold and the final, nearly zero

rotation state.

It should also be noted that the magnetic perturbation leading to a mode-locking

bifurcation need not arise from the instability itself. In fact, the perturbation could be

applied from external coils as long as the resultant perturbation is of the same helicity

as (resonates with) the instability. This resonant field might also be unintentional - ie,

an ‘error field.’ Thus, the study of error fields is fundamentally important to the study

of RWM stability. To complicate matters, the plasma itself can generate more fields (ie,

move) as a result of an applied error field, a phenomenon called resonant (or error) field

amplification (RFA or EFA) [27]. The RFA field also participates in setting the torque

balance equilibrium. These themes are not unique to the torus, and will re-appear in the

context of this thesis.

Stabilization by Kinetic Resonances

The much lower value of Ωφ,crit was theoretically explained by modifying the plasma dis-

sipation models to include the effect of kinetic resonances with trapped particle drifts

[29, 28, 30], which are important at low rotation. The most important drifts are the

bounce frequency (time between poloidal extrema of the banana orbit) and precession
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is varied from an experimental baseline. Blue indicates stability, while red is unstable.
Taken from Berkery et al. [28].

drift frequency (toroidal transit time of banana orbit guiding center). When the plasma

rotation is comparable to these frequencies, strong dissipation and thus stabilization is

found. Figure 1.6 illustrates the result of a stability calculation including these kinetic

effects. A non-monotonic dependence of the stability on Ωφ is found, indicating that the

simple Ωφ,crit model is in fact insufficient to determine RWM stability.

Thus, a conclusion of the most recent works in RWM stabilization by plasma rotation

is that the ideal MHD models used throughout RWM research are insufficient to yield pre-

dictive understanding of the RWM in future devices. In fact, a full drift-kinetic treatment

of the plasma is required. Research along these paths is also ongoing.

1.3.2 Stabilization by Active Feedback

It was also realized early on that the flux leakage through the resistive wall due to a RWM

could be actively replaced by a suitably designed active control system [11]. This line of

effort forms another pillar of RWM research in the plasma physics community, especially
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in the RFP concept. In fact the feedback scheme described by Bishop has essentially been

realized at RFX and EXTRAP-T2R in Italy and Sweden, respectively. While the details

of the various active control schemes and modes of operation are beyond the scope of

this thesis, Fig. 1.7 illustrates the maturity of this method in the RFP. After an appro-

priate control model of the RFP plasma is made, a deterministic set of excitation time

traces (shown in Fig. 1.7b) can yield a controlled spectrum of RWMs (shown in Fig. 1.7a).

The situation for active control in the tokamak is generally less robust than that of the

RFP. This is especially true of the advanced tokamak, where the self-generated bootstrap

current plays a large role in the global dynamics of the discharge, leading to a very non-

linear system. That being said, advanced control schemes are in operation on most modern

tokamak devices, and these control schemes have been proven to be able to expand the

stable operation regime to higher values of βN [32]. An example of improved performance

is shown in Fig. 1.8, where for the NSTX device larger values of βN are achieved with

the control system on. Notwithstanding, in all devices discharges exist where RWMs have

still been found to go unstable despite the presence of active control. RWMs have also
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been found to be non-linearly excited by other instabilities, such as fishbones, and these

driven RWMs can also overcome the abilities of a control system [33]. Thus this area of

research is also still very active.

1.4 Connections to Current Research

In contrast to the impressive progress seen with the schemes discussed in Section 1.3,

the proposal put forth by Gimblett had never been experimentally explored prior to this

work. Therein lies the central scope and contribution of this thesis. As will be discussed,

the idealized geometry of Gimblett is reproduced in a dedicated experiment, the Rotat-

ing Wall Machine, whose cross section is shown in Fig. 1.9. The foremost contribution

of this work will be the experimental verification of Gimblett’s RWM stabilization scheme.

A solid rotating wall is topologically impossible in a torus - a flowing liquid metal

is required. Design studies have included liquid metal walls for cooling, tritium breed-

ing, or the first wall. However, important differences exist between a liquid metal and a

solid conductor, most notably the fixed nature of the solid body rotation profile vs. the
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more complex liquid metal flow. It is not known whether currents in the plasma could

back-react onto the flow, producing a significant modification to the liquid metal flow

profile and thus counteract the RWM stabilization. Furthermore, any turbulence present

in the liquid metal flow could also hamper RWM stabilization by increasing the effective

resistivity of the liquid metal. Addressing these effects is beyond the scope of this thesis.

Beyond testing Gimblett’s hypothesis, this work extends beyond RWM stabilization

and into issues of error field interactions and torque balance. While not considered at

the outset of this work, these effects were found to be of profound importance to RWM

stability in the device. Furthermore, striking parallels were found to the story of RWM

stabilization by plasma rotation discussed in Section 1.3.1. The initially neglected role

of error fields were quickly found to be critical in determining the dynamics of the RWM

in the device, as is the case in the torus. Further, the device has proven to be a model

system for the study of MHD mode-locking.

In summary, should a plasma device with a flowing metal boundary ever be con-

structed, this work will directly contribute to the general understanding of the complex

and varied role of moving conductors at the boundary of a plasma device. Furthermore,

the physical mechanisms discovered in this thesis share a remarkable parallel to the story

of RWM stability in toroidal devices discussed in Section 1.3, thus furthering understand-

ing in both configurations.

1.5 Past Results on the Device

This thesis builds on the work of two prior graduate students on the device, D. A. Hannum

and W. F. Bergerson. A brief summary of their work will thus be presented to capture the

level of understanding at the outset of this thesis. Exploration of magnetic reconnection

in the experiment is being pursued by another graduate student (M. I. Brookhart) and is
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Figure 1.10: Measurements of both line-tied (a),(c) and perhaps non-line-tied (b),(d) high
frequency modes robustly excited in the device. Taken from Bergerson et al. [34].

thus beyond the scope of this thesis.

Device Construction

D. A. Hannum and W. F. Bergerson completed the bulk of the device construction. It was

under their tenure that the lab went from an empty room to first plasma. Vacuum systems,

power supplies, and digitization hierarchy were all in place prior to 2008. Notwithstanding,

with most equipment being several decades old, maintenance was continually required for

all systems. For each successful run day, several more were lost to an unimaginably large

array of failure modes. Additionally, as part of this thesis new measurements were added

(internal probes, optical diagnostics, magnetic fluxloop arrays), power supplies upgraded

(time-dependent control), and the rotating wall and associated sub-systems were designed,

built, and operated.
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Figure 1.11: Observations of fast current profile re-distributions indicative of magnetic
reconnection in the experiment. Note how the q-profile relaxes after one of these events.
Taken from Bergerson et al. [34].

Identification of the Line-Tied Kink and Reconnection

The early work of Bergerson et al. [34] found that high frequency (several kHz) coherent

MHD modes were robustly present in the device. As shown in Fig. 1.10, the magnetic

fluctuations associated with these instabilities were largest at the device midplane and

negligible at the electrodes. These modes were thus understood to be line-tied kink modes,

and they were found to be destabilized when edge q dropped below approximately 1, as

predicted by theory. At this time the vacuum vessel was made of insulating Pyrex, thus

no wall stabilization effects were pursued.

Interestingly, the current profile was found to be susceptible to sudden re-distributions

of current, shown in Fig. 1.11. These redistributions were interpreted to be manifesta-

tions of magnetic reconnection in the experiment, reminiscent of sawteeth in toroidal

devices. Work independent of this thesis seeks to measure the internal structure of these

reconnecting events using movable probes and stationary multi-probe arrays [35].
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Figure 1.12: Early RWM observations in the device. Addition of ferritic material was
found to destabilize the RWM while increasing the wall time was stabilizing. Taken from
Bergerson et al. [36].

Identification of the Resistive and Ferritic Wall Mode

Later work by Bergerson et al. [36] focused on low frequency MHD instabilities present

in the device. Again mode destabilization was cited to occur when edge q < 1. This

mode was found to grow at approximately the resistive diffusion time of the wall (τw),

and the growth rate was found to increase with Ip. Thus, this was the first identification

of the RWM in the device. A novel scheme was also explored in which a MuMetalTM

liner was added to the experiment. This was found to destabilize the RWM and allow it

to grow when edge q < 1.4. The growth rate with the MuMetalTM liner was found to

be significantly greater than the theoretical prediction, which in turn stimulated further

theoretical effort [37]. These results are summarized in Fig. 1.12.

Plasma Characterization

The thesis of Hannum [38] extended the aforementioned studies by providing measure-

ments of the plasma column via Langmuir probes. Single-tip Langmuir probes were used

to measure electron temperature, ion density, floating potential, and plasma potential.
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As these measurements have not been repeated, Langmuir probe data appearing in this

thesis was collected by Hannum.
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1.6 Thesis Outline

A brief outline of this thesis is presented. Throughout, the motivations and supporting

theoretical work necessary are provided within each Chapter.

This introductory Chapter (Chapter 1) served to briefly summarize work relating

to the RWM both on this device and in the field at large, as well as to motivate this

thesis. Beyond that, this thesis is divided into two parts. Part I, comprising Chapters

2-4, describes the device and plasma. Part II, comprising Chapters 5-7 presents results

from the rotating wall campaign. In more detail, Chapter 2 describes the experimental

apparatus, and comments on the nature of the plasmas produced. Chapter 3 describes the

MHD equilibrium of the device, beginning from the typical axisymmetric equilibrium, then

moving to two-dimensional and finally three-dimensional helical equilibria as explored via

internal and external probes. Chapter 4 describes the dynamics of the device cathode

region, where measurements indicate a homogenized plasma column is formed from the

discrete flux ropes of the plasma gun array. Chapter 5 describes the impact of the rotating

wall on device error fields, both steady-state and time-dependent. Chapter 6 presents

torque balance calculations and comparisons to experiment, including the observation of

RWM wall-locking. The role of error fields is also further reinforced as they determine the

regime for the RWM in the device. Chapter 7 presents the stabilization of the RWM by

the rotating wall. Stabilization of both locked and born-locked modes are shown, along

with the effect of the plasma flow. Chapter 8 provides concluding remarks and suggests

future work.
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Part I

Device and Plasma
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Chapter 2

Device Overview and Operation

The Rotating Wall Machine is an experimental device which has been con-
structed to study the role of differentially rotating conducting walls on MHD
instabilities. In this Chapter the device and its basic plasma properties are
described. The design and mechanical performance of the rotating wall, as
well as diagnostic capabilities are also discussed. The plasma is generated by
an array of 19 plasma guns that produce high density plasmas and can be
independently biased to allow spatial and temporal control of the current pro-
file. Measurements from typical quiescent discharges show the plasma to be
high β (=< p > 2µ0

B2
z

), flowing, and collimated. Internal probe measurements
show that the input current profile can be controlled by the plasma gun array.

A device has been constructed at the University of Wisconsin-Madison to investigate

plasma dynamics with a rotating boundary. The Rotating Wall Machine, shown in Fig.

2.1, has the ability to excite resistive wall modes reproducibly, and has been topologically

designed to allow for a rotating conducting boundary. The device has a screw pinch mag-

netic geometry with line-tying provided by thick conducting plates at the anode and by

discreteness of the plasma source at the cathode. The characteristic τw of the anode is 200

ms, which is far longer than the discharge duration and thus provides effective line-tying.

The organization of this Chapter is as follows. Section 2.1 describes the design and

operation of the device and associated subsystems such as vacuum maintenance, exter-

nal magnets, plasma generation, and the rotating wall. Section 2.3 discusses diagnostic
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(b) Interior view illustrating physically relevant
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(c) Interior view after device reconfiguration to
allow for the rotating wall, corresponding to data
from Part II.

Figure 2.1: The Rotating Wall Machine experimental geometry, illustrating device struc-
tural elements, vacuum vessel, and rotating wall hardware. As the device was modified
to accept the rotating wall, interior views are shown before and after this modification.
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systems employed on the device. Typical plasma parameter profiles and plasma control-

lability is explored in Section 2.4. General discussion of observed plasma parameters is

discussed in Section 2.5.

2.1 Machine Description

The device experimental volume in which the plasma is formed is bounded by a 1.2 m long

and 18 cm diameter cylinder, as shown in Fig. 2.1(a). The cylinder itself is interchange-

able and experiments have been performed with Pyrex R© [34] and various combinations of

stainless steel, copper, and MuMetalTM[36]. The rotating wall assembly is mechanically

fixed to the device and is outside the vacuum vessel. It is important to note that there are

two resistive walls, the inner static vacuum vessel and the outer rotating wall as shown

in Fig. 1.9. At each end are large bell-shaped enclosures that house solenoid magnets,

vacuum pumps, diagnostics, and the plasma source array. Including these bells the ex-

periment is 3.3 m long and 1.5 m wide, and sits on a rigid stainless steel support structure.

The device was significantly modified during the course of this thesis to accept the

rotating wall assembly. As such, views before (Fig. 2.1(b) and after (Fig. 2.1(c)) are

provided. Specifically, the vacuum vessel radius was reduced from 10.2 cm to 7.6 cm to

achieve better plasma-wall coupling, which prevented the use of internal probes. Thus,

all data presented in Part I corresponds to the configuration of Fig. 2.1(b) while all data

from Part II corresponds to the configuration of Fig. 2.1(c). Although the tube radius

is different between the two configurations, the bulk plasma properties are set by the

parallel dynamics and axial confinement of the device, which were left unchanged.
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Figure 2.2: Cross section of the inflatable bladder seal assembly, with sealing surfaces
shown. Overlap regions in the drawing indicate compression of the flexible inflatable
bladder, both by the flange and by the vacuum vessel. The expansion of the bladder
allows a range of vacuum vessel sizes to be accommodated.

2.1.1 Interchangeable Vacuum Vessels

To study the effect of different boundary conditions on MHD activity, the experiment has

been designed to facilitate the exchange of the cylindrical vacuum vessel wall and liner

with relative ease. Commercially available inflatable bladders, shown in Fig. 2.2, are

used for both mechanical support and vacuum sealing. The bladders are compressed by

a pair of large flanges and expanded by pressurized air at approximately 60 psi, forming

two sealing surfaces. This expansion offers the added benefit of allowing the system to

accommodate inner walls which vary in outer diameter by ±1 cm. Several unique walls

have been used on the device, as listed in Table 2.1.

2.1.2 Magnetic Geometry

The device employs a screw pinch magnetic geometry, with an externally imposed axial

guide field (Bz) and azimuthal fields (Bθ) generated by the plasma current (Ip). The

guide field is provided by four discrete solenoids, shown in Fig. 2.1. Solenoid power is

provided by silicon-controlled rectifier (SCR) fired DC supplies capable of generating a 1
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Description/ Thickness Wall Time Rel. Permeability
Material δw, mm τw, ms µr

Pyrex R© 5 ≈0 1
304SS 3 0.5 ≈1
Static Copper 0.5 4 1
MuMetalTM 0.2 0.006 1200
Moving Copper 0.7 7 1

Table 2.1: Table of wall parameters used on the device. The first two are vacuum vessels,
the next two are liners wrapped around the 304SS, and only the final wall is capable of
rotation.

kG field on-axis. In a typical discharge, the solenoids are energized several seconds before

the plasma source becomes active, yielding a temporal decoupling of the magnetic fluxes

arising from the plasma and from the external solenoids. Multiple power supplies yield

independent control of the end and central solenoids, allowing variable mirror ratios to be

achieved. The solenoids cover a large majority of the experimental volume, dramatically

limiting the field ripple. Nonetheless, ripple of about 3.6% is experienced on-axis at the

midplane gap and at the end gaps.

2.1.3 Plasma Generation and Current Control

21
26Molybdenum

Boron Nitride

Gas Inlet

Cathode

Anode

To PlasmaCL

Figure 2.3: Cross section of a plasma gun: Gas is first puffed through the inlet, then a
bias is established between the cathode and anode, yielding a high density arc plasma.
Alternating boron nitride and molybdenum washers provide stability to the discharge.
Dimensions are in mm.
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Figure 2.4: Illustration of the plasma generation circuit for each plasma source. The gun
power supply’s pulse forming network (PFN) is first discharged to create a high density
plasma in the gun nozzle. High voltage banks then bias the gun relative to the external
anode, striking the discharge and quickly bringing the current to the desired level and are
then disengaged. The gate turn-off thyristor (GTO) timing circuit decides whether the
low or mid voltage banks are active and thus controls the current. Boxes 1-4 are described
in Section 2.1.3.
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Figure 2.5: Typical plasma source time traces, illustrating source operation. The Vgate

signal controls a GTO, yielding in this case a flat top followed by a slowly ramping
current. Itarget is the desired current waveform, while other measurements correspond to
that shown in Fig. 2.4.
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The device employs an array of 19 high current, high density plasma sources (guns)

developed for helicity injection on the Madison Symmetric Torus [39, 40]. Each gun uti-

lizes an alternating arrangement of molybdenum and boron nitride washers, shown in

Fig. 2.3. The effective circuit of each source is shown in Fig. 2.4 and typical gun traces

are shown in Fig. 2.5. The discharge begins by puffing gas into the plasma gun nozzle.

The working gas is either hydrogen or helium. After 2 ms, the gun power supply Pulse

Forming Network (PFN) is discharged (box 1 in Fig. 2.4) thus establishing a high density

plasma within the plasma gun nozzle [39]. This discharge is maintained at 1.2 kA across

100 V for 20 ms by the PFN, as shown in the Varc and Iarc traces of Fig. 2.5. Such large

currents are possible due to the very high density plasma formed inside the gun nozzle

which allows for large space-charge limited emission.

The next stage in the discharge begins when the gun is biased relative to the anode

of the machine. The bias voltage (Vbias) is established by independent capacitor banks,

shown in Fig. 2.4. After 1 ms, a high voltage capacitor bank is discharged (box 2 in

Fig. 2.4) to negatively bias the source with respect to the anode and quickly ramp the

current. After 2 ms, a low voltage capacitor bank is enabled to continually supply the

plasma current (box 3 in Fig. 2.4). Additionally, a feedback system based on pulse width

modulation (PWM) begins to control the bias current (Ibias in Figs. 2.4-2.5) by switch-

ing on or off a mid voltage capacitor bank. A control signal (Vgate in Figs. 2.4-2.5) is

determined by a comparator circuit which makes a decision based on the reference and

actual Ibias waveform. If the measured current is above (below) the requested current

waveform, the mid voltage capacitors will be disengaged (engaged), thus dropping (rais-

ing) the current. This system controls Ibias for the duration of the discharge, and after 20

ms a shorting SCR is triggered (box 4 in Fig. 2.4) which terminates the discharge. Due

to cooling requirements the guns operate at a low duty cycle with discharges taking place

approximately every three minutes.
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Z
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Figure 2.6: A face-on view of the plasma source (gun) array. There are 19 guns in the
array though only the central seven are usually used. Varying the amount of current
injected per gun allows spatial and temporal control of the current profile. The geometry
of the internal probe is also shown in this view along with the trajectory it sweeps.

The feedback system described is unique to each plasma source thus allowing per-gun

control of injected current. The device employs an array of plasma sources, which are

arranged in a hexagonal array as shown in Fig. 2.6, to generate current profiles that can

be controlled in both space and time as will be discussed in Section 2.4. This regulation

not only provides for controllable and repeatable current waveforms but assures balanced

current injection from each gun. Switching is achieved on the microsecond time scale

through the use of Gate Turn-Off (GTO) thyristors. The use of the current controller is

illustrated in Fig. 2.5, where the Vgate signal controls the capacitor bank and produces a

ramped current profile.
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Figure 2.7: Cross sectional view of rotating wall assembly. The shaft is held in place by
angular contact bearings and can rotate at a maximum speed of 280 km/h.

2.2 Rotating Wall Design and Operation

As discussed in Section 1.2, the device rotating wall must be able to achieve Rm > 1 to

influence the stability of the resistive wall mode. The wall has been designed to reach

Rm ≈ 5 which necessitates rotation rates in excess of 6500 RPM or 240 km/h (Ωw ≈ 700

rad/s), using a design τw of 7 ms.

The rotating wall is a precision-engineered product. A cross section schematic of the

assembly is shown in Fig. 2.7, and installed in the device in Fig. 2.1. The rotating shaft

has an outer diameter of 20 cm and is 1 m long and 1 cm thick. It is made of 304SS

with a 1 mm thick copper liner on the inner diameter which was installed via a ther-

mal interference fit. The copper provides electrical conductivity to increase τw while the

304SS provides mechanical strength. The shaft is held by two SKF 71940 hybrid angular

contact ball bearings compressed against each other by Belleville spring loaded flanges,

thus ensuring axial rigidity and radial load bearing capability. The balls are made of

silicon nitride, which allows both greater maximum speeds and electrically isolates the

shaft from the rest of the device thus preventing unwanted induced currents during the

plasma discharge. The bearings are housed in a self-contained cassette that provides both
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mechanical strength and modularity to the design. The assembly is mechanically cou-

pled to the inner diameter of the central solenoids of the device by inflatable bladders

in a process similar to that of Section 2.1.1, though all components are at atmosphere.

Mechanical power is provided by a Reliance P25G4900 11 kW three-phase electric motor

controlled by a Danfoss VLT6000HVAC variable frequency drive (VFD). A high-speed

flat belt couples power from the motor to the shaft, as shown in Fig. 2.1. The motor is

housed in a custom frame that allows fine tuning of motor yaw to maintain belt position.

Bearing lubrication is provided by an SKF OLA05 oil-spot unit. Compressed air delivers

a steady stream of Mobil Velocite 10 spindle oil to the bearings and provides active cooling.

The rotating wall has achieved a maximum speed of 7500 RPM, or 280 km/h, though

maximum normal operation is closer to 6500 RPM, or 240 km/h. Speed is measured

by an encoder on the motor and an optical tachometer on the shaft. During normal

operation the bearings operate near 40-50◦C, as measured by eight thermocouples on the

end flanges which are also capable of localized measurements of any thermal excursions.

The VFD provides power measurements and vibration sensors are located on both the

wall and motor assemblies. The plasma discharge can also be triggered by the wall optical

tachometer, allowing control of the wall phase trajectory during the discharge.

Typical Experimental Run

The operating characteristics of the rotating wall and a typical run day is briefly de-

scribed. As stated in Section 2.2, vibration measurements are constantly logged on both

the wall and motor assembly. As shown in Fig. 2.8a, vibration levels are generally larger

for the motor assembly than the rotating wall, and vibration resonances appear to exist

only for the motor assembly. Furthermore, the drive belt is shown to not significantly

transmit vibrations from one assembly to the other. Beyond the resonance at 1300 RPM,

the vibrations in the motor fall off slowly with periodic smaller peaks. The dotted line



33

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1.0

Motor kRPM

δV
(i
n
ch
/s
ec
)

 

 

δVMOTOR
δVSHAFT

0 20 40 60 80 100 120 140
0

10

20

30

40

50

B
ea
ri
n
g 
T
em

p
 (
o C

)

 

 

714 RPM
1280 RPM
1920 RPM
2961 RPM
3500 RPM
4100 RPM
4685 RPM
4888 RPM
5484 RPM
5712 RPM
5937 RPM

t (min)
0 20 40 60 80 100 120 140

0

1

2

3

4

5

6

7

t (min)

 
P
o
w
er

 (
H
P
)

 

 

714 RPM
1280 RPM
1920 RPM
2961 RPM
3500 RPM
4100 RPM
4685 RPM
4888 RPM
5484 RPM
5712 RPM
5937 RPM

a)

b) c)

Figure 2.8: (a) Combined system vibration spectra, illustrating vibration resonances and
defined safe operating limit for the shaft (dotted red line). (b)-(c) Evolution of rotating
wall mechanical parameters during typical run day. (b) Displays required horsepower (HP
≡ 0.75 kW) which (c) shows the bearing temperature.



34

in Fig. 2.8a constitutes the somewhat arbitrarily chosen ‘safe’ operation limit for the

rotating wall (shaft only). During the entire experimental campaign this limit was not

exceeded above 500 RPM.

Shown in Fig. 2.8b are the engineering parameters during a typical experimental

run. Experiments are conducted by increasing the wall speed to the desired value, then

forming plasma discharges until the required data is collected, which usually takes several

hours. Following this, a new speed is set and experiments resume. Generally, the wall

is taken from low to high speed during a run day. Figure 2.8b illustrates that the power

requirements of the system are modest (<10 HP) and tend to peak immediately after a

new speed is reached. Thermal equilibrium is reached when viscous heating of the oil

equals conductive losses through the structure and advective losses as oil flows out of the

system. As the viscosity decreases with increasing temperature, a stable equilibrium is

reached under normal operating conditions. That power decreases over time while speed

is constant is an important diagnostic of system health, as are the consistent temperatures

shown in Fig. 2.8c. While this run lasted only approximately two hours, the wall has

been operated for up to 12 hours at a time and is limited by operator stamina.

2.3 Plasma Diagnostics

A defining feature of the device geometry is the inaccessibility of the experimental volume

from the radial direction, due to the topological constraint of the rotating wall. Thus, all

diagnostics and feedthroughs must enter from either end of the machine.

2.3.1 Current Profile and Segmented Anode

The linear nature of the device allows for complete spatial and temporal accounting of the

currents in the machine. Utilizing shunt resistors on the plasma source and bias capacitors
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Figure 2.9: Cross section of the copper segmented anode, illustrating both the support
scheme as well as the complete coverage of the target. The thickness of this section (5
cm), along with the highly conductive material used, maintains the line-tied condition at
the anode.

(Iarc and Ibias in Fig. 2.4) the amount of current entering the machine is well known.

Currents to the end bells and central tube of the machine are measured by Rogowski

coils. The anode of the machine is comprised of a thick copper disk surrounded by two

thick concentric rings, shown in Fig. 2.9. Rogowski coils are also placed on the leads

exiting each anode segment, allowing all currents leaving the machine to be measured.

Every discharge is checked to ensure that the current entering the plasma matches the

current exiting the plasma at all times. The segmented anode also provides a three-point

current profile measurement which can be related to the safety factor profile (q(r)).

2.3.2 Magnetic Field Measurements

For the study of MHD stability and to characterize MHD modes, arrays of fluxloops and

coils are used. The device employs 30 Bθ coils, 10 Bz coils, and 80 Br fluxloops at the edge

of the experimental volume in a geometry shown in Fig. 2.10. Each signal is integrated by

Sterling Scientific analog integrators prior to being simultaneously digitized at 0.5-1 MHz,

allowing full resolution of all dynamics in the device. Simultaneous digitization also allows

spatial Fourier decomposition of the azimuthal mode spectrum. Fourier decomposition in

the z-direction is not amenable since two axial wavenumbers are required to satisfy the
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8 axial x 10 azimuthal Br Fluxloops

3 axial x 10 azimuthal Bθ Coils

Figure 2.10: Cartoon illustrating location of the magnetic diagnostics on the device. There
are 30 Bθ coils, 10 Bz coils, and 80 Br fluxloops which together provide complete coverage
of the experimental volume.

line-tied boundary conditions. Three fluxloops encircling the entire plasma cross section

are also in place to measure the volume averaged diamagnetism. It should be noted that

for the results of Part II only the Br fluxloop was used.

2.3.3 Axial Probes and 2-D Drive Mechanism

The device plasma is well suited to internal probe work as the heat fluxes are tolerable

and the discharges are highly reproducible. To access the vessel an axial probe drive

mechanism is used that allows probe insertion from the anode of the machine. Due to

geometric constraints of the probe feedthrough, inserted probes must have a diameter of

no greater than 13 mm. A 90-degree articulating joint has been developed that allows

the probe to swing into the radial direction once it has passed the feedthrough and en-

tered the experimental volume, which is shown in Fig. 2.11. Using stepper motors, the

articulated probe is able to sweep an arc in the (r,θ) plane, shown in Fig. 2.6. Assuming

azimuthal symmetry, probe mobility in the axial (z) direction allows (r,z) contour maps

of the plasma to be generated. This technique relies on the established shot-to-shot re-

peatability of the discharge when dealing with slow (≤ 1 kHz) dynamics.
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Figure 2.11: Cartoon illustrating the articulating knuckle used to position radial armature
of probe after insertion through a 13 mm tube. The retractable polyether ether ketone
(PEEK) thermoplastic shield slides flush with the semicircular section, locking the joint
into a right angle. This is done in situ with a custom rod tool through a vacuum window.
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Figure 2.12: Magnetic probe cross section, illustrating the thermally fit, interlocking
SS316 skeleton providing rigidity and electrostatic shielding, as well as the boron nitride
and quartz plasma shielding. Dimensions are in mm.
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Several probe heads utilize the same insertion and control system. A single-tip Lang-

muir probe is extensively used to characterize electron temperature, density, and plasma

potential through I-V curve characterization. The Langmuir probe utilizes a tungsten

wire of 0.4 mm diameter that is insulated from the plasma by a quartz stalk of 4 mm

diameter that is filled with boron nitride powder. In addition, a three-axis magnetic fluc-

tuation (B-dot) probe has been designed and deployed, shown in Fig. 2.12. The probe is

constructed with a thermally fit stainless steel mechanical structure which also serves as

an electrostatic shield, with boron nitride insulating the coil region and quartz insulating

the stalk. The steel structure limits the high-frequency response of the probe to 100 kHz.

Plasma parameters measured by these probes will be discussed in Section 2.4. A two-tip

Mach probe is also used on the device to measure ẑ-directed flows. It is constructed by

tightly fitting a 4 mm diameter quartz tube over a quartz rod with channels ground out

for the 0.4 mm wire, which extends slightly above the tube. The rod extends beyond the

wires to provide insulation between the tips.

2.3.4 Optical Spectroscopy

Optical diagnostics are also an important class of measurements performed on the de-

vice. For this purpose a 1.5 m focal length Czerny-Turner was retrofitted. Pre-existing

photo-multiplier tubes were replaced with a modern linear charge-coupled device (CCD),

allowing for diffraction-limited measurement of single spectral lines. Light was collected

from the device using a custom-designed large aperture collimator, which was then routed

through optical fibers to the spectrometer in an adjacent room. The system can collect

spectra at 1 kHz, though longer integration times are generally used to improve the signal

to noise ratio. A sample spectrum is shown in Fig. 2.13. This line (Hβ) is dominated by

Stark broadening and thus provides an accurate measure of electron density [41].

While Fig. 2.13 describes emission from an excited neutral atom, the system is also
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Figure 2.13: Sample Hβ line from the Czerny-Turner spectrometer commissioned on the
device to measure density, ion temperature, and flow. This spectrum is dominated by
Stark broadening and thus measures line-integrated electron density to high accuracy.

intended to collect spectra from excited ion lines, the width and Doppler shift of which

can yield ion temperature and flow respectively. Naturally, such lines are only emitted

from non-hydrogenic species. Unfortunately, the device plasma is very cold (as will be

discussed in Section 2.4) and it was found that excited ion lines (Helium II) were not of

sufficient brightness to generate reliable spectra. Thus optical spectrometry on the device

is currently limited to Stark effect measurements until a hotter plasma can be generated

in the device, or a more sensitive cryogenic CCD is purchased.

2.4 Observed Plasma Parameters and Profile Control

The central parameters varied during experiments on the device are the axial guide field

(Bz), plasma current density profile (Jz(r, t)), and the wall rotation (Rm). The resulting

discharges are highly reproducible on a slow-time scale (τ ≥ 1 ms). This indicates that

similar global MHD equilibria are achieved for similar input parameters. Some equilibria

are prone to ideal [34] or resistive [36] MHD instabilities, while others are stable and quies-
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Figure 2.14: (a) Plasma density profiles from single-tip Langmuir probe for different
injected gun currents. Increased gun injection current (ohmic heating) strongly increases
the plasma density, while (b) Te remains relatively constant. At the largest Ip the Te
measurements become unreliable due to MHD instabilities. Measurements were made by
Hannum [38].

cent. To give a flavor of the plasmas produced by the device, measured plasma parameter

profiles for different hydrogen gas equilibria are described in this section. Measurements

are taken by the probes described in Section 2.3.3, with each spatial location correspond-

ing to a single discharge. Plasma reproducibility allows both radial and axial profiles to

be assembled with a standard grid spacing of 5 mm radially and 10 cm axially.

2.4.1 Kinetic Profile Control

Kinetic profiles (ne, Te) generated by the plasma source array are characterized by a

monotonically decreasing in radius and very high density (ne ≈1-5·1014 cm−3) coupled

with a cold and essentially uniform electron temperature (Te ≈ 3.5 eV), shown in Fig.

2.14. The 0 kA case corresponds to the gun power supply circuit (shown in Fig. 2.4)

discharging but with the bias capacitor bank disconnected. This configuration yields a

low density, non-current-carrying plasma. As the plasma guns are biased to drive current,

a dramatic increase in the plasma density is seen. The large amount of Ohmic heating
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Figure 2.15: Axial current profile from internal magnetic probes utilizing ensemble av-
eraging, illustrating a single collimated current channel. The discrete current filaments
from the plasma source array have merged by this point in the discharge (Z=89 cm). The
current measured by the segmented anode is also plotted and shows good agreement.

power (POhmic ≈ 0.2-0.6 MW) from the bias capacitor bank is thus primarily ionizing

new plasma particles. The electron temperature is relatively constant at 3-4 eV as gun

current is increased, likely due to the fact that the poor axial confinement precludes the

electrons from gaining much energy before they are lost to the ends. The plasma pressure

can also be calculated, assuming quasi-neutrality and cold ions, as a product of these two

values, yielding a volume averaged value of β approaching 10% for the profiles of Fig. 2.14.

2.4.2 Current Profile Control

The magnetic probe described in Section 2.3.3 is used to measure the equilibrium cur-

rents and magnetic fields in the device plasma. Using the differential form of Ampere’s

law (∇ × ~B = µ0
~J), the radial profile of Bθ can be related to the axial current pro-

file, assuming azimuthal axisymmetry. The current density profile shown in Fig. 2.15 is

created with the central seven guns each producing an equal amount of current, yet the

profile is strongly peaked. As a check of the probe measurement, the coarse current profile
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Figure 2.16: Current profile variation as measured by the internal magnetic probe de-
scribed in Section 2.3.3. The case with all seven inner guns injecting current leads to a
peaked current profile. When the central gun does not inject current, the profile is hollow.
The measurement is taken at Z = 36 cm.

measured by the segmented anode is also shown in Fig. 2.15, illustrating good agreement

between the two methods.

The current injected from each gun in the array can be controlled independently, giv-

ing a large degree of control over the input boundary condition for the plasma current

profile in the device. As an illustration of spatial control, Fig. 2.16 illustrates two different

current profiles. The first is from a discharge created with the central seven guns of the

19 gun array injecting current. This profile displays a peaked current density and a safety

factor minimum on axis. The other profile shown in Fig. 2.16 pertains to a discharge

in which the central gun was not discharged, leading to a hollow current profile and a

correspondingly reversed-shear safety factor (∂q
∂r

< 0) profile with a minimum off-axis.

The peaked current profiles are well suited to excite internal kink modes while the hollow

profiles are better suited to external kink mode study. Although the input boundary con-

dition is well controlled, relaxation of the current profile tends to homogenize small-scale

structures, as will be discussed in Chapter 4.
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Figure 2.17: Current profile variation as central gun current is slowly increased from 500
A to 1000 A while inner ring delivers a constant 500 A/gun. This illustrates the device
experimental capability of dynamic per-gun current profile control. This current profile
is seen to become very peaked near the gun (where profile is taken) but diffuses outwards
towards the anode (not shown).

The independent gun control also allows temporal control of the current profile. This

is shown in Fig. 2.17, which illustrates current profiles at two distinct times during a

discharge in which the central gun current was slowly increased from 500 A to 1000 A

(as per Fig. 2.5), while the inner six guns were maintained at a constant current of 500

A each. The increased current injection is clearly visible as an increased central current

density. Injected current from all guns can also be increased in tandem, allowing a more

gradual transition through the critical current for MHD mode excitation.

2.4.3 Parallel Resistivity

The bias voltages applied to the guns (Vbias ≈ −(30 − 80)V ) results in large negative

plasma potentials in the bulk with respect to the anode (ground), and consequently large

plasma potential (VP ) gradients that can be measured with the single-tip Langmuir probe.

Such a measurement is shown in Fig. 2.18a for a low bias voltage case (Vbias ≈ −30V ).
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Figure 2.18: Axial resistivity is directly measured and compared to the Spitzer [42] value.
(a) Axial gradients in the plasma potential Vp are measured by the single-tip Langmuir
probe. (b) B-dot probe measurements of axial current Jz (negative convention) at Z = 62
cm. (c) Measurement of ηz ≈ η|| across the device, which is then compared to the Spitzer
resistivity.



45

Using 3-point numerical derivatives, direct measurements of Ez in the plasma yield values

on the order of -30 V/m, comparable to that of the bias voltage across the device length.

Despite the resistive nature of the plasma, axial current densities (Jz) on the order of 20

A/cm2 are drawn by this field. Ez and Jz can be measured in the bulk plasma to a good

degree of accuracy due to their large amplitudes, as shown in Fig. 2.18a-b. Knowledge

of these parameters allows a local, bulk plasma analysis of the axial Ohm’s law, which is

given by:

Ez + vrBθ − vθBr = ηzJz −
1

nee

∂Pi
∂z

(2.1)

where the plasma is assumed to be in MHD equilibrium. The pressure gradient term

is measured to be negligible compared to the other terms of Eq. 2.1 by the single-tip

Langmuir probe, as Ti ≤ Te for the Ohmically heated plasma. Similarly, estimates of vr

and vθ when multiplied by the known Bθ and Br fields also yield negligible corrections,

and vanish entirely at the magnetic axis. Figure 2.18c shows the ηz profile measured at

the device midplane, as well as the upper and lower Spitzer estimates [42] computed from

the Langmuir Te profile with experimental uncertainties included.

The measurement yields resistivities higher than the Spitzer value by approximately

a factor of two. While it is not understood why the measurement is anomalous, it is

possible that a significant population of neutral particles could be raising the resistivity

from the Spitzer estimate. A value of Zeff (the average charge state of the plasma ions)

greater than 1 could also account for the larger resistivity value, though the value of Zeff

has not been measured. However, the low Te of the plasma suggests Zeff = 1, as the

plasma electrons would not have enough energy to strip the impurity ions of their more

tightly bound electrons.
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Figure 2.19: (a) Floating potential (Vf ) measured as a function of radius at different
axial locations. (b) Calculated ExB rotation profiles (ΩExB) from (a). Measurements are
made with a single-tip sweeping Langmuir probe using shot-to-shot reproducibility. Other
probe measurements indicate negligible radial current and uniform Te, justifying equating
gradients in Vf with Er. Values at small r are skipped to avoid numerical singularities.
Measurements were made by Hannum.

2.4.4 Plasma Flow

Potential gradients, and thus electric fields and ExB flows (shown in Fig. 2.19) are present

in the device due to the large axial bias voltages (Vbias) applied to drive Ip in the relatively

cold and resistive plasma. To understand this potential structure, note that in the axial

direction Ez ≈ ηzJz. Figure 2.14b shows that Te (and thus ηz) is constant throughout

the device. However, Jz is strongly peaked as shown in Figs. 2.15-2.17. The potential

at any point in the plasma is thus given by
∫ z
L
ηzJzdz, which begins at the grounded
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Figure 2.20: Axial flow (Vz) measured using a two-tip Mach probe. (a) Axial sweep at
R = 0 cm indicates that significant flows are generated near the guns which then slow as
they near the anode (dotted line is anode position). (b) Radial sweep at the midplane
indicates that the axial flow is sheared radially at the edges. Measurements were made
by Brookhart.

(equipotential) anode at z = L. Line integrals performed at the core of the device yield a

large potential drop due to the large Jz, while line integrals at the edge of the device yield

a small potential drop. As the field in the plasma is electrostatic, this directly results in

the formation of a strong radial electric field (Er).

This radial electric field (Er), when crossed with the axial guide field (Bz) gives rise

to ExB flow (VExB = −Er/Bz) throughout the plasma. In principle, Er could instead

drive radial currents (Jr) and reduce the ExB flow, but Bdot probe measurements to be

discussed in Chapter 3 will show that Jr is very small. The resulting ExB flow profile

(shown in Fig. 2.19b) is complex, with strong flows near the cathode and vanishing flows

near the anode due to the equipotential at the highly conducting anode surface. Inter-

estingly, the flow approximates a rigid rotor in the core, implying that the core plasma is

very viscous. This flow profile will have important consequences for the study of MHD

instabilities to be discussed throughout this thesis.

In addition to azimuthal ExB flow, a double-tip Mach probe was used to measure the

axial flow (Vz) in the device. This flow profile, shown in Fig. 2.20, is also fairly complex.
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The flow is measured to slow down monotonically as it leaves the cathode. This may be

due to advective effects, as the plasma column is wider at the anode end than cathode end

(~V · ∇~V deceleration) or collisions with a neutral species which transfers momentum out

of the plasma. The neutral fraction is not sufficiently well known to distinguish between

the two effects, though at least some advective deceleration must occur. Radially, the Vz

profile is shown to be peaked in the core, with significant slowing at the edges. Though

present measurements are not conclusive, this radial shear could again this could be due

to slowing down on the neutral fluid, balanced by plasma viscosity [43]. The asymmetry

in the radial profile is artificial and due to the probe shadowing the flow.

2.5 Discussion

Probe measurements allow various plasma parameters and dimensionless numbers to be

calculated, which are collected in Table 2.2. Due to the cold and dense nature of the

plasma, the sound speed and the Alfven speed are comparable. The parallel Lundquist

number, a ratio of the Alfven crossing time to the resistive diffusion time, is relatively

low. The volume averaged plasma β is large, posing the question of whether or not β

driven MHD modes can be observed in the device. This is as yet unresolved experimen-

tally or theoretically in the line-tied geometry. As there is no confinement in the axial

direction, the plasma confinement time τE is measured to be ≈ 10 µs, comparable to the

sound transit time across the device length. The cold and dense nature of the plasma

also assures the plasma is very collisional. This both validates the fluid picture used to

interpret the results, but also placed the device in a parameter regime very different from

toroidal magnetic confinement devices (which tend to be collisionless).

This chapter has described the device in great detail and detailed how it is ideal for the

study of current-driven MHD instabilities and their interaction with moving conductors.
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Parameter Formula Symbol Value

Axial Field Bz 500 G
Plasma Current Ip 2.1 kA
Electron (Elec.) ne 5E14 cm−3

Density
Elec. Temperature Te 3.5 eV

Spitzer Resistivity 10−4 log (Λ)T
− 3

2
e η 230 µΩm

Elec. Thermal Speed (2kbTe/me)
1
2 vTe 110 km/s

Sound Speed (γkbTe/mi)
1
2 Cs 24 km/s

Alfven Speed Bz/(nimiµ0)
1
2 VA 49 km/s

Mach Number vz/Cs M 0.3
Alfven Time r/vA τA 2 µs
Resistive Diffusion r2µ0/η τres 52 µs

Time
Energy Confinement W/POhmic τE 10 µs

Time
Lundquist Number τres/τA S 26
Plasma Beta 2µ0<p>/B2 β 10 %
Volumetric Ohmic

∫
ηJ2dV POhmic 200 kW

Heating
Ion Mean Free (niσi)

−1 λi 3 µm
Path (MFP)

Electron MFP (neσe)
−1 λe 500 µm

Ion Skin Depth c/ωci δi 13 mm
Elec. Skin Depth c/ωce δe 0.3 mm
Elec. Larmor Radius vTe/ωce ρe 0.1 mm

Table 2.2: Table of plasma parameters for a typical device discharge (specifically the 2.1
kA constant-current discharge described in Section 2.4 utilizing the center and inner ring
plasma guns). L = 1.22 m is the plasma length, r ≈ 10 cm is the plasma diameter. kb is
Boltzmann’s constant, γ is the adiabatic index, and Λ is the coulomb logarithm.
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The discreteness of the plasma sources along with a sophisticated current control scheme

allow current distributions to be programmed both in space and time, which gives a good

degree of control and reproducibility in the excitement of MHD instabilities. For example,

disengaging the central plasma source of the array tends to produce reverse-shear safety

factor profiles which reduce internal mode activity but maintain external mode activity.

A robust rotating wall has been built and shown to operate at the required speeds to

meaningfully interact with the MHD instabilities of the device. Active control also as-

sures the reproducibility of the discharge so that individual probe measurements taken at

multiple locations over hundreds of discharges can be combined to form a cohesive picture

of a single equilibrium.
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Chapter 3

Plasma Equilibrium

This Chapter presents detailed MHD equilibrium measurements of the plasma
column, from the bulk plasma 1-D equilibrium to a fully 3-D helical state found
at high current. The line-tying condition is shown to provide a localized mod-
ification to the equilibrium in the presence of bulk plasma diamagnetism.
Diamagnetic currents cannot flow near the conducting anode and are mea-
sured to disappear in a localized boundary layer, causing a weak magnetic
mirror to form. For sufficiently large plasma currents, the paramagnetic na-
ture of parallel current drives the equilibrium to paramagnetism and destroys
the mirror effect. At a critical plasma current the axisymmetric equilibrium
is found to transition to a long-lived, rotating, helical 3-D equilibrium state.
Internal measurements of this state via multi-point correlation analysis tech-
niques illustrate that it preserves the flux surfaces and pressure profile of the
axisymmetric equilibrium.

3.1 Motivation

In order to understand the MHD instabilities present in the device, it is a prerequisite

to have a thorough knowledge of the underlying MHD equilibrium. It is the purpose of

this Chapter to describe what a ‘typical’ MHD equilibrium is for the device, using mea-

surements from the internal probe system and interpreted via the simple 1-D screw-pinch

MHD radial force balance model. Furthermore, during the course of this study, more ex-



52

otic properties of the equilibrium have been discovered. These equilibria will be described

and shown to require an extension of the 1-D MHD model to include both axial gradients

and in some cases fully 3-D treatments.

The 1-D MHD equilibrium of the screw-pinch is one of the most fundamental and well

understood in magnetic confinement. However, the device contains an important depar-

ture from the more commonly treated periodic cylinder screw-pinch: line-tying. Line-tying

requires the vanishing of electric fields tangent to a perfectly conducting surface, which in

the ideal MHD limit corresponds to zero plasma displacement as the plasma is frozen into

the magnetic field. Line-tying has been both inferred [34] and mechanically enforced [44]

in past experiments using planar and conical conducting anodes, respectively. Conduct-

ing anodes have also been found to provide incomplete line-tying [45] due to finite sheath

resistivity at the anode surface [46]. In this Chapter the effect of line-tying by a planar

anode will be directly measured for certain MHD equilibria. The line-tying condition will

be shown to break the assumptions of the canonical 1-D MHD force balance in a narrow

boundary layer and thus require a 2-D treatment of the equilibrium.

The plasma will also be shown to transition to a helical equilibrium at large plasma

current (Ip). This equilibrium is reminiscent of persistent helical states observed in other-

wise axisymmetric systems, such as RFX-mod [47], MST [48], JET [49], NSTX [50], and

MAST [51]. Such states have also been theoretically predicted for straight cylinders [52]

and seen in computational studies [53] despite the presence an axisymmetric boundary

condition. This Chapter reports the experimental observation of such a 3-D helical state

in the device and uses internal probe analysis to explore its structure. Measurements are

not sufficient to determine whether the state is line-tied or not.

The organization of this Chapter is as follows: Section 3.2 discusses the theory and

analysis method utilized within this Chapter. Section 3.3 details 1-D equilibrium in the

bulk plasma, as well as the direct verification of the line-tying condition at the anode and
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resultant 2-D modifications to the equilibrium. Section 3.4 discusses analysis of coherent

fluctuations present in the device and their interpretation as a 3-D helical equilibrium.

Section 3.5 provides additional discussion of the aforementioned topics.

3.2 Theory and Analysis Method

To interpret the magnetic measurements on the device, MHD equilibrium theory is briefly

reviewed. MHD force balance in a flowing plasma is given in vector form by [54]:

∇P = ~J × ~B − ρ
(
~V · ∇~V

)
(3.1)

where ~V is the plasma flow, ρ is the mass density, P is the pressure, ~J is the current

density and ~B is the magnetic field. In the canonical 1-D cylindrical form (only gradients

in r̂ allowed), Ampère’s law
(
∇× ~B = µ0

~J
)

expands Eq. 3.1 to become, in the radial

direction:

∂P

∂r
= − ∂

∂r

(
B2
z

2µ0

)
− Bθ

µ0r

∂

∂r
(rBθ) + ρ

V 2
θ

r
(3.2)

where Vr = 0 is assumed, and Br = 0 by necessity. The pressure gradient is supported

by the Θ-pinch and Z-pinch term (first and second term on the RHS of Eq. 3.2). The

centrifugal term (third term on the RHS of Eq. 3.2) is often ignored, though for large

enough ρ or Vθ it can lead to a meaningful reduction of the pressure gradient. Expanding

Eq. 3.1 into a 2-D equilibrium is achieved by including gradients in ẑ (which were neglected

in Eq. 3.2) yielding:

∂P

∂r
= − ∂

∂r

(
B2
z

2µ0

)
− Bθ

µ0r

∂

∂r
(rBθ) +

Bz

µ0

∂Br

∂z
+ ρ

[
V 2
θ

r
− Vz

∂Vr
∂z
− ∂

∂r

(
V 2
r

2

)]
(3.3)
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Figure 3.1: Raw (integrated) signal from the B-dot probe under (a) quiescent and (c) fluc-
tuating conditions. The crosses are 1 ms-bin time-averages of the signal, which are well-
defined despite the large fluctuations present. Radial profiles of 1 ms-bin time-averages
are displayed in (b) for the quiescent and (d) for the fluctuating case, along with the
relative fluctuation amplitude, illustrating the ability of shot-to-shot repeatability at the
ms level to resolve well-defined spatial information.

where axial gradients can thus sustain or degrade the pressure gradient. Vr = 0 is no

longer enforced in Eq. 3.3, adding an additional term.

This Chapter will utilize the canonical 1-D axisymmetric equilibrium of Eq. 3.2 to

describe the bulk plasma. However, it will be shown that the 2-D form of Eq. 3.3 must be

used to adequately describe a boundary layer at the anode where the line-tying condition

generates significant axial gradients. As plasma current is increased, the axisymmetric

equilibrium transitions to a rotating, highly coherent, helical state. This state is shown

to be a fully 3-D helical equilibrium described by the vector form of MHD force balance

given by Eq. 3.1.
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Measurements for this Chapter are conducted by the edge magnetic arrays described

in Section 2.3.2 as well as the internal probes described in Section 2.3.3. Though the

internal probe system does not capture full 3-D maps of the plasma column, it can resolve

up to m = 1 structures. Profiles in (r, θ, z) space are built up using extensive shot-to-

shot repeatability as the probe is fixed at a single position during a discharge. Figure

3.1a,c illustrates an integrated signal from a single B-dot probe coil along with 1 ms-bin

time average values. As shown, even discharges with strong fluctuation levels have well-

defined mean values from which radial profiles can be created. As all components of ~B

are measured (shown in Fig. 3.1b,d) a direct measurement of the axial and azimuthal

(approximately the parallel and perpendicular) currents using Ampère’s law is possible.

Using Eq. 3.2, local spatial gradients in ~B are related to the plasma pressure gradient

which is then integrated to calculate a radial pressure profile. This integration is carried

out from the plasma edge to the core from each direction, allowing a rough gage of the

error by noting the degree of core pressure mismatch. Pressure integration is valid for

time scales longer than the Alfvén time τA (≈ 2 µs), a condition easily met by the 1 ms

time binning utilized.

3.3 Axisymmetric Equilibrium

3.3.1 High-q Diamagnetic Equilibrium

Weakly biasing the plasma guns (Idischarge > Ip) generates a strongly diamagnetic, high q

(≈ 3-4) plasma in which the pressure gradient is primarily supported by the ∂
∂r

( B
2
z

2µ0
) term

of Eq. 3.2, as shown in Fig. 3.2. Equivalently, the contribution to J⊥ is primarily from

Jθ over Jz. This indicates that the equilibrium is Θ-pinch like, and as such is robustly

stable to MHD instabilities. The large diamagnetism (δBz ≡ Bz,guide − Bz,observed < 0)

also lowers the q profile by reducing the local Bz, and this effect can be significant at
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Figure 3.2: 1-D Screw-pinch equilibrium under low plasma current operation illustrating
the strongly diamagnetic nature of the equilibrium. (a) δBz is the perturbation to the axial
guide field by (b) currents internal to the plasma. (c) The pressure gradient is supported
primarily by diamagnetic currents, with the resultant equilibrium similar to that of a
Θ-pinch. The boundary condition is provided by edge probe array measurements.



57

0 50 100
−8

−6

−4

−2

0

2

4

6

8

Z (cm)

R
(c
m
)

 

 

δ
B

z
(G

)

−40

−35

−30

−25

−20

−15

−10

−5

0
δBz

B

Figure 3.3: The perturbation to the guide field (δBz) by diamagnetic currents exists
throughout the bulk of the plasma. Near the anode, δBz is much reduced. The axial scale
length of this phenomena is seen to be ≤ 5 cm, the resolution of which is limited by the
finite axial spacing of the probe sweeps. Dashed lines indicate the axial location of probe
sweeps of 21 radial points.

weak guide fields. The magnitude of the pressure gradient is also large, yielding a core β

(≡ 2µ0P0

B2
z

) of 15% for this plasma, illustrating that the force-free approximation used to

describe screw-pinch equilibria may not be applicable to this plasma. The absence of a

force-free current profile can be understood by noting that though the current profile is

stationary in time, it is strongly sourced and sinked by the guns and anode respectively.

3.3.2 Two-Dimensional Equilibrium and Anode Mirroring

The large δBz of the high-q equilibrium shown in Fig. 3.2 also allows a unique and direct

confirmation of anode line-tying to be performed for this plasma. At the highly con-

ducting anode surface, any ∆Bz in time interval ∆t < τres is forbidden as the line-tying

condition requires Et = 0. It would thus be expected that δBz = 0 at the anode surface,

leading to a weak magnetic mirror. Experimental observations, shown in Fig. 3.3, clearly

display this behavior, though measurements at the exact surface of the anode are impos-

sible due to finite probe size. This constitutes a direct measurement of magnetic fieldline
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Figure 3.4: Analysis of Eq. 3.3 in the anode boundary layer (ABL). Measurements at Z
= 115 cm are in the bulk plasma (where Eq. 3.2 applies) while measurements at Z = 121
cm are partway into the ABL. The anode is at Z = 123 cm. (a) The diamagnetic term is
much reduced in the ABL while (b) The Z-pinch term is unaffected. (c) The 2-D nature
introduces a new term into radial force balance. (d) Pressure profiles from the integration

of the ~J × ~B forces illustrate the reduced pressure from the weakened diamagnetic term,
which is partially offset by the new axial term. (e) Radial flow Vr approximated from the
incompressible continuity equation using the PMHD profiles. (f) The remaining flow terms
of Eq. 3.3 using the Vr of (e).



59

tying in a plasma by a conducting anode and illustrates that its effects are highly localized.

The nature of MHD radial force balance is significantly altered in a narrow anode

boundary layer (hereafter called the ABL) as the dominant contribution to Eq. 3.2 (the

∂
∂r

( B
2
z

2µ0
) term) is much reduced in the ABL. This requires a transition from the 1-D form

of Eq. 3.2 to the 2-D form of Eq. 3.3 in the ABL. To analyze the 2-D equilibrium in

this region, plasma parameters presented in Section 2.4 are used. The B-dot probe is

capable of directly measuring the magnetic field terms of Eqs. 3.2 and 3.3, and results

are shown in Fig. 3.4a-c. Measurements at Z = 115 cm are in the bulk plasma, where Eq.

3.2 is expected to hold, while measurements at Z = 121 cm are partway into the ABL,

and the anode is at Z = 123 cm. The reduction in δBz leads to a large reduction in the

∂
∂r

(
B2
z

2µ0

)
term in the ABL. This imbalance must be compensated for by other terms in

Eq. 3.3. The Bθ
µ0r

∂
∂r

(rBθ) term is unaffected by the transition into the ABL. The Br
µ0

∂Bz
∂z

term, not present in Eq. 3.2, is present in the ABL, but is insufficient to account for the

force imbalance in the ABL. Thus, the total magnetic body force is reduced and must be

compensated for by either reducing the pressure gradient or accelerating large flows or

both.

An approximate analysis is carried out in the ABL by first neglecting the flow terms

of Eq. 3.3 and integrating the resultant pressure profile (
∫
J × Bdl ≡ PMHD), shown in

Fig. 3.4d. For the bulk plasma, PMHD is a very good approximation to the true pressure

as Vr, Br = 0 is expected and the inferred values of Vθ are taken from Section 2.4.4. This

indicates that the ρ
V 2
θ

2
term is negligible at the anode. For the ABL, it is not possible to a

priori neglect the Vr terms, though as they contribute to sustaining the pressure gradient

the Z = 121 cm PMHD profile is thus a lower limit. PMHD exhibits a strong parallel pressure

gradient and loss of plasma particles from Z = 115 cm to 121 cm. As Te is measured to be

spatially uniform, the spatial variation in PMHD arises from density gradients and these

gradients are used to calculate the Vr necessary to satisfy the incompressible continuity
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equation without particle sources or sinks, where Vz is measured and was discussed in

Section 2.4.4. This limiting case Vr is then used to compute the remaining flow terms in

Eq. 3.3, which are shown to be small (Fig. 3.4f). As the PMHD profile utilized is a lower

limit and as Vr arises from this pressure decrease, the Vr limit is thus an upper one and

the neglect of the flow terms is thus justified in the original approximation. Confirmation

of these estimates naturally requires a direct measurement of the radial flow (Vr) profile,

as the assumption of incompressibility may be inaccurate. Particle sources and sinks,

however, are not thought to play an important role as the mean free paths of ionization

and recombination are much larger than the spatial scales relevant to the ABL. Further-

more, measurements are limited to Z = 121 cm by the spatial scale of the probe. It is

expected that the force imbalance of Fig. 3.4a will become more pronounced closer to the

anode, leading to larger axial gradients. It is further speculated that the observed lack

of density pile-up at the anode despite the large Vz is due to the pumping effect of Vr. If

particles retain radial momentum after recombination, neutral and plasma particles alike

would be driven into the expansion volume at the anode end.

The axial scale length of the ABL is set by the competition between advection and

diffusion of the magnetic field as axial flows (Vz) present in the device tend to advect field

perturbations downstream while diffusion allows perturbations to move upstream. The

parallel magnetic field diffusion coefficient (D = η/µ0) is calculated to be 120 m2/s using

the measurement of η from Section 2.4.3. From the induction equation, D ≈ (∆Z)Vz,

where measured Vz ≈ 6 km/s sets a scale length (∆Z) of ≈ 2 cm, consistent with the

observed scale length.

3.3.3 Transition to Paramagnetic Equilibrium

As more J|| (∝ IP ) is injected into the plasma by increasing the bias voltage on the plasma

guns, the diamagnetic equilibrium transitions to paramagnetism and the anode boundary
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Figure 3.5: 1-D equilibrium magnetic fields during high current operation. (a) The dia-
magnetism is shown to be greatly reduced in this case as (b) increasing J|| is strongly
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the low current discharge of Section 3.3.1, and the resulting equilibrium is Z-pinch like.
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layer effect is lost. This is because the magnetic field unit vector exhibits a greater pitch

thus giving a solenoidal component to J|| and contributing positive (paramagnetic) δBz

to the core. This effect is counter to the Jθ currents produced by the plasma gun itself.

Thus, increasing IP transitions the core plasma from diamagnetic to paramagnetic in

nature, and eliminates the anode mirror effect described in Section 3.3.2. The nature of

the canonical 1-D radial MHD-force balance of Eq. 3.2 is also altered by the paramagnetic

effect, with the JzBθ drive becoming dominant over the JθBz term, as shown in Fig. 3.5.

This geometric effect is well known [55] but is rarely demonstrated experimentally due to

the fact that δBz � Bz0 in low β devices.

3.3.4 Role of Plasma Sourcing and Ohmic Heating

The precise effect of the plasma source on the canonical screw pinch equilibrium can be

studied by selectively disengaging single guns from the plasma source array and observing

the resultant MHD equilibrium. Figure 3.6 illustrates three equilibria generated with the

central gun of the plasma source off, unbiased, and biased equal to the surrounding guns.

For all cases the outer ring of guns were discharged and biased equally, and profiles are

taken at the midplane of the device.

With the central plasma gun off, no diamagnetic currents exist in the core, yielding

a flat pressure profile. In this case, only J|| is observed to diffuse into the core plasma,

yielding a force-free state (∇ × ~B = λ~B) in the core. The Taylor parameter λ is found

to be constant to within 5% across the core region (to R = 3 cm), though beyond this

point it is strongly varying. Thus, while a global fully relaxed Taylor state [56, 57] is not

achieved, there is a large force-free region in the core of the plasma.

Discharging the central gun without biasing it is found to drive no additional J|| as

compared to the gun off case, though the gun still sources plasma which in turn carries a

pressure gradient. The core of the plasma thus now contains finite J⊥ and the resultant
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z dependence in the
definition of β yields a β ∝ B−1

z final scaling. Simple trend lines are also shown. P0 and
<P> are computed by integrating the 1-D radial force balance of Eq. 3.2.

core equilibrium is no longer force-free. As the J|| profile is identical between the off and

unbiased case, the additional heating to increase J⊥ is not simply Ohmic heating (ηJ2
||)

in the bulk plasma. Instead, J⊥ likely originates from Ohmic heating inside the plasma

gun that has been advected by the axial flow.

Biasing the central gun clearly drives additional J|| but also increases J⊥, indicating

that additional Ohmic heating has contributed to sustaining a larger pressure gradient

and thus a larger core pressure. As described in Section 2.4.1, this additional heating

primarily increases ne while leaving Te relatively unchanged.

3.3.5 Confinement Scaling of Axisymmetric Equilibria

Figure 3.7 illustrates that increasing the plasma current (IP ) and guide field (Bz) are found

to both lead to higher core pressure (P0) though differing effects on β = 〈P 〉 /(B2
z/2µ0)

are seen. The large amount of Ohmic heating from IP ∝ J|| results in a very high value



65

of β, both in a peak and volume averaged sense. A linear dependence of volume-averaged

β on IP is seen, though Ohmic power scales like P ∝ ηI2
P (where η is the resistivity

and is ∝ T
− 3

2
e ) and measurements indicate Te and thus η are insensitive to IP . This is

reconciled by noting that for open ended devices, particle flux Γ (and thus power loss) is

overwhelmingly directed to the end plates giving Γ ∝ neCs, where Cs is the sound speed

and is ∝ T
1
2
e . Measurements preesnted in Section 2.4 have shown that ne ∝ IP , while Te is

insensitive to IP . Thus, while P ∝ I2
P , Γ ∝ IP , resulting in the observed β ∝ IP scaling.

In the limit of zero IP (unbiased plasma), the plasma guns still produce plasma, which

leaks along the guide field while maintaining ambipolarity, yielding the finite β values

observed when Ip = 0. Core β deviates from linearity with Ip due to diamagnetism (δBz)

significantly modifying Bz in the core. Guide field scaling (Bz ∝ 〈P 〉) illustrates that

reduced Larmor radii are effective in increasing confinement even in open ended devices,

though the B−2
z dependence in the definition of β yields a final scaling of β ∝ B−1

z .

3.4 Helical Equilibrium State

The lower q (≈ 1-2), higher (Ip) equilibria discussed in Section 3.3.3 are also character-

ized by the appearance of long-lived coherent fluctuations in the magnetic and kinetic

profiles. Typical magnetic field measurements for this mode are shown in Fig. 3.8. It is

exceptionally coherent and dominantly m = 1 with a helical twist. The mode is global,

but with the largest amplitudes observed at the anode end. It is also a global mode of

the device with a single frequency present throughout. Detailed internal measurements

illustrate that mode is a helical equilibrium state, as will be discussed in the following

Sections.
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mode-weighted volume average to relate fExB to fmode.
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3.4.1 Scaling and Onset

Coherent mode scaling with Ip and Bz is complex, as shown in Fig. 3.9a-d. Onset occurs

at a critical plasma current Ip (equivalent to a critical J||), though this critical current is

seen to vary weakly with the axial magnetic field Bz. This is inconsistent with a critical

safety factor (q) for excitation expected by external kink theories [58, 3]. Furthermore, the

mode can be excited by increasing the guide field (Bz), which would tend to be stabilizing

to the external kink mode. The current profile is modified and becomes somewhat more

peaked as Bz is increased, but measurements using the segmented anode (not shown)

indicate that the q ∝ Bz nonetheless. The frequency of the mode is increased as Ip or

Bz is increased, but this dependence is weak with Bz. The growth rate (γ) for the mode

in the exponential phase (shown in Fig. 3.8c) is found to be in the 6-10 kHz range. A

weak γ ∝ Ip scaling is observed, while no dependence on Bz is seen. As the experimental

scatter in γ is great due to the short duration of the exponential phase, no analysis of

this scaling is presented.

The observed mode frequency (fmode) at a single coil is simply that of the Doppler shift

of the rotating m = 1 perturbation. fmode is large enough that the conducting vacuum

vessel appears ideal and thus B̃r = 0 at the wall. Analysis discused in Section 3.4.2 will

show that the typical radial scale size of the oscillation is ≈ 5 cm, which allows conversion

from fmode (13 kHz for the Section 3.4.2 case) to a mode azimuthal velocity (Vmode), which

is found to be ≈ 4 km/s, and directed in the ExB direction. This velocity is sub-Alfvénic

and sub-sonic as these speeds are ≈ 75 and 25 km/s respectively.

Figure 3.9e-f illustrates that an axially and radially sheared ExB flow (VExB) profile

exists in the device, as discussed in Section 2.4.4. Despite the sheared VExB profile, a single,

global fmode is observed, shown by the dotted lines in Fig. 3.9e-f. Though the process by

which a global mode frequency is selected in a sheared flow is not fully understood, it can

be intuitively inferred that a volume-weighted average is taken to select the mode velocity.
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With this hypothesis, scaling with Ip is easily understood as VExB ∝ Er ∝ Ez ∝ Ip, though

scaling with Bz is more complex. Mode axial extent increases toward the cathode with

increasing Bz (and Ip) and begins to inhabit regions of larger VExB. Thus, as the volume-

weighting includes regions of larger VExB, larger frequencies would be observed, consistent

with observations. Mode amplitude is largest when Vmode > VExB, indicating that VExB

may be setting the axial scale size of the mode in addition to its frequency. Alternatively,

the large VExB may be stabilizing the mode in the cathode region.

3.4.2 Internal Analysis
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Figure 3.10: Using an edge Bθ signal as a reference (or click), relative phase shifts from
different discharges can be directly compared and radial profiles built of both fluctuation
amplitude (B̃) and relative phase (δφ) using simple FFT based algorithms. This method
relies on the exceptional coherence of the signals and on the shot-to-shot reproducibility
of the discharge.

The exceptional coherence of the raw magnetic signals (samples shown in Figs. 3.1a,c

and 3.8b) allows the use of a reference signal (an edge Bθ coil) to clock signals across

different discharges, thus enabling internal profiles of the fluctuating field to be con-

structed. Each magnetic field component has a well-defined phase shift (δφ) from the

reference signal, and δφ can be measured at different spatial locations. In this way, utiliz-
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ing shot-to-shot repeatability, radial and axial profiles of δφ can be obtained, as shown in

Fig. 3.10b. A fast Fourier transform (FFT) based algorithm is used, as cross-correlation

techniques are unnecessary due to the dominantly single-mode time-dependence. Mode

amplitudes are trivially extracted from the FFT, as shown in Fig. 3.10a.

Full 3-D maps of each component of the fluctuating magnetic field can be constructed

using the decomposition:

B̃(r, θ, z, t) = B̃(r, z) cos (ωt−mθ − δφ(r, z)) (3.4)

where global mode frequency (ω) is taken to be an average for all discharges in the series

(δω/ω ≈ 2% over the > 100 discharges used to create a map). The azimuthal mode

number (m) is taken to be 1 throughout the profile based on edge measurements by the

Bθ array shown in Fig. 3.8a. The phase shift (δφ) is also a function of probe position

and desired component, as is the fluctuation amplitude (B̃). As all parameters in Eq. 3.4

are known, the 3-D (r, θ, z) space can be populated. For the following measurements, the

measurement grid is 5-7 axial locations by 11 radial locations, corresponding to a spacing

of ≈ 20 cm and 5 mm respectively.

The 3-D fields constructed using Eq. 3.4 illustrate that the mode is global in na-

ture, existing throughout the plasma core and with significant internal structure. All

parameters are decomposed into mean-field and fluctuating components, using the nota-

tion ~B = B0 + B̃. Ampère’s law is similarly decomposed, with Fig. 3.11a,d illustrating

fluctuating contributions and Fig. 3.11b,e illustrating total, instantaneous fields. The

fluctuating axial current J̃z exhibits a peak at r = 5 cm, which when summed to the

equilibrium Jz0 causes a rigid shift in the current channel, shown in Fig. 3.11b,d. Time

dependence is a simple rigid rotation of the fluctuating profiles shown in Fig. 3.11a,b.

As 1/τA � ω, radial MHD force balance is still upheld throughout the oscillation.
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Equation 3.1 is also decomposed into mean-field and fluctuating components, yielding:

J0 ×B0 + J0 × B̃ + J̃ ×B0 + J̃ × B̃ = ∇P +∇P̃ (3.5)

where flow has been ignored as measurements are taken away from the anode boundary

layer of Section 3.3.2. As shown in Fig. 3.11c,f, summing all terms in Eq. 3.5 yields a

force profile that is dominantly radial, while each individual contribution from Eq. 3.5 is

not. Furthermore, the force null is now offset from the geometric axis of the device. The

contribution to this perturbed force profile is equally shared between the second and third

terms of Eq. 3.5. The Maxwell stress (J̃ × B̃) is found to be vanishingly small, indicating

that J̃ is fully out of phase with B̃, as
∣∣∣J̃
∣∣∣
∣∣∣B̃
∣∣∣ is large. This force profile can be integrated

and generally circular pressure contours are found, shown in Fig. 3.11c,f. As with Fig.

3.11b,e, a rigid shift is seen of the pressure maximum. Thus, the fluctuating currents and

fields act to offset the plasma centroid while maintaining its overall structure. Figure 3.12

illustrates using fieldline mapping that the flux surfaces are also maintained throughout

the plasma, consistent with equilibrium being maintained. The flux surfaces are also seen

to be offset at the anode and are found to trace a circular pattern around the geometric

axis. The validity of the line-tying condition in this context will be discussed in Section

3.5.

3.5 Discussion

This Chapter has described the MHD equilibrium properties of the Rotating Wall Ma-

chine plasma. The plasma is found to be either diamagnetic or paramagnetic, depending

on the strength of the plasma current. The plasma guns are found to provide the dom-

inant source of diamagnetic currents, allowing the plasma to reach very high values of

β despite its poor axial confinement. The large flows found in the device also give rise
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to MHD modes that rotate with the plasma and thus possess significant real frequencies

when Doppler shifted into the lab frame.

The direct observation of the line-tying of magnetic fieldlines by a conducting anode

discussed in Section 3.3.2 is in contrast to other results in which sheath resistance is found

to break the line-tying condition at a conducting boundary [59, 45]. This not inconsistent

with a recent theory [46] as the non-dimensional κ parameter (Eq. 49 in Ref. 8) which

gauges the importance of sheath resistance (where κ� 1 indicates strong sheath effects)

is found to be ≈ 0.05 as opposed to κ ≈ 15 cited for an experiment in which significant

sheath effects are observed [59, 45]. Physically, this corresponds to a lower total sheath

resistance due to larger plasma density and consequently smaller sheath axial dimensions

(electron and ion Debye lengths are 0.2 and 0.9 µm respectively).

As with the axisymmetric case, a dramatic reduction in B̃z and δBz very near the

anode is observed for the helical equilibrium of Section 3.4. In contrast, B̃r,θ reaches

its maximum amplitude at the anode, a result which (in addition to an off-axis emis-

sivity maximum) has been previously interpreted as imperfect line-tying [60, 44]. This

discrepancy may be explained by introducing finite bulk plasma resistivity, which when

expanding the resistive Ohm’s law ( ~E − ~V × ~B = η ~J) at the anode surface can allow for

finite Ṽ and B̃ while maintaining Ẽ = 0. In fact, in a perfectly conducing and flowing

plasma finite ~Vt is permitted as long as ~V × ~B = 0 [61]. Either way, as Et is not measured

at the anode surface, existing measurements cannot conclusively determine if line-tying

is upheld in the helical equilibrium state.

It is possible that the kink instability initiates the transition from the axisymmetric

to helical state. In this sense, an alternative framework for understanding the helical

equilibrium of Section 3.4 is that of a saturated kink. Notwithstanding, observations of

the helical state onset indicate that there is no critical safety factor q at which the helical

equilibrium is found, in contrast to established external kink theory [62, 13]. Internal
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kinks, however, have no such critical q [62], nor presumably would cases in which the

distinction between internal and external kinks is inappropriate due to a poorly defined

plasma boundary. Furthermore, onset as described in Section 3.4.1 is also consistent with

a pressure-driven onset, as P ∝ Ip, Bz, and both were found to be destabilizing. A β

driven onset is not consistent with the observations, due to the inverse scaling of β with

Bz. As the topic of pressure-driven modes in the finite length screw-pinch is largely un-

explored, no comparison to theoretical predictions is attempted.
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Chapter 4

Flux Rope Merger and Column

Formation

Individual flux-ropes injected from the plasma gun array are observed to merge
without time-dependence. In the presence of collimated axial flow, spatial
gradients can be related to time steps in the plasma frame, thus forming a
Fick’s law for the merging assuming the plasma flow slips from the ExB flow.
Measurements indicate that a slip of only ≈ 1% is required to explain the flux-
rope merger. Neutral drag, plasma viscosity, or flow shear could be responsible
for this offset, though present measurements are unable to clearly identify a
single source. Particle diffusion rates are found to be consistent with classical
predictions, and current diffusion is comparable to the particle diffusion rate.

4.1 Motivation

Modeling of MHD instabilities in this experiment assumes a homogeneous axisymmet-

ric plasma column [13]. However, plasmas are injected into the device as discretized,

elongated structures called flux ropes. Whether or not these flux ropes merge into a

homogeneous plasma (and if so in what axial distance) is thus of critical importance to

the confident application of existing theories to the device plasma. While homogeneous,

axisymmetric profiles shown in Chapters 2-3 supported this treatment of the plasma, the
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process by which axisymmetry was achieved was not described.

Furthermore, flux ropes form the fundamental building blocks of many terrestrial and

astrophysical plasma structures. When flux ropes interact, a rich set of dynamics has

been observed [63]. Depending on the underlying plasma parameters, flux ropes can twist

around their center of mass [64], become unstable [34], merge [65], or even bounce [66].

In this Chapter, internal probe measurements of flux rope merger in the device are

presented. Flux ropes are observed to radially diffuse into one another as a function of

axial distance from the guns, generating a homogeneous bulk plasma with no small-scale

internal structure. This is despite the fact that cross-field particle transport is intrin-

sically ambipolar in the ideal MHD approximation, formally preventing any such radial

current channel expansion. However, finite plasma resistivity can break this condition

as long as the plasma azimuthal flow (Vθ) slips from the ExB velocity (~VExB), which in

turn requires an additional torque arising from non-ideal effects. This chapter will both

present measurements of flux-rope merger on the device as well as identify the possible

physical mechanisms at play. Though flux rope merger has generally been discussed and

studied in the context of impulsive magnetic reconnection events [67], measurements are

here shown for which all merging is time-independent.

The organization of this Chapter is as follows. Section 4.2 details model equations used

to compare to experiment. Section 4.3 presents measurements of the radial and azimuthal

flux rope merger. Section 4.4 derives a cross-field current diffusion equation, and Section

4.5 discusses possible physical mechanisms responsible for this diffusion. Section 4.6

provides additional interpretation for the aforementioned topics.
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4.2 Diffusion Ansatz and Model Equation

Plasma Density

To model flux rope merger of the plasma density, particles are assumed to follow the

standard advection diffusion equation:

∂ρ

∂t
= −ρ∇ · ~V − ~V · ∇ρ+Dρ∇2ρ (4.1)

where Dρ (≈ (∆x)2/ν) is a generic diffusion coefficient for a random walk step size ∆x

and collision frequency ν. This method necessarily further assumes that Dρ is a global

parameter, when in fact it may be highly local. All experimental data considered in this

Chapter will be from the steady-state flat-top phase of the discharge, thus all ∂
∂t

terms

are eliminated. The first term of the RHS of Eq. 4.1 is removed due to incompressibility,

which is a good approximation for the sub-sonic flows present in the device. The large

aspect ratio approximation is used to allow ∇2 ≈ ∇2
⊥ by neglecting weak axial gradients.

Assuming axisymmetry, allowing the axial flow to be collimated such that ~V = Vz ẑ+ Vθθ̂

(where Vz is constant), and expanding ρ = mini = mine yields:

Vz
∂ne
∂z

= Dρ∇2
⊥ne (4.2)

A purely diffusive equation is thus recovered, where the Vz
∂
∂z

term has taken the place

of the ∂
∂t

term found in a standard diffusion equation. Thus, this can be thought of as

a diffusive process in a frame moving axially with the plasma flow. Note that Vθ does

not enter into Eq. 4.2 in the axisymmetric limit. Using these approximations, a spatial

step along the device axis is related to a time step in the frame of the moving plasma.

This relation allows direct measurement of the diffusion coefficient Dρ necessary to fit the

observed axial profiles, as will be shown in Section 4.3.
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Current Density

A similar advective diffusive ansatz is made for the plasma axial current density (Jz).

Once again, a Galilean transformation is used to move axially with the plasma at speed

Vz. In this frame, all cross field current transport is transport is assumed to obey a Fick’s

law, yielding the following relation:

Vz
∂Jz
∂z

= DJ∇2
⊥Jz (4.3)

The diffusion coefficient above is defined as DJ ≡ ε η
µ0

, where a small parameter ε has been

introduced. While Eq. 4.3 has been provided as an ansatz, a derivation is also provided

in Section 4.4, in which ε can be shown to arise from a slippage between Vθ and VExB.

The physical origin of this slippage is in turn discussed in Section 4.5.

Model Equation

The solution to Eqs. 4.2 & 4.3 with a delta-function initial condition at Z = 0 cm is, in

Cartesian geometry:

Q(x, y, z) =

[6,7]∑

i=1

A exp

(
−(x− xi)2 + (y − yi)2

4DQ(∆Z)/Vz

)
(4.4)

Where Q can be ne or Jz, ∆Z is the axial step size between measurements, Vz is the axial

flow, DQ is either Dρ or DJ depending on the measurement, and A is a constant related

to the total ne or Jz. The centroid locations {xi, yi} are well known from the plasma gun

array geometry. The index i sums over all the guns discharged in a particular experiment.

Thus, measurements taken at discrete axial locations are fit to solutions of these equations

in Cartesian coordinates. Each axial location can yield a measurement for {Dx, A}.
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Figure 4.1: Langmuir probe measurements of electron density (ne) and fits to Eq. 4.4,
illustrating complete merger by Z = 36 cm. The central seven guns are discharged.

4.3 Flux Rope Merger Measurements

4.3.1 Radial Merger

Plasma Density

The discretized plasma source array shown in Fig. 2.6 allows flux rope merger to be

experimentally studied under a variety of geometries. The guns are separated by 3.6

cm, and the full-width at half-maximum (FWHM) of a single gun plasma gun has been

previously reported to be 3 cm at an axial distance of 25 cm from the guns [39]. Thus, the

radial separation of each source is comparable to the individual flux rope size and merging

is expected to occur. Figure 4.1 displays Langmuir probe data in which the transition

from discretized flux ropes to homogeneous plasma is clearly present. Each profile includes

a fit to Eq. 4.4, where each flux rope has been modeled as a delta function at Z = 0 cm.

Left-right asymmetry in the Z = 10 cm profile is due to the pitch of the fieldlines, which

bring the left (right) flux rope into (out of) the path of the probe, as expected by Fig. 2.6.
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This can also be thought of as aliasing of the m = 6 gun array onto the m = 1 resolution

of the probe sweep. Furthermore, as the Z = 36 cm profile appears fully merged, it is

unclear whether the merger was complete much before the Z = 36 cm plane. Thus, the

Dρ measured for this case only provides a lower bound. Conversely, assuming a delta

function density profile at Z = 0 cm can provide an upper bound for Dρ. Both of these

results are comparable and results are listed in Table 4.1.

Axial Current

For merger of the axial current, several configurations are studied by selectively engaging

and disengaging the discrete elements of the plasma gun array. The first configuration

studied is the discharging and biasing the central 7 guns of the array equally, shown in

Fig. 4.2a. Monotonic profiles are achieved by Z = 36 cm, which corresponds to 30% of the

distance from cathode to anode. Although Langmuir data from Z = 20 cm is missing, it

appears that merging of ne and Jz occurs on similar spatial scales. Fits to Eq. 4.4 extract

a diffusion coefficient (DJ) for the axial current in this configuration, which is given in

Table 4.1.

The second configuration studied is generated by biasing only the inner ring of 6 plasma

sources and leaving the central gun either discharged but unbiased or off altogether. This

creates a ring-like current profile, as merging in the azimuthal direction will be shown in

Section 4.3.2 to be required by magnetic shear. The core of the ring-like plasma is either

a current-free plasma (if the gun is discharged but left unbiased) or vacuum (if the gun

is left off). In both cases, the axial ring current profile is shown to diffuse inwards until

a monotonic current profile is generated, as shown in Fig. 4.2b. As the radial separation

between guns is larger than in the 7 gun configuration, radial merging occurs over a longer

axial length in this case. The centroid of each individual current channel is maintained

throughout the merger, indicating ~J × ~B body forces do not draw the channels together,
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Figure 4.2: B-dot probe measurements of axial current (Jz) profiles at different axial
locations for three different gun configurations, and fits to Eq. 4.4 (a) Central 7 guns
biased. (b) Inner ring of sources biased. (c) The central gun is biased to double the
current of the surrounding guns.
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Theoretical Experimental
Description Definition Dx [m2/s] Dx [m2/s] ε [%]

Classical η⊥nekBTe/B
2 11 ± 4

Bohm 1
16
kBTe
eB

7 ±1

Ambipolar µ⊥iD⊥e+µ⊥eD⊥i
µ⊥i+µ⊥e

2 ± 1

ne (Fig. 4.1) 4.5 ± 1
Magnetic Field η⊥/µ0 235 ± 80
Jz, (Fig. 4.2a) 3.5 ± 0.5 1.5 ± 0.5
Jz, (Fig. 4.2b) 3.0 ± 0.5 1.3 ± .5
Jz, (Fig. 4.2c) 4 ± 2 1.7 ± 1

Table 4.1: Summary of experimental measurements of Dx from fits to Eq. 4.4 and com-
parison to theoretical estimates. Uncertainties in experimental values come from scatter
in fit parameters from different axial profiles, while uncertainties in theoretical values are
propagated from errors in the underlying experimental measurements.

as will be further discussed in Section 4.6.

The final configuration studied is that of a current spike generated by quickly increas-

ing the bias current of the central plasma gun, as shown in Fig. 4.2c. This configuration

begins with the central 7 guns biased equally and brought to steady-state, similar to the

case of Fig. 4.2a. From this point the bias current to the central gun is doubled over 7

ms using the plasma source pulse width modulation (PWM) controller as per the time

trace shown in Fig. 2.5. Figure 4.2c illustrates that this current spike is only apparent

near the plasma gun, and by the device midplane (Z = 62 cm) the spike has fully diffused

into the surrounding current profile. As the diffusion coefficient DJ of the initial equilib-

rium before this spike is the same as the first configuration, new diffusion coefficients are

only found for the current spike itself once it reaches steady-state. This coefficient is also

shown in Table 4.1.

Each experimental flux rope merger case has yielded a measurement of the diffusion

coefficients ({Dρ, DJ}) and slippage parameter (ε) as will be defined in Section 4.4. These

parameters are summarized in Table 4.1. Results indicate that diffusion is occurring with

characteristic Dx all in the vicinity of 3-5 m2/s, for both particles and current density. The
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Figure 4.3: Cartoon illustrating azimuthal phase mixing of flux rope magnetic surfaces.
(a)-(d) map an originally circular magnetic surfaces for each flux rope across consecutive
axial steps, illustrating their deformation. Single fieldlines are marked by red crosses.

diffusion in density is found to be slightly larger than the classical ambipolar prediction

utilizing Spitzer resistivity, though less than the Bohm prediction. For the collisionality

(ν) and guide field (Bz) regime of the device plasma neither the strongly magnetized

nor weakly magnetized regime is valid and the full ambipolar diffusion form must be

used. This intermediary regime also exhibits a linear dependence of Dρ on the guide field,

instead of the standard classical scaling (Dρ ∝ B−2
z ). Current diffusion measurements

indicate that the ε parameter is small for all experimental configurations. The physical

origin for ε will be discussed in Section 4.5. It is also interesting that comparable rates of

diffusion are found for both current and density.



84

4.3.2 Azimuthal Merger

While experimental observation of the azimuthal merger of the flux ropes is beyond the

resolution of the internal probe, there is strong grounds to believe azimuthal flux rope

merging takes place on similar axial scales. This process can be understood as being due to

phase mixing arising from the magnetic shear in the experiment, illustrated qualitatively

in Fig. 4.3. Fieldlines from the inner radius of an outer flux rope will map through a

smaller azimuthal step (∆θ) than an outer radius fieldline over the same axial step (∆Z).

When current is driven from the central gun larger magnetic shears are generated and

mixing occurs in a smaller axial step size. Further azimuthal mixing would be expected to

arise from azimuthal ExB flow shear, which may in fact be dominant, though the m = 6

component of the ExB flow has not yet been measured.

4.4 Derivation of Current Diffusion

In this Section the axial current diffusion equation (Eq. 4.3) is derived and it is shown

to critically depend on the degree of slippage between Vθ and VExB, quantified by the ε

parameter. Beginning with the resistive Ohm’s law:

~E + ~V × ~B = η ~J (4.5)

where η is the bulk plasma resistivity. Justification of neglected Ohm’s law terms will be

discussed in Section 4.6. It is clear that in contrast to Eq. 4.1, axisymmetric ExB flows

(~VExB = ~E× ~B/B2) can no longer be ignored as they could be for particle transport. This

is because ~VExB is established to reduce the plasma-frame radial electric field, and this in

turn impedes magnetic diffusion. The azimuthal flow is now assumed to be nearly that

of ~VExB, except for a small parameter ε (� 1), which quantifies the degree of slippage
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between Vθ and VExB. Thus ~V = Vz ẑ+(1−ε)~VExB, where Vz is the axial flow. The physical

origin of this slippage will be discussed in Section 4.5. That ε is a constant coefficient

constitutes another simplifying assumption of this treatment. Inserting this definition of

~V into Eq. 4.5 yields a modified Ohm’s law:

~E + (~V ′ × ~B) = η′ ~J (4.6)

where ~V ′ ≡ 1
ε
Vz ẑ and η′ ≡ η

ε

(
(ε− 1)

J||
J

+ 1
)

are modified flow speeds and resistivities.

The magnetic probe measurements of Chapter 3 show J|| ≈ J , thus η′ = η is taken

throughout the remainder of this Chapter. The curl of Eq. 4.6 is taken to yield a modified

advection diffusion equation for the magnetic field:

∂ ~B

∂t
= ∇× ~V ′ × ~B +DB∇2 ~B (4.7)

where diffusivity DB in this case is η/µ0 and is taken to be a global parameter as η ∝ T
− 3

2
e

and Fig. 2.14 shows the plasma is isothermal. The ratio J||/J in the definition of η′ is

not local, however, although it is approximated as so for this analysis. Following the

derivation of Eq. 4.2, a steady-state solution is found by setting ∂
∂t
7→ 0, and expanding

the second term of the LHS of Eq. 4.7:

0 = ~B · ∇~V ′ − ~V ′ · ∇ ~B − ~B∇ · ~V ′ +DB∇2 ~B (4.8)

The third and first terms of Eq. 4.8 are eliminated by noting all flows are subsonic and

thus incompressible and by assuming weak axial gradients in ~V ′ and small Br respectively.

Letting ~V ′ = V ′z ẑ, the same form as Eq. 4.2 is recovered:

Vz
∂ ~B

∂z
= εDB∇2 ~B (4.9)



86

Once again, the result is analogous to purely diffusive transport of magnetic field in

a Galilean frame moving axially with the plasma. This analysis is expanded to axial

currents (Jz) by taking the curl of Eq. 4.9 and isolating the ẑ component. The vector

relation ∇2 ~B = −∇ × ∇ × ~B, valid for all divergence-free fields (including ~J), expands

the ∇ × ∇2 ~B term, from which ~J is easily isolated by Ampere’s law. The same vector

identity then collapses the expanded form to that of Eq. 4.9 with Jz in the place of ~B.

The advection term is also expanded:

∇×
(
V ′z
∂ ~B

∂z

)
= V ′z

(
∇× ∂ ~B

∂z

)
+∇V ′z ×

∂ ~B

∂z
(4.10)

Assuming no radial and azimuthal gradients in V ′z (collimated flow profile) removes the

∇V ′z term in the ẑ component of Eq. 4.10. The divergence-free condition on both ~B and

~J in addition to Ampère’s law yields a condition on Bx,y, such that ∂
∂z

∂
∂x
By = ∂

∂x
∂
∂z
By

and ∂
∂z

∂
∂y
Bx = ∂

∂y
∂
∂z
Bx. This relation allows

[
∇× ∂ ~B

∂z

]
z

to become ∂
∂z

[
∇× ~B

]
z
, which is

then trivially related to Jz. Again, the large aspect ratio approximation allows ∇2 ≈ ∇2
⊥,

yielding:

Vz
∂Jz
∂z

= DJ∇2
⊥Jz (4.11)

Where V ′z = 1
ε
Vz has been used and DJ ≡ ε η

µ0
. This is the result shown in Section 4.2.

4.5 Physical Mechanisms for Cross-Field Current

In the preceding Sections it was shown that a slight slippage of the plasma azimuthal

velocity (Vθ) to the ExB velocity (VExB) could, under certain assumptions, lead to a spa-

tial diffusion of the current profile. This slippage was parametrized by the ε coefficient

which was later measured. However, parameterizing the flow in terms of a slippage pa-
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rameter ε was not justified, and this will be the topic of this Section. Once again, a

velocity profile of the form ~V = Vz ẑ + (1 − ε)~VExB is taken, where ~VExB ≡ ~E × ~B/B2,

and (1 − ε)~VExB = Vθθ̂. Insertion of this relation into the radial component of the resis-

tive Ohm’s law (Er + VθBz = η⊥Jz) yields Jr =
(

ε
ε−1

)
Bz
η⊥
Vθ. Note that Hall terms and

electron-neutral collisions have been neglected, as will be discussed in Section 4.6.

The ε parameter implies an imperfect cancellation of Er in the Ohm’s law and thus a

finite Jr and azimuthal torque. In equilibrium, this torque must be balanced by another

term in the (axisymmetric) azimuthal force balance:

ρ
(
~V · ∇~V

)
θ

=
(
~J × ~B

)
θ
− ρνinVθ + µ

(
∇2~V

)
θ

(4.12)

where νin is the ion-neutral collision rate, µ is the viscosity, and ρ is the density. Were

azimuthal forces not in equilibrium, Vθ would adjust itself on an inertial time scale until

equilibrium was found. It is challenging to measure all of the terms in Eq. 4.12 directly

and with sufficient accuracy. This is especially true of the second derivatives in the viscous

term. Note that a scalar viscosity ν is used as opposed to the viscous stress tensor due to

the relatively weak magnetization of the ions in the device. Nevertheless, Eq. 4.12 can be

simplified with the following assumptions, already used in Section 4.2. First, {Br, Vr} = 0,

yielding:

ρVz
∂Vθ
∂z

= −JrBz − ρνinVθ + µ∇2Vθ (4.13)

and upon insertion of the relation for Jr this becomes:

(
ε

1− ε

)
B2
z

η⊥
Vθ = ρVz

∂Vθ
∂z︸ ︷︷ ︸

flow shear

+ ρνinVθ︸ ︷︷ ︸
neutral drag

−µ∇2Vθ︸ ︷︷ ︸
viscosity

(4.14)

with the physical mechanisms balancing the ε parameter indicated. Note that the flow
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shear term is the plasma-frame polarization drift as Vθ ≈ ~VExB. As the relative contribu-

tion of each of the terms of Eq. 4.14 have not been measured to significant accuracy, this

is the current state of understanding concerning current diffusion in the device. Notwith-

standing, limits of Eq. 4.14 can be taken.

Neutral Drag Limit

In the limit that the only term balancing Jr in Eq. 4.14 is the neutral drag ({Vz, ν} = 0),

a prediction of the ionization fraction can be made.

nn =

(
ε

1− ε

)
B2
z

ρη⊥(σVTi)
(4.15)

where νin = nnσVTi has been expanded, and nn is the neutral density, σ is the neutral

collision cross-section, and VTi is the ion thermal velocity. Using parameters for the device

(see Table 2.2), the fractional ionization is found to be ≈ 95%, which is a reasonable num-

ber, though as yet unconfirmed by measurements. Note also that this physical mechanism

for cross-field current transport is the Pedersen current [68, 69].

Flow Shear Limit

In the limit of negligible neutral drag and viscosity ({νinµ} = 0), a new, anti-diffusive

Fick’s law can be formulated. Returning to Eq. 4.13, which in this limit becomes:

ρVz
∂Vθ
∂z

= −JrBz (4.16)

As ε is a small correction, Vθ ≈ ~VExB = −Er/Bz. Furthermore, axial gradients in Bz and

B are taken to be small. Thus, ∂Vθ
∂z
≈ ∂Er

∂z
= ∂Ez

∂r
, where the steady-state (electrostatic)

condition has been used to relate Ez and Er. Using Ez = η||Jz, valid for Br, Vr = 0, Eq.
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4.16 is converted to:

ρVzη||
Bz

∂Jz
∂r

= JrBz (4.17)

Eq. 4.17 indicates that transport of J is related to spatial gradients in J , a situation

characteristic of (anti-)diffusive phenomena. Eq. 4.17 thus can be used to generate a

global Fick’s law. Both sides are multiplied by 1
r
∂
∂r
r, and gradients in η||, Vz, ρ are

necessarily neglected to obtain an approximate global anti-diffusivity. Using ∇ · J =

1
r
∂
∂r

(rJr) + ∂Jz
∂z

= 0, and maintaining axisymmetry, a Fick’s law is found:

Vz
∂Jz
∂z

= −Dfs∇2
⊥Jz (4.18)

where Dfs ≡ ρV 2
z η||
B2
z

. Global Jz profile anti-diffusion via flow shear can thus be approxi-

mately characterized by a simple parameter, Dfs. It should also be noted that the flow-

shear mechanism is identically the plasma-frame polarization current. Interestingly, this

diffusion parameter is of the same magnitude as the experimental diffusion coefficient,

though the experimental observation is decisively diffusive, not anti-diffusive. For this

reason, this is not expected to be the appropriate limit for the experiment. Thus, neu-

trals and viscosity are critical to explain experimental results, though they remain to be

measured to sufficient accuracy.

4.6 Discussion

In deriving the theoretical model for fitting the flux rope merger measurements of Sec-

tion 4.2, a resistive Ohm’s law was used. This Ohm’s law neglected the Hall, electron

pressure, and electron inertia terms present in the generalized Ohm’s law [70]. Electron

inertia terms are easily shown to be negligible for the steady-state phenomenon here stud-
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ied. The steady-state requirement also implies that the plasma is in MHD force balance,

thus reducing the hall and electron pressure term into a single ion pressure tensor term.

Taking the curl of this term results in contributions of the form ∇ne × ∇Ti (thermal

electromotive force, or Biermann battery) which are negligible for the isothermal plasma.

Thus, the resistive Ohm’s law of Eq. 4.5 is appropriate for use in this study.

The diffusive model of discrete current channel merger also ignores the possible role

of fast magnetic reconnection [67]. Fast reconnection is generally invoked when the typ-

ical resistive diffusion time (τres) of the plasma is too long to account for the observed

time-scales of magnetic field profile modification. In contrast, for the mergers discussed

in Section 4.3, the measured profile evolution times (in the plasma frame) are longer than

τres - the opposite limit. Thus, fast reconnection need not be invoked. Observations of

fast current profile modification events have been made in the device [34], though for

the parameters of this study all measured quantities are steady-state and no impuslive

phenomena are observed.

Another consideration in flux rope merger studies is the role of ~J × ~B body forces,

which are non-diffusive. Data presented in Section 4.3 clearly illustrates that the large,

bulk radial accelerations expected by ~J × ~B body forces are not present, an observation

corroborated in other experiments [64]. Furthermore, for the ring-like current profile dis-

cussed in Section 4.3, there is no enclosed current inside the ring and thus no Jz × Bθ

force to bring the centroids together. Notwithstanding, for the case where 7 guns are

discharged, mm-scale radial shifts to the centroid are observed, possibly due to ~J × ~B

body forces, although diffusive profile broadening is still dominant.

This Chapter also illustrates that although the plasma source array can provide tai-

lored axial current input boundary conditions (Jz(r, t)|Z=0), diffusive phenomena limits

the degree to which the current profile (Jz(r)) can be controlled throughout the entire

device length. As long as DJ remains O(1 m2/s) diffusion will homogenize any imposed
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radial structure in Jz(r, t) over a relatively short axial distance. That being said, profile

homogenization is required to produce a bulk, axisymmetric plasma for which theoretical

treatments are more easily formulated. Thus, a truly ideal MHD plasma throughout the

whole device length may be undesirable as it would never become axisymmetric.

The conclusion of this Chapter marks the end of Part I. Results up to this point (Part

I, Chapters 3-4) were conducted in the device prior to the installation of the rotating wall.

This configuration, shown in Fig. 2.1(b), had a larger (≈ 20 cm diameter) vacuum vessel

and thus allowed the use of the internal probe. Beyond this point, (Part II, Chapters

5-7) describe results with the rotating wall, and this device configuration is shown in

Fig. 2.1(c). This configuration used a smaller (≈ 16 cm diameter) vacuum vessel to yield

better plasma-wall coupling. As discussed in Section 2.1, this geometry prevented the use

of the internal probe system. Thus, results with the rotating wall primarily use the edge

magnetics array. Although the tube radius is different between the two configurations,

the bulk plasma properties are set by the parallel dynamics and axial confinement of

the device, which are left unchanged. Thus, the exploration of the plasma in the first

configuration is thought to be applicable to the rest of this thesis.
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Part II

Rotating Wall Results
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Chapter 5

Error Field Interactions with the

Rotating Wall

The interaction of error fields with the rotating wall apparatus is studied
analytically and compared to experimental data. Wall rotation causes eddy
currents to persist indefinitely, attenuating and rotating the original error field.
Superposition of error fields from external coils and plasma currents are found
to break the symmetry in wall rotation direction. The error field penetration
time is found to decrease as wall rotation increases.

5.1 Motivation

Attention is now turned to results from the device with the high-speed rotating wall

present. A natural place to begin is to discuss the interaction of the rotating wall with

non-axisymmetric fields. As these fields are normally unintentional, they are termed ‘er-

ror fields’ (EFs). In fact, all magnetic confinement devices tend to possess EFs to varying

degrees, and their mitigation is an important part of optimizing the performance of a

given device. This is because the EFs tend to affect the torque balance, slowing plasma

and MHD mode rotation with generally deleterious effects.
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In Chapter 6, it will be shown that the EF is of critical importance in determining

the behavior of the RWM in the device. This demands a thorough understanding of the

EF and its interaction with the rotating wall. These requirements motivate this Chapter.

Here, the interaction of the EF with a differentially rotating system of conducting walls

is studied analytically and compared to experimental data from the device. Wall rotation

is shown to permanently shield EFs from the plasma and to induce a phase shift from the

applied field orientation. Superposition of EFs from distinct sources is also found lead to

asymmetry in wall rotation direction, with the potential for one direction of rotation to

overcome the effect of shielding and increase the apparent EF. Using normal mode anal-

ysis it is also shown that the vertical field penetration time is decreased as wall rotation

increases.

The organization of this Chapter is as follows: Section 5.2 defines the relevant geome-

tries and derives the relations used throughout this Chapter. Section 5.3 examines the

t 7→ ∞ solution, as rotation induces persistent eddy currents that permanently alter the

magnetic field structure. Section 5.4 illustrates that vacuum eigenmodes of the rotating

wall system can be found, and studies the influence of rotation on these modes. Further

discussion is provided in Section 5.5.

5.2 Analytical and Experimental Geometry

In this study several wall geometries are considered. These are: a single rotating wall

(Fig. 5.1a), two walls with the outer wall rotating (Fig. 5.1b), and three walls with

the middle wall rotating (Fig. 5.1c). The single wall geometry is useful as it forms the

building block of the multi-wall systems. The two-wall geometry contains the relevant

rotating wall physics, while the three-wall geometry is required to match the experiment

(whose parameters are displayed in Table 5.1). In the device, the third wall represents the
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Wall Radius [cm] Wall Time [ms]

Vacuum Vessel ra = 7.71 τa = 3.5
Rotating Wall rb = 9.16 τb = 7.0
Mechanical Structure rc = 17.30 τc = 41.3
Measurement Array rm = 8.00 N/A

Table 5.1: Experimental parameters for each cylindrical wall of the Rotating Wall Ma-
chine. For all walls, the aspect ratio (radius/length) ≈ 10.

mechanical structure used to support the rotating wall. Measurements herein are made

using the 8 axial by 10 azimuthal Br fluxloop array described in Section 2.3.2.

Experimentally, two classes of symmetry-breaking current sources are available. The

first is applied from outside the rotating wall through conductors far from the walls, as

shown in Fig. 5.2a. Current through this coil provides a predominantly m = 1 field (where

m is the azimuthal wavenumber) and is hereafter called ~Bext. The second current source

is that of equilibrium plasma currents whose centroid is offset from the wall geometric

axis (hereafter called ~Beq). This offset would arise from the misalignment of the magnetic

axis to the geometric axis. ~Beq is produced either with a current-carrying plasma or with

a solid conducting rod located at radius rr and angle η, as shown in Fig. 5.2. The field

produced by this configuration is not spectrally pure, though only m = 1 is treated as

this is the only component resonant with the kink mode in the device. Small imbalances

in the resistance of conductors used to return plasma currents in the linear device can

also source ~Bext, shown in (c). Note that although the return conductors are far from the

vacuum vessel, imbalances can still result in significant m = 1 perturbations within the

vacuum vessel.

5.2.1 Vacuum Region Solution and Boundary Conditions

In the vacuum regions outside and between the rotating walls the Laplace equation

(∇2Φ = 0, where Φ is the magnetostatic potential) in cylindrical geometry is used to
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~Beq. (c) Fieldlines illustrating the intrinsic external error field, which arises when currents
returning through eight return leads are not properly balanced.
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calculate the magnetostatic fields. The displacement current is neglected, and the long-

cylinder approximation removes all variation in ẑ. As ~B = −∇Φ,

Br(r, θ) = <
[
(Aj − Akr−2)e−iθ

]

Bθ(r, θ) = <
[(
−i(Aj + Akr

−2)
)
e−iθ

]
(5.1)

where the guide field (Bz) is neglected. Aj, Ak are constant (complex) coefficients, and

time-dependence has been left unspecified. If a current source of the form of Fig. 5.2a is

present, the solution as r 7→ ∞ is ~Bext. Thus, in this case simply Aj = Bext, where the

coordinate system is aligned with ~Bext. If ~Beq (of the form of Fig. 5.2b) is present, then

the field inside the innermost conductor has a term like B ∝ r−2. The matching used is to

let Ak = beq, where beq = Beqr
2 = −iµ0Iprr

2π
exp (−iη) and has units of [T m2] and is thus

left lowercase. Ip is the current driven (into the page) through the plasma or conducting

rod at radius rr and angle η.

5.2.2 Matching through Rotating Conducting Walls

In the rotating/static walls the magnetic field obeys the induction equation:

∂ ~B

∂t
= ∇× ~V × ~B︸ ︷︷ ︸

advection

+
1

µ0σ
∇2 ~B

︸ ︷︷ ︸
diffusion

(5.2)

where σ is the (constant) conductivity of the wall. The radial projection of this vector

equation is used. Enforcing ~B ∝ exp (−γt) allows the first term in Eq. 5.2 to be linear

in γ. For this work, γ is complex and ≡ γr + iω. Note that γr > 0 is a decay constant,

while γr < 0 is a growth rate. The wall velocity is that of rigid rotation, ~V = rΩwθ̂. For

the final term the long-cylinder identity
[
∇2 ~B

]
r̂

= 1
r
∇2(rBr) is used, after which Eq. 5.2
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becomes:

(γ + iΩw)Br = − 1

µ0σ

1

r
∇2(rBr)

This equation is now integrated from r−w ≡ rw − δw
2

to r+
w ≡ rw + δw

2
, where rw, δw are the

radius and thickness respectively of any wall. The thin-wall approximation is used which

states that Br and rw are constant across δw. For this to be accurate the wall thickness δw

must be much less than the skin depth for a given γ such that γµ0σδ
2
w � 1. This is easily

satisfied for the experiment as γτw � rw/δw ≈ 100. Here, τw ≡ µ0σrwδw is called the

‘wall time’. Appendix C develops the equivalent thick-wall calculation. The integration

yields:

δw(γ + iΩw)Br = − 1

µ0σ

1

rw

∂

∂r
(rBr)|r=r

+
w

r=r−w

∇ · ~B = 0 yields ∂
∂r

(rBr) = −∂Bθ
∂θ

= iBθ. The final matching conditions are presented:

Br|r=r
+
w

r=r−w
= 0 (5.3)

Bθ|r=r
+
w

r=r−w
= i(γ + iΩw)τwBr (5.4)

These conditions must be upheld at each wall, with Ωw = 0 if the wall is static. Note

that if both γ = 0 and Ωw = 0 the field is not affected by the wall.

5.3 Steady-State Error Field Interactions

Steady state field solutions (γ = 0) are strongly affected by wall rotation (Ωw). The

fields arising from currents external to the conducting walls ( ~Bext, as in Fig. 5.2a) and

equilibrium plasma currents internal to the conducting walls ( ~Beq, as in Fig. 5.2b) will
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Figure 5.3: (a)-(c) Fieldlines of the steady-state field created by the application of an

external m = 1 field ( ~Bext) with all static walls omitted for clarity. The field within the
rotating wall is observed to be (d) excluded and (e) phase shifted by the persistent eddy
currents in the rotating wall.

be first treated independently then linearly superimposed. Solutions will be calculated

and compared to experimental measurements using solid conductors or a stable plasma.

When γ = 0, static conducting walls do not play a role. Thus, the single wall geometry

of Fig. 5.1a is used.

5.3.1 External Error Fields

Forcing from currents external to the rotating wall (as in Fig. 5.2a) requries that as

r 7→ ∞, ~B 7→ ~Bext. The following functional form of ~B must be upheld:

I : Br(r, θ) = <
[
A0e

−iθ]

II : Br(r, θ) = <
[
(Bext − A1r

−2)e−iθ
]

(5.5)
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and where the divergence-free condition can be used to find Bθ. Using the matching

conditions of Eqs. 5.3-5.4, the following matrix equation is generated:




1 r−2
b

iRm − 1 r−2
b






A0

A1


 =



Bext

−Bext


 (5.6)

where Rm ≡ Ωwτb. Eq. 5.6 is non-homogeneous, and upon inversion yields a unique

solution for An. The ratio of the field amplitude within the rotating wall (Br) to the

applied Bext field is given by:

| ~Br|
Bext

=
1√

1 + R2
m

4

(5.7)

Wall rotation permanently shields the region within the rotating wall from error fields,

an effect termed ‘flux exclusion’ and clearly illustrated by the density of the fieldlines

within the wall in Figs. 5.3a-c. Figure 5.3d compares this calculation to experimental

data (t 7→ ∞ limit in Fig. 5.11a) and the agreement is excellent. Wall rotation also

introduces a phase shift (φ) between the applied ~Bext and ~Br. This is calculated using

Eq. 5.6 to be:

φ = arctan

(
Rm

2

)
(5.8)

In the thin-wall limit, φ cannot exceed ±π/2. Figure 5.3e compares this calculation to

experimental data and agreement is found to be excellent. The superb agreement of

Fig. 5.3 gives confidence that the experiment can be used to test the more complex

configurations presented in the remainder of this Chapter.
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Figure 5.4: (a)-(c) Fieldlines of the m = 1 component of the steady-state field created

by currents in a conducting rod or stable plasma within the rotating wall ( ~Beq) with all
static walls omitted for clarity. Field penetration through the rotating wall is found to
be (d) reduced and (e) phase shifted by the persistent eddy currents in the rotating wall.
Data in (d) and (e) is from the conducting rod.

5.3.2 Equilibrium Plasma Currents or Conducting Rod

Forcing from currents internal to the rotating wall (from the offset conducting rod or

equilibrium plasma currents, as shown in Fig. 5.2b) requires that the portion of the field

decaying as r−2 be uniquely specified by the current source. Utilizing the single wall

geometry, the following functional form of ~B must be upheld:

I : Br(r, θ) = <
[
(A0 − beqr

−2)e−iθ
]

II : Br(r, θ) = <
[
(−A1)r−2e−iθ

]

This is similar to Eq. 5.5 though with the source term beq located in the interior solution

as discussed in Section 5.2.1. Using the matching conditions of Eqs. 5.3-5.4, the following
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matrix equation is generated:

dev



r2
b 1

r2
b iRm − 1






A0

A1


 =



beq

−beq


 (5.9)

Equation 5.9 is non-homogeneous, and upon inversion yields a unique solution for An.

Solution fieldlines at various Rm are shown in Fig. 5.4a-c. Flux exclusion again occurs,

though its form is modified from Eq. 5.7 and a dependence on rm (the measurement

radius) is introduced:

|Br|
beqr−2

m

=
1

1 + R2
m

4

√(
1 + αm

R2
m

4

)2

+
R2
m

4
(1− αm)2 (5.10)

where αm ≡ r2
b−r

2
m

r2
b

has been defined and is 0.23 in the experiment. Though similar in form

to Eq. 5.7, correction terms of O(αm) exist. In the limit of rm 7→ rb, αm 7→ 0, Eq. 5.10 is

identical to Eq. 5.7. Comparison to experimental data, shown in Fig. 5.4d, is found to

be good. The departure from the perfect agreement of Section 5.3.1 will be discussed in

Section 5.3.3. The observed phase shift is distinct from Eq. 5.8 and now also depends on

rm:

φ = arctan

(
Rm

2

(
1− αm

1 + αm
R2
m

4

))
(5.11)

Again corrections of O(αm) exist, and these tend to reduce the amount of phase shift

observed. Similarly, in the limit of rm 7→ rb, Eq. 5.11 is identical to Eq. 5.8. Excellent

agreement of Eq. 5.11 with experimental data is shown in Fig. 5.4e. Unlike the case of

external forcing, the effect of the rotating wall on Eqs. 5.10-5.11 depends on rm and is

most pronounced at rm = rb. Also note that this field contains a finite electromagnetic

torque if Rm 6= 0.
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Figure 5.5: Asymmetry in Rm in (a) flux exclusion in the presence of both ~Beq (conducting

rod only) and ~Bext. For a given ∆φ0, flux exclusion is reduced atRm > 0 while (b) changing

∆φ0 7→ ∆φ0 +π reverses the asymmetry. (c)-(d) With suitably chosen ~Bext, ~Beq, and ∆φ0,
the asymmetry can become very large and overwhelm the shielding effect of wall rotation.

5.3.3 Superposition of Error Fields and Asymmetric Response

The difference between the response to ~Bext and ~Beq in flux exclusion (Eq. 5.7 vs Eq.

5.10) and phase shift (Eq. 5.8 vs Eq. 5.11) gives rise to an asymmetry in wall rotation

direction. To illustrate this simply, the linear superposition of ~Bext and ~Beq is checked

for parity. ~Bext = Bext exp (i(φe(Rm)− φ0e)) and ~Beq = Beq exp (i(φi(Rm)− φ0i))), where

φe(Rm) is Eq. 5.8 and φi(Rm) is Eq. 5.11. All amplitude information (Eqs. 5.7 and

5.10) is ignored for simplicity and both source terms are separated at Rm = 0 by an angle
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∆φ0 ≡ φ0e − φ0i. Parity at +Rm and −Rm is checked:

=
∣∣∣ ~Bext + ~Beq

∣∣∣
2

+Rm
−
∣∣∣ ~Bext + ~Beq

∣∣∣
2

−Rm

= 2BextBeq (cos (∆φ −∆φ0)− cos (−∆φ −∆φ0))

= 4BextBeq sin (∆φ) sin (∆φ0) (5.12)

where ∆φ ≡ φe(Rm)− φi(Rm) is the difference between Eqs. 5.8 and 5.11. Since ∆φ 6= 0,

Eq. 5.12 is non-zero. Asymmetry in Rm is maximized when ∆φ0 = ±π
2
.

This asymmetry is demonstrated experimentally by pulsing ~Bext and ~Beq simultane-

ously. Inclusion of both ~Bext and ~Beq using the full vector superpositions of Eqs. 5.6-5.11

is shown in Fig. 5.5a-b for two different ∆φ0, each separated by π. Changing ∆φ0 by π is

done by repositioning the conducting rod (changing the angle η in Fig. 5.2b). The resul-

tant asymmetry in flux exclusion is captured by the model, as is the asymmetry reversal

as ∆φ0 7→ ∆φ0 + π. Note that Fig. 5.5b shows the same data of Fig. 5.4d, where much

better agreement is found when ~Bext is included. Although in Fig. 5.5a-b this asymmetry

is a small correction, it can be made large if Beq ≈ Bext, as shown in Fig. 5.5c-d. If

Beq ≈ Bext and ∆φ0 ≈ π, as would be the case if external currents were used to correct

the misalignment of the magnetic axis [71], increasing Rm would increase the error field

significantly.

5.3.4 Asymmetric Response in Plasma Discharges

Strong asymmetry inRm is also observed when the conducting rod is replaced with a stable

plasma. Low current, stable plasmas are used to isolate the interaction of equilibrium

currents ( ~Beq) with ~Bext without considering MHD instabilities. Figure 5.6 illustrates

large asymmetry in plasma discharges. The scatter in the data is also larger due to

the poorer reproducibility of the plasma discharge. Figure 5.6a-b illustrates a response
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approaching linearity in Rm, and the interactions of the error fields with the rotating

wall is clearly a zeroth order effect. The error field asymmetry is found to be invariant

with guide field (Bz) reversal, thus ruling out plasma drift effects. Figure 5.6c-d illustrates

another plasma case where the constructive and destructive interference between ~Bext and

~Beq is dramatically demonstrated. A minimum in the total amplitude occurs at Rm ≈ 2,

which the model can capture with suitable selection of free parameters Bext/Beq and ∆φ0.

A wide family of curves can be generated depending on the values of Bext/Beq and ∆φ0.

Figure 5.7 illustrates the odd parity of the asymmetric interaction with Rm and ~Bext.

While the asymmetry in Rm is present at all Bext, its sense (or parity) is inverted as ~Bext

is reversed. That the asymmetry was not reversed upon inversion of Bz, yet was inverted

with ~Bext gives confidence that even in the presence of a (stable) plasma, the error field

interaction can be well described by the linear superposition of Bext and Beq. That is,

the stable plasma (Fig. 5.6) can be described by the same model as the conducting rod

(Fig. 5.5). The unstable plasma will be treated in Chapter 7 and the effectiveness of this

model will be further discussed in Section 5.5.

5.4 Vacuum Field Eigenmodes and Vertical Field Pen-

etration

Normal mode analysis is used to derive the time-dependent behavior of the device error

fields and corroborates the experimental observation that the vertical field penetration

time (τvfp) decreases as Rm increases. As all equations used in Section 5.2 are linear in ~B,

the system can be expressed as an eigenvalue equation with corresponding eigenvalues and

eigenvectors (normal modes) in the absence of any forcing (current sources). The normal

modes of multiple wall systems will be considered, beginning with the limiting cases of a

single wall and static double walls, then proceeding to the differentially rotating system
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and concluding with the three-wall system necessary to match experimental data.

To solve the normal modes of the system, a matching problem is carried out in a

similar style to that of Section 5.3, where now exponential time dependence is introduced

(Q(t) ∝ Qe−γt, for any Q). The two-wall geometry of Fig. 5.1b is used. The field solutions

are:

I : Br(r, θ, t) = <
[
A0e

−iθ]

II : Br(r, θ, t) = <
[
(A1 − A2r

−2)e−iθ
]

III : Br(r, θ, t) = <
[
(−A3r

−2)e−iθ
]

The matching conditions of Eqs. 5.3-5.4 yields a 4x4 matrix equation for the 4 unknown

parameters:




−1 1 −r−2
a 0

γτa − 1 1 r−2
a 0

0 1 −r−2
b r−2

b

0 r2
b 1 (γ + iΩw) τb − 1







A0

A1

A2

A3




= 0 (5.13)

Setting the determinant of the matrix of Eq. 5.13 to zero yields the characteristic equation:

(τaτbα) γ2 − (2 (τa + τb)− iΩwτaτbα) γ + 2 (−2 + iΩwτb) = 0 (5.14)

where defining α ≡ r2
b−r

2
a

r2
b

replaces the geometry of the problem with a normalized mutual

inductance. Two normal modes exist, and a single equation for the roots of Eq. 5.14 can
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be written:

γ =
τa + τb
τaτbα

− iΩw

2
± 1

τaτbα

[
(τa + τb)

2 − 4τaτbα−
Ω2
w

4
(τaτbα)2 + iΩwτaτbα(τb − τa)

] 1
2

(5.15)

decomposing into real and imaginary terms:

γr =
τa + τb
τaτbα

± (κ2
r + κ2

i )
1
4

τaτbα
cos

(
1

2
arctan

(
κi
κr

))
(5.16)

ω =− Ωw

2
± (κ2

r + κ2
i )

1
4

τaτbα
sin

(
1

2
arctan

(
κi
κr

))
(5.17)

κr ≡ (τa + τb)
2 − 4τaτbα−

Ω2
w

4
(τaτbα)2

κi ≡ Ωwτaτbα(τb − τa)

To explore the behavior of Eqs. 5.15-5.17, limiting cases with respect to rotation (Ωw)

and mutual inductance (α) are explored separately.

5.4.1 Single Wall Limit

The simplest case to consider is that of Fig. 5.1a, with only a single wall which is allowed

to rotate. This is achieved by letting τa 7→ 0 in Eq. 5.15. In this limit, only a single root

remains, which is given by:

γ =
2

τb
− iΩw (5.18)

The real part of this eigenvalue (<[γ] ≡ γr ≡ 1
τvfp

= 2
τa

) is the unique time constant

characterizing eddy current decay (and thus vertical field penetration) in the single wall

system. Furthermore, γr does not depend on Ωw; wall rotation in the single wall case

merely transforms the normal mode into a rotating frame with ω = Ωw. The eigenfunction
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Figure 5.8: Fieldlines of ~B produced by the eddy current eigenfunction in a single wall.
Current flows into and out of the page as Jz ∝ δ(r − rw) exp (−iθ), producing a constant
field within the wall and dipolar field beyond. This structure is independent of rotation
for the single wall case.

(field structure) is given by: A0 = A1 = −r−2
b A3, A2 = 0, which yields a dipole-like

solution as shown in Fig. 5.8. As this is an infinite-length model, the wall eddy currents

flow purely into and out of the page, while in a finite-length wall these currents must close

at the ends giving rise to fringing fields.

5.4.2 Static Double Wall Limit

In the limit of no rotation (Ωw 7→ 0), Eq. 5.15 becomes:

γ =
1

τaτbα

[
τa + τb ±

[
(τa + τb)

2 − 4ατaτb
] 1

2

]
(5.19)

To begin, the large gap limit of α 7→ 1, rb � ra is also taken. In this limit, γ =
{

2
τa
, 2
τb

}

and each normal mode is independently tied to its own wall and has the single wall time

constant of Eq. 5.18. Thus, α behaves as a mutual inductance between the two walls.

Fig. 5.9 shows the behavior of γ as α 6= 1. Both γ diverge from their decoupled values and
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a fast and slow root develops. For experimental parameters, γ1 ≈ 10γ2. The asymptote

of strong coupling (small gap, α 7→ 0) corresponds to the same solution as a single wall

system with τ = τa + τb and the fast root decaying infinitely quickly.

For weak coupling (α 7→ 1), the eigenfunctions are the same as Fig. 5.8. Eigenfunc-

tions with the coupling parameter set to that of the experiment (αexp = 0.3) are next

considered. As shown in Fig. 5.9b-c, the γ1 (fast) eigenfunction is confined to within

the two-wall system, while the γ2 (slow) eigenfunction is dipolar everywhere. In terms

of induced eddy currents, the γ1 currents are counter-aligned in each wall, while the γ2

currents are co-aligned, thus they can be thought of as opposing and reinforcing dipoles,

respectively. Qualitatively, this is reminiscent of the coupled oscillator, whose eigenmodes

are symmetric and anti-symmetric oscillations.

5.4.3 Effect of Wall Rotation

Wall rotation is now reintroduced, necessitating the full form of Eqs. 5.16-5.17 and

yielding complex eigenvalues (γ ≡ γr + iω). The value of Ωw now affects both γr as well

as ω, as shown in solutions for experimental parameters plotted in Fig. 5.10a. Increasing

Rm brings the two eigenvalues toward each other. Eigenfunctions are shown in Fig. 5.10b-

c for the intermediate rotation case. Rotation is seen to phase shift the eigenfunctions in

opposite directions. As with the static solution, one eigenfunction penetrates the outer

wall while the other does not.

With Ωw 7→ ∞ in Eqs. 5.16-5.17, γ =
{

2
τaα
, 2
τbα
− iΩw

}
. The corresponding eigenfunc-

tions are shown in Fig. 5.10d-e. The γ1 eigenfunction is found to decay at a geometrically

weighted τa timescale, and does not extend into the rotating wall. Similarly, the γ2 eigen-

function does not see the static wall, and as such it rotates at ω = Ωw and decays at a

geometrically weighted τb timescale. The phase shifts have also reached an asymptotic

limit of φ = π
2
. The fast rotation limit is thus seen to decouple the two walls, acting oppo-
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site to the coupling parameter α. The α parameter splits the eigenvalues into a slow and

fast branch, while rotation brings both branches back to their (geometrically weighted)

single wall values.

5.4.4 Three-Wall Eigenmodes and Comparison to Experiment

As discussed in Section 5.2, a three-wall system is required to adequately capture ex-

perimental vertical field penetration data. The geometry (to scale) is presented in Fig.

5.1c, with the third (outermost) wall corresponding to the mechanical support structure.

Fields for this geometry must be of the form:

I : Br(r, θ, t) = <
[
A0e

−iθ]

II : Br(r, θ, t) = <
[
(A1 − A2r

−2)e−iθ
]

III : Br(r, θ, t) = <
[
(A3 − A4r

−2)e−iθ
]

IV : Br(r, θ, t) = <
[
(−A5r

−2)e−iθ
]

the matching conditions of Eqs. 5.3-5.4 are applied, which then forms a 6X6 matrix

equation for the unknown An. For brevity, only the characteristic equation yielded by

setting the determinant to zero is shown:

0 = aγ3 + bγ2 + cγ + d (5.20)

a = τaτbτcα1α2

b = 2 (τaτbα1 + τbτcα2 + τaτcα12) + iΩwτaτbτcα1α2

c = 4(τa + τb + τc) + i2Ωw (τaτbα1 + τbτcα2)

d = 4(−2 + iΩwτb)
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Again, coupling parameters are defined which simplify the geometry: α1 ≡ r2
a−r2

b

r2
b

, α2 ≡
r2
b−r

2
c

r2
c

, α12 ≡ r2
a−r2

c

r2
c

. Beyond these simplifications, analytic forms for the three roots of

Eq. 5.20 are prohibitively lengthy and are not shown. Solutions of Eq. 5.20 are shown

in Fig. 5.11a and indicate that rotation affects the three-wall eigenvalues in broadly the

same manner as the two-wall eigenvalues of Section 5.4.3. For experimental parameters,

there is one fast root which decreases as Rm increases, and two slow roots which increase

as Rm increases. Eigenfunctions at Rm = 0 are shown in Fig. 5.11b-d and illustrate that

the fastest root γ1 does not penetrate the second (rotating) wall, the middle root γ2 does

not penetrate the third wall, while the slowest root γ3 penetrates all walls.

The inclusion of the third wall permits quantitative comparison to experiment. The

normal modes are experimentally excited by the application of a square-wave Bext pulse,

yielding the time-traces of Fig. 5.11e. The steady-state response created by this excitation

has already been discussed in Section 5.3.1. Focusing on the time-dependent behavior

shows that the vertical field penetration time (τvfp) decreases as Rm increases. As γ3 is

the most persistent eddy current, it dominates the measurement a short time after the

current pulse turn-on. Figure 5.11f confirms the counter-intuitive result that increasing

wall rotation (Ωw) decreases τvfp. The slowest root of Eq. 5.20 matches the τvfp data very

closely despite the fact that there are no free parameters. The dotted lines in Fig. 5.11f

plot the γr
3 root with τc varied by ± 1 ms (or 2%), which is sufficient to bound the data.

5.5 Discussion

This Chapter used the long-thin approximation to derive analytic relationships for device

error fields which experiment then confirmed. The error field from external conductors

and equilibrium plasma currents are found to behave differently, giving rise to potentially

significant asymmetries in wall rotation direction. Later Chapters will show that error
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field interactions (and their asymmetries) were the zeroth order effect of wall rotation on

plasma dynamics, complicating instability studies and necessitating an alignment cam-

paign to minimize the intrinsic error fields. In fact, this asymmetry was initially misinter-

preted as asymmetric stabilization of the kink instability in the device, until experiments

with the conducting rod revealed their independence from the plasma. Although toroidal

effects are not included here, it is likely that future devices with flowing liquid metals

may also exhibit similar asymmetries. A treatment of the same problem while relaxing

the thin-wall approximation is found in Appendix C.

Section 5.3.4 illustrated that the model developed to treat rigid conductors was also

successful in capturing the asymmetries observed in stable plasma discharges. Vacuum

superposition of ~Bext and ~Beq assumes that the two are independent of one-another. This

is not a-priori guaranteed as the plasma can respond (move) due to ~Bext while the rigid

rod cannot. That the vacuum superposition is valid for the stable plasma as well as the

rigid conducting rod reinforces the point that there is no appreciable modification of the

error field by the stable plasma.

The result that the vertical field penetration time decreases as wall rotation increases

is counterintuitive. Although infinite wall rotation yields a ‘perfectly conducting’ wall,

it does not simply increase the effective wall time. This Chapter has shown that care-

ful consideration of the multi-wall couplings is essential to build intuition on the effect

of differential rotation on field eigenmodes. In the limit of an infinite number of walls,

these results are reminiscent of the flowing liquid metal dynamo problem, where expected

growth/decay constants are very sensitive functions of the flow profiles [72]. It is also

clear that the success of the simple model to capture the experimental τvfp data indicates

that the long-thin cylinder approximations made are very good.

With the impact of the rotating wall on device error fields well understood, it is

possible to begin to discuss the problem of RWM stability in the presence of both an
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error field and the rotating wall. To do this, several experiments were done at ‘constant

error field’. This utilized the understanding of this section to tailor the current in the

error field coil such that the apparent error field felt by the plasma was constant. The

following Chapters will stress the importance of this technique to elucidate the varied

effects of the rotating wall on RWM stability.
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Chapter 6

Torque Balance and Mode-Locking

of the External Kink

Wall-locking of an MHD mode is found for the first time in a linear device.
The effect of the rotating wall on mode-locking is studied experimentally and
compared to a torque balance model which has been extended to include dif-
ferential wall rotation. Wall rotation is predicted to asymmetrically affect the
mode-unlocking threshold, with fast rotation eliminating the locking bifurca-
tion. Static error fields are observed to lock the resistive wall mode (RWM)
variant of the current driven kink instability by modifying the electromagnetic
torque.

6.1 Motivation

Resistive wall modes (RWMs) often grow from a flowing plasma, and this experiment is no

exception. Plasma flow is important to RWM stability, as RWMs entrained in a rapidly

flowing plasma can rotate with frequency ω � τ−1
w and be passively stabilized by the wall

[10, 18], as was discussed in Chapter 1. In certain regimes, the RWM discontinuously

transitions from a rotationally stabilized RWM to a stationary (ω ≈ 0) ‘locked’ RWM

followed by subsequent fast growth with γ−1 ∝ τw [73]. For this reason, experimental
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observations of RWM onset conditions are often convolutions of RWM stability criteria

and mode-locking thresholds [26]. Thus, in order to understand RWM onset in the device

it is also necessary to explore the process by which mode-locking occurs including the

effect of the rotating wall.

In this Chapter, the effect of physically rotating walls on mode-locking is tested ex-

perimentally and interpreted using a torque balance model that accounts for both errors

fields and wall rotation. Plasma rotation yields a kHz-scale rotating RWM which must

be slowed or locked to observe the interaction of the instability with the rotating wall.

Braking and locking is shown to be achieved with static m = 0 and m = 1 error fields,

yielding the first observation of MHD mode-locking in a linear device. These effects are

interpreted with a commonly used torque balance model [21, 22, 23] which is adapted to

this experiment. This model is further extended to treat differential wall rotation using

the thin-wall, long-cylinder approximation. Wall rotation is found to Doppler shift the

mode-locking threshold. However, a much larger effect is predicted for the mode-unlocking

threshold, and asymmetry in wall rotation direction is also predicted. The extended model

is then used to fit mode-locking observations in the presence of the rotating wall.

The structure of this Chapter is as follows: Section 6.2 derives and describes the torque

balance equation used to model mode-locking in the experiment. Section 6.3 applies this

model to describe experimental observations of mode-locking by m = 0 and m = 1

static error fields. Mode-locking in the presence of wall rotation is treated in Section 6.4.

Discussion of results is presented in Section 6.5.
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6.2 Mode-Locking Model and Free Parameters

In order to model azimuthal RWM rotation in the experiment, total torques on a rigidly

rotating plasma are calculated. As described in Section 2.4, the device plasma is very

cold and dense. Thus, its collisionality is very large and the MHD mode is taken to be

fully entrained in the plasma flow such that the mode frequency ω is equal to the plasma

rotation frequency. To simplify the analysis, the plasma is taken to be a rigid-rotor, such

that everywhere the plasma rotates at a single frequency ω and Vθ = rω. Data presented

in Section 2.4.4 showed that this was a satisfactory approximation in the core of the

device. Rigid-body rotation is also indicative of a large viscosity, as will be discussed in

Section 6.5. The total torques on the plasma can thus be evaluated:

ẑ ·
∫

V
~r ×

[
ρ

(
∂~V

∂t
+ ~V · ∇~V

)]
dV = ẑ ·

∫

V
~r ×

[
−∇p−∇ · ¯̄Π +∇ · ¯̄T

]
dV (6.1)

where ρ is the density, p is the pressure, and ¯̄Π and ¯̄T are the viscous and Maxwell stress

tensors. The integral is performed over a cylindrical volume V enclosed by a surface S of

length L and radius ra outside of the plasma but just inside the first wall. As ra/L ≈ 10,

the large aspect ratio approximation allows the end-caps to be neglected due to their

small contribution to S. As S is outside the plasma, the pressure and viscous stress

terms vanish. Using the rigid-rotor approximation, the advection term also vanishes. The

inertial term is equal to Izzω̇, where Izz is the moment of inertia of the rigidly rotating

plasma, and can be shown to be small relative to the remaining electromagnetic term.

Using the divergence theorem and as the end caps are neglected in S, the remaining term

in Eq. 6.1 can be written:

0 = ra

∫

S
θ̂ · 1

µ0

[
~B ~B − 1

2
B2 ¯̄I

]
· dS (6.2)
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and as θ̂ ⊥ dS the second term vanishes. The magnetic field is written as ~B = ~B0 +

~Bext + B̃mode exp (−iφ), where ~B0, ~Bext, B̃mode is the equilibrium, error, and RWM field

respectively, and φ ≡
∫ t

0
ω(t′)dt′ + φ0. ~B0 is taken to be axisymmetric (m = 0) while the

~Bext and B̃mode are non-axisymmetric (m = 1). Each magnetic field source produces a

contribution to the torque balance relation, and these are calculated in Secs. 6.2.1-6.2.3.

Summing these contributions results in a torque balance equation of the form:

0 =Ares(Ω0 − ω)︸ ︷︷ ︸
Γres

+Aext sin (φ)︸ ︷︷ ︸
Γext

−AEM
RaR

2
bα

2 + 4 (Ra +Rb(α + 1))

(4 +RaRbα)2 + 4(Ra +Rb)2

︸ ︷︷ ︸
−ΓEM

(6.3)

where Γres, Γext, and ΓEM are electromagnetic torques arising from the restoring torque

to a ‘natural’ frequency Ω0, the mode-error field interactions, and the the mode-wall

interactions, respectively. Within ΓEM , Ra ≡ ωτa, Rb ≡ (ω − Ωw)τb, α ≡ (r2
a − r2

b )/r
2
b ,

and τa, ra, τb, rb are the wall time and radius of the inner and outer wall respectively and

Ωw is the wall angular velocity. Γext and ΓEM can be measured using magnetic flux-loops

[74], leaving Ω0 and Ares as the free parameters in the model. Equation 6.3 is quintic in

ω and will be shown to be multi-valued, with rotating ω ≈ Ω0 and locked ω ≈ 0 solutions

as well as bifurcations (mode-locking) between the two occurring at a critical ωlock which

can also be measured. The combined measurements of ωlock, ΓEM and Γext are sufficient

to uniquely determine both Ω0 and Ares, thus these parameters are not fit but rather

calculated for a given discharge.

6.2.1 Derivation of Two-Wall Electromagnetic Torque

The electromagnetic torque from interactions of the RWM mode fields with the resistive

wall is treated rigorously and can be directly measured experimentally [74, 75]. The non-

axisymmetric part of ~B in Eq. 6.2 will be considered and subsequently cycle-averaged.

Cycle-averaging eliminates cross terms like ~BextB̃mode and these will be considered sepa-
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rately in Sec. 6.2.2. The integral to be evaluated is thus:

ΓEM =
r2
aL

µ0

∫ 2π

0

〈
B̃mode,θB̃mode,r

〉
dθ (6.4)

where 〈· · · 〉 denotes a cycle-average. Note that integration in θ would drop terms that

scale like ~B0
~Bext or ~B0B̃mode. To compute Eq. 6.4, Laplace’s equation in the long-cylinder

approximation is solved, showing that the magnetic field in the vacuum region between

the plasma and the wall must take the form:

Br(r, θ) = <
[
(Aj − Akr−2)e−iθ

]

Bθ(r, θ) = <
[
(−i(Aj + Akr

−2))e−iθ
]

(6.5)

where Aj, Ak are complex coefficients. Computing Eq. 6.4 with this field structure yields:

ΓEM =
r2
aπL

µ0

=
[(
Aj − Akr−2

a

) (
A∗j + A∗kr

−2
a

)]
(6.6)

Note that there can be no torque unless there both Aj and Ak are non-zero, and there

must be a phase shift between them. The phase shift between Br and Bθ at the wall must

thus differ from π/2, which is accomplished by eddy currents induced in the wall when

ω 6= 0. Note that for this reason terms arising from non-axisymmetric static fields like

~Bext
~Bext in Eq. 6.2 yield no net torque. To evaluate Eq. 6.6, the coefficients Aj, Ak must

be determined from knowledge of the geometry of the experiment. A matching problem

is carried out, where the fields in regions inside (I), in between (II), and outside (III) the
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inner and outer wall are solved. From Eq. 6.5, these field structures are:

I : Br(r, θ) = <
[
(A0 − b̃r−2)e−iθ

]

II : Br(r, θ) = <
[
(A1 − A2r

−2)e−iθ
]

III : Br(r, θ) = <
[
(−A3)r−2e−iθ

]

where the Bθ component can be obtained from Eq. 6.5 for each region. An are complex

coefficients and a fluctuating mode source b̃ ≡ B̃moder
2 [T m2] is the non-homogeneous

part of the equation. Matching across the thin walls at ra and rb is accomplished using the

well known thin-wall jump conditions obtained by integration of the induction equation

across the wall at rw, derived in Section 5.2.2.

Br|r=r
+
w

r=r−w
= 0

Bθ|r=r
+
w

r=r−w
= −ΩwτwBr

As rw/δw ≈ 100 for both walls, the thin-wall approximation is valid for a wide range of

ω in the experiment. Applying these conditions at ra and rb a matrix equation is formed

for the unknown coefficients:




r2
a −r2

a 1 0

−r2
a (1 + iRa)r

2
a (1− iRa) 0

0 r2
b −1 1

0 r2
b 1 (iRb − 1)







A0

A1

A2

A3




=




b̃

b̃

0

0




where Ra ≡ Ωaτa, and Rb ≡ Ωbτb. Inverting this matrix yields a unique solution for A0,

which upon substitution of {A0,b̃} for {Aj,Ak} in Eq. 6.6 yields ΓEM for the differentially
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Figure 6.1: (a) Wall-induced electromagnetic torque (ΓEM) plotted vs. plasma rotation
normalized to the wall time (ωτb) for a variety of inter-wall spacings for equal τw walls
(τa = τb). (b) Modifications to ΓEM for co- and counter-rotation for a variety wall speeds
(Rm) utilizing experimental values for τa, τb = 2τa, ra, and rb = 1.2ra. R̂m is set by the
direction of the natural frequency (Ω0).

rotating two-wall system:

ΓEM = −4

(
b̃2πL

r2
aµ0

)
RaR

2
bα

2 + 4 (Ra +Rb(α + 1))

(4 +RaRbα)2 + 4(Ra +Rb)2
(6.7)

which was first given in Eq. 6.3. The coefficient AEM is thus identified to be AEM ≡

4
(
b̃2πL
r2
aµ0

)
and is O(10−2) [N m] in the experiment. Eq. 6.7 is able to capture any com-

bination of mode, inner wall, and outer wall rotation by suitable selection of Ωa and

Ωb.

Properties of Two-Wall Electromagnetic Torque

The general double-wall torque of Eq. 6.7 can be easily transformed to a single-wall torque

by letting Rb 7→ 0. In this limit, Eq. 6.7 becomes:

ΓEM = −
(
b̃2πL

r2
aµ0

)
ωτ

1 + (ωτ
2

)2
(6.8)
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which is a well known relation derived elsewhere [22, 23, 76, 74]. The change in ΓEM as

the gap between walls (α in Eq. 6.7) is increased is shown in Fig. 6.1a, with τa = τb for

simplicity (experimentally, τb = 2τa). For wall spacings beyond rb = 2.0ra, little change is

seen in ΓEM , indicating the weak coupling limit has been reached. It is found that for the

wall spacing corresponding to the experiment (rb = 1.2ra), the single-wall model is a good

approximation at low frequencies but becomes inaccurate at higher frequencies. This can

be explained by noting that as ωτb � 1, only the inner wall participates as little flux pen-

etrates to the outer wall, so ΓEM ∝ (ωτa)
−1. In general this is larger than the zero-gap

limit where both walls participate, yielding a larger τ and smaller ΓEM . Generally, the

ith element (with wall time τi) of multi-conductor systems can significantly increase ΓEM

in a local region around ωτi ≈ 1, for example with discrete tiles lining a vacuum vessel [75].

The experimentally relevant effect of outer wall rotation on ΓEM is explored by setting

Ωa = ω and Ωb = ω − Ωw. The result is shown in Fig. 6.1b, where now Rm ≡ Ωwτb.

While rotation of the single-wall model would rigidly Doppler-shift the curves of Fig.

6.1b, differential rotation is found to both Doppler-shift the curves and asymmetrically

alter their shape. Co-rotation (Ω̂w = ω̂) yields a larger peak in ΓEM at the Doppler-

shifted frequency. Conversely, counter-rotation (Ω̂w = −ω̂) weakens the peak in ΓEM ,

until eventually no non-monotonic behavior is seen. As Rm 7→ ∞, the shielding effect

becomes dominant and ΓEM is reduced for all frequencies, with only the static inner wall

participating weakly. The consequences of differential wall rotation on mode-locking will

be discussed in Section 6.2.5.

6.2.2 Derivation of Error Field Torque

Derivation of the torque due to the static error field (Γext) is similar to that of the mode-

wall electromagnetic torque, where now terms that scale like ~BextB̃mode are considered in

Eq. 6.2. Using similar arguments as Eqs. 6.4-6.6, the torque from the static error field is
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found to be:

Γext =
2Lr2

a

µ0

∫ 2π

0

~Bext,θB̃mode,r exp (−iφ)dθ (6.9)

where no cycle-averaging is carried out. Due to the exp (−iφ) and exp (−iθ) dependence,

the cross-power is of a different form and the torque is found to be:

Γext = 2

(
Lπ

µ0

)
Bextb̃ sinφ (6.10)

here φ (≡
∫ t

0
ω(t′)dt′+φ0) is the complementary angle between ~Bext and B̃mode. Thus Aext

is identified in Eq. 6.3 as Aext ≡ 2Bextb̃
(
πL
µ0

)
and is O(10−3) [N m] in the experiment. A

similar term is present in other treatments [22, 76] though as no net torque is generated

by Γext over a rotation in φ it is often neglected.

As ~Bext is applied from external conductors, it is also a function of wall rotation.

Rotation shields ~Bext such that
∣∣∣ ~Bapplied

∣∣∣ /
∣∣∣ ~Bext

∣∣∣ =
√

1 +R2
m/4 as was derived in Section

5.3.1. However, this effect is purposely excluded from Eq. 6.10 as it is experimentally

compensated by applying more current to the error field coil as wall rotation increases.

6.2.3 Estimation of Phenomenological Restoring Torque

In order for the torque balance relation of Eq. 6.2 to capture mode-locking phenomenology

a restoring torque to an offset frequency is required. Most simply, this torque takes the

linear form of Γres = Ares(Ω0 − ω) (where Ω0 is an offset rotation) though higher order

dependencies on ω could also yield bifurcations. In this Section, it is shown that Γres could

arise from electromagnetic torques forcing the plasma to its ‘natural’ ExB frequency, ΩExB.

The origin of this flow was discussed in Section 2.4.4. This flow profile is well described

by the rigid-rotor approximation within the core, though this approximation becomes less

accurate at the edge. The rigid-rotor approximation, however, is not able to capture the
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effects of the axial shear present in the device. To estimate the restoring torque, the plasma

rotation ω is allowed to deviate by δω from ΩExB, such that ω ≡ ΩExB +δω. Upon insertion

of Vθ = rω into the radial resistive Ohm’s law, Er + VθBz = η⊥Jr (where η⊥ is the cross-

field resistivity and Vz = 0), Er cancels rΩExB and it is found that Jr = rBz
η⊥

(ω − ΩExB),

where Jr is axisymmetric. Note in the open-ended system this does not require charge

build up. Taking only the axisymmetric contribution to Eq. 6.2:

Γres =ẑ ·
∫

V
r ×

(
~J0 × ~B0

)
dV

=− L
∫ 2π

0

dθ

∫ rp

0

r2JrBzdr

=
π

2

LB2
zr

4
p

η⊥
(ΩExB − ω) (6.11)

where rp, L is the plasma radius and length, Bz is the (constant) guide field and Br = 0.

From Eq. 6.11 Ares ≡ π
2

LB2
zr

4
p

η⊥
and Ω0 ≡ ΩExB are identified. For experimental parameters,

Ares ≈ O(10−5) [N m s/rad], and Ω0 ≈ O(104) [rad/s]. In Section 6.5 it will be shown

that this estimate is within an order of magnitude of experimental measurements, which

is encouraging considering the rudimentary arguments used to arrive at Eq. 6.11. Note

that more complete versions of Ohm’s law could be used with a suitable redefinition of

δω and ΩExB and thus Ares and Ω0.

6.2.4 Wall-Locking: Bifurcations in Torque Balance

Solutions of Eq. 6.3 are explored first with Rm = 0 and Γext = 0 for simplicity, with

results similar to earlier treatments despite the inclusion of a second wall [21, 22, 23, 76].

Fig. 6.2a-d illustrates the various regimes of Eq. 6.3 possible when scanning Ω0 while

holding AEM and Aext fixed. As will be discussed in Section 6.3, this is the experimentally

relevant treatment. For large Ω0, shown in Fig. 6.2a, there is only one root at ω ≈ Ω0

which is dynamically stable and is termed the fast branch. As Ω0 is decreased, as in
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Figure 6.2: (a)-(d) Net electromagnetic torque (Γ) as a function of plasma rotation (ω)
decomposed into electromagnetic (ΓEM) and restoring (Γres) contributions for various val-
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of Eq. 6.3) while varying Ω0, illustrating the locking and unlocking bifurcation points.
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Fig. 6.2b, 3 roots are found - the fast branch, a new stable slow branch, and an unstable

branch. Lowering Ω0 further the locking bifurcation point is reached, shown in Fig. 6.2c,

where the fast and unstable branches merge. Below this critical value of Ω0, only the

slow branch remains, as shown in Fig. 6.2d. Figure 6.2e summarizes the solutions of Eq.

6.3. Locking bifurcations thus occur when Ω0 is lowered past the bifurcation point and

the mode transitions discontinuously from ω ≈ ωlock 7→ 0 on an inertial time-scale, which

is sub-ms for the experiment. Another possible bifurcation is mode unlocking, in which

raising Ω0 past the unlocking threshold transitions the mode from the slow to fast branch.

As expected, hysteresis is present.

The effect of Γext on the picture of Fig. 6.2 is only important near the bifurcation

point as over a cycle there is no net torque and the roots of Eq. 6.3 are not modified.

Within each cycle, Ω0 effectively oscillates at ≈ ω such that Ω0(t) = Ω0 + Ω̃0 sinφ, where

Ω̃0 ≡ Aext/Ares, as shown in Fig. 6.2e. Near the bifurcation, this excursion in Ω0 can

induce a bifurcation at Ω0 = Ω0,lock + Ω̃0, which would be observed as a lock at higher

frequency than predicted in the absence of an error field. In Section 6.3 and 6.4 it will be

shown that this correction is necessary to interpret the observed data.

6.2.5 Bifurcations with Differential Rotation

The bifurcations of Eq. 6.3 are now explored with the inclusion of differential wall rota-

tion. Figure 6.3a illustrates the modification of the roots of Eq. 6.3 by wall rotation. The

fast branch is largely unaffected by rotation, while the slow branch is shifted to ω ≈ Ωw/2.

The unstable branch, and thus the bifurcations, are strongly affected by rotation as sum-

marized in Fig. 6.3b. The locking bifurcation at ωlock is monotonically Doppler shifted

by rotation, while the natural frequency required to lock the mode (Ω0,lock) is insensitive

to wall rotation. The unlocking bifurcation at ωunlock is also Doppler shifted, though a

very dramatic effect on Ω0,unlock is found. For co-rotation (Rm > 0), Ω0,unlock is found
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Figure 6.3: (a) Bifurcation diagram illustrating torque balance equilibrium points (so-
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to increase, thus requiring more torque to unlock a locked mode, until at fast rotation

shielding weakens this effect. In contrast, counter-rotation (Rm < 0) dramatically de-

creases Ω0,unlock until both bifurcations are completely lost at Rm = Rm,nobif. Thus, for

fast counter-rotation mode-locking is not predicted to occur and a mode could transition

unimpeded from slow to fast rotation. Wall rotation above Rm,nobif has thus removed the

ability of the mode to lock to any wall.

The locking asymmetry in Rm reverses as Ω0 7→ −Ω0, justifying the definition of co-

and counter-rotation by Ω0. Were Ω0 = 0, there would be no asymmetry, though the only

solution to Eq. 6.3 would be the locked branch at ω ≈ Ωw/2, precluding bifurcations.

Lastly, as the rotating wall is a realization of a perfect active control system with a single

value of complex gain [16], active control of MHD modes would alter the torque balance in

an equivalent manner. Thus, in addition to directly reducing the mode amplitude, active

control may also stabilize modes by altering their unlocking bifurcations. This topic is

treated separately in Appendix D.
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6.3 Static Wall Mode-Locking

The model developed in Section 6.2 will be shown to capture the effects of both m = 0

and m = 1 error fields with the rotating wall left stationary for simplicity. All static error

fields are applied as part of the vacuum field configuration well prior to plasma formation

and flux-loop integration and thus are not directly detected.

6.3.1 Slowing of Plasma Rotation by Guide Field Ripple

The application of axially localized, steady-state m = 0 fields (guide field ripple, B̃z) is

found to have a strong effect on the observed mode frequency ω. This is shown in Fig.

6.4a, where other plasma parameters are held constant. At low B̃z the mode is always

in the fast branch and Ω0 ≈ ω. As a characteristic fast slow-down followed by modest

increase in ω is typical of all discharges in the device, as shown in Fig. 6.4b, Ω0(t) will be

fit to the following analytic form:

Ω0(t) = a1 + a2

(
1− exp

(
− t

a3

))
+ a4 exp

(
t

a5

)

where an are positive definite coefficients. Specifically, an ≈ [1, 2, 2.5, .2, .01, 2.5] [kHz,

kHz, ms, kHz, ms] respectively is found to well match the data for the discharges of this

study. The physics behind the evolution of Ω0(t) is highly complex, as it involves Jz

profile evolution, Te evolution, and possible neutral pile-up effects. Nonetheless, Ω0(t)

is an input to the model and its self-consistent evolution is beyond the scope of this

work. Measurements of Aext and AEM (not shown) are found to be remarkably constant

in time for these discharges, indicating that the rotating RWM amplitude (B̃mode) is

constant and stabilized by plasma rotation. As the flux-loops are located outside the

static wall, all amplitude variations in Fig. 6.4a are due to the shielding effect of the

wall on the measurement of B̃mode. The interpretation of field ripple variations in terms
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Figure 6.4: (a) Time-trace of radial magnetic field (Br,m=1) as guide field ripple (B̃z)
is increased. (b) Measurements of mode frequency (ω) for the discharges of (a). For
Figs. 6.4-6.10, Ω0(t) is fit (according to Eqs. 6.3, 6.12) such that ω(t) matches the data,
holding other parameters in Eq. 6.3 constant. (c) Bifurcation diagram (roots of Eq. 6.3)
calculated using data from the fits of (b). (d)-(e) The calculated alteration of the guide
field by the B̃z coil is shown, where panel (d) is for B̃z = 5 G while panel (e) is for B̃z = 40
G. The red, black outlines in (d)-(e) indicate the position of the segmented anode and
plasma guns respectively. t = 0 is when the bias voltage to drive Ip is applied.
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of the bifurcation picture of Section 6.2.4 is shown in Fig. 6.4c for constant Ares and

measured Aext, AEM . Increasing B̃z causes Ω0 to plunge further towards the bifurcation

point as a function of time. While the largest ripple case did not lock, the very low ω

and continually slowing time-dependence indicate it neared the locking threshold. Figure

6.4d-e illustrates the modification of the vacuum fieldlines by B̃z. While the ripple coils

are axially localized, they have a global effect on the mode frequency. It is speculated

that B̃z is hollowing the Jz(r) profile, whose radial gradient is thought to set Er and thus

Ω0, as discussed in Section 2.4.4.

6.3.2 Mode-Locking by Vertical Error Fields

Increasing the static, vertical (m = 1, kz = 0) error field (≡ ~Bext) is found to lock the

RWM at progressively higher frequencies, giving rise to three distinct regimes as shown

in Fig. 6.5. First, at low ~Bext, the RWM does not lock for the duration of the discharge,

and is termed a rotating RWM. At intermediate ~Bext, the RWM initially rotates and locks

during the discharge. As indicated in Fig. 6.5b, for the Bext = 2 (3) G case, the mode

frequency abruptly jumps to zero at t ≈ 2 (5) ms. This is termed a locked RWM. For large

~Bext no oscillations are seen and the mode is termed born-locked. Increasing ~Bext both

increases Beq and modifies ωlock, as shown in Fig. 6.5b. This illustrates that the error

field is critical in determining the RWM regime present in the experiment. Furthermore,

as was discussed in Chapter 5, the error field is also dependent on Rm. The implications

of this additional interaction will be deferred to Chapter 7.

Using the model of Eq. 6.3 with measurements of the ωlock, Aext and AEM as inputs,

curves of the form of Fig. 6.5c are generated. Ω0 decreases throughout the discharge

until the modified locking condition Ω0 = Ω0,lock + Aext/Ares is reached. An intermediate

amount of B̃z is also applied to bring Ω0 closer to the locking threshold, as suggested

by Fig. 6.4. At fast ω, ~Bext is observed to have no effect whatsoever on the ω(t) trace
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Figure 6.5: (a) Time-traces of radial magnetic field (Br,m=1) as m = 1 error field (Bext) is
increased, yielding mode locking. (b) Mode rotation (ω) and resultant fits to the model
of Eqs. 6.3, 6.12. (c) Bifurcation diagrams (solutions of Eq. 6.3) using the fit parameters
of (b). (d) Expected locking frequencies (ωlock) as Bext is increased and comparison to
data. Arrows in (d) indicate that no locking bifurcation was observed, thus ωlock must

be in the direction shown. Like B̃z, ~Bext is applied prior to plasma formation and flux-
loop integration and thus is not directly measured. However, ~Bext forces the resulting
equilibrium to be centered off-axis, thus causing an m = 1 component to the equilibrium
field (≡ Beq) that is detected.
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Figure 6.6: (a) Radial magnetic field (Br,m=1) time-traces for two sequential discharges.
(b) Mode rotation (ω) and fits to Eqs. 6.3, 6.12 for the discharges in (a). (c) Bifurcation
diagram (solutions of Eq. 6.3) using fits from (b).

(not shown), confirming that ~Bext does not modify the torque balance when integrated

over a cycle. The model of Section 6.2 predicts a roughly linear increase in ωlock with

increasing ~Bext if all other parameters are held constant. However, as shown in Fig. 6.5d,

the observed increase in ωlock is larger than the prediction. Allowing Ares to vary as ~Bext

is increased yields better agreement, indicating that ~Bext may be altering the torque bal-

ance beyond simply modifying the static error field torque. Nonetheless, the model of

Eq. 6.3 captures the trend in ωlock, and captures the discontinuous nature of the locking

transition. The fact that locking occurs at the same phase (φ) also reinforces the idea

that Γext is responsible for locking.

6.3.3 Near-Threshold Effects

Sensitivity to Input Conditions

The sensitivity of the locking bifurcation to input conditions is shown in Fig. 6.6, which

compares two successive discharges where no change was made to the experimental control



137

0 5 15
0

2

4

6

t (ms)

B
r,
m
=
1(
G
)

3.5 4 4.5 5 5.5 6 6.5 7 7.5
−0.5

0

0.5

 

 

Data

sin (ω(t)t)
sin ( ω t)

B
r,
m
=
1(
G
)

a)

b)

10

t (ms)

∼
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t ≈ 7 ms) after a longer final oscillation. (b) Enlargement of this final oscillation, with
fits to a single frequency model (sin (ωt)) and one in which ω(t) = 〈ω〉+ ω̃ sin 〈ω〉 t.

parameters. Very different outcomes were obtained as the second discharge locked while

the first did not, as would be expected of the behavior of Eq. 6.3 near the locking

threshold. Holding Ω0(t), AEM , Aext constant and allowing Ares to vary by 8% is sufficient

to differentiate between a discharge that is predicted to lock and one that is not, further

reinforced by the small difference in the solutions to Eq. 6.3 shown in Fig. 6.6c. Variations

of Ares at this level are thus thought to define the level of repeatability attainable in the

experiment.

Non-uniform Rotation

As discussed in Section 6.2.4, the effect of Γext is to oscillate the effective Ω0 such that

Ω0(t) = Ω0 + Aext/Ares sinφ. Letting φ ≡
∫ t

0
ω(t)dt ≈ 〈ω〉 t shows that this should in

principle result in an oscillation of ω at ≈ 〈ω〉 as well, such that ω(t) ≈ 〈ω〉+ ω̃ sin 〈ω〉 t,

where ω̃ depends on the nature of the other torques in the system. At low ω the deviation
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Figure 6.8: (a) Time-trace of radial magnetic field (Br,m=1) for a discharge illustrating
mode-unlocking. (b) Mode rotation (ω) with fits to Eqs. 6.3, 6.12 for the same discharge.
(c) Bifurcation diagram (solutions of Eq. 6.3) using fits from (b) illustrating mode-locking
and mode-unlocking bifurcations at constant Ares, Aext and AEM .

from 〈ω〉 throughout a cycle can be observed in the experiment. Figure 6.7 illustrates

a sample discharge where a long oscillation prior to locking is observed. Removing the

approximate error field by a linear fit isolates the oscillation. It is clear that the oscillation

is inconsistent with a single, constant 〈ω〉. Introducing ω̃ into the form of ω(t) yields much

better agreement, with a curve characteristic of nested sinusoids observed. The best fit

is found for ω̃ = 0.7 〈ω〉, which supports the significant role of Γext in the observed mode-

locking. The exact form of the curve also depends sensitively on the initial conditions (ω0

and φ0), with different shapes seen in different discharges.

Hysteresis in Mode-Unlocking

The model of Section 6.2 also predicts a second bifurcation when a locked mode’s natural

frequency (Ω0) exceeds a critical value (Ω0,unlock), thus allowing the mode to discontinu-

ously unlock. The discharge shown in Fig. 6.8 exhibits mode-locking occurring at t ≈ 5

ms followed by mode-unlocking at t ≈ 10 ms. The frequency immediately after the
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mode-unlocking is clearly larger than that immediately before the lock, thus illustrating

hysteresis. Figure 6.8c illustrates the discharge evolution in terms of the bifurcation dia-

gram of Section 6.2.4, showing both the locking and unlocking transitions. For simplicity,

this is done assuming constant Ares, Aext and AEM before and after locking, which may

account for the discrepancy in the predicted frequency after mode-unlocking. It should be

noted that mode-unlocking is a rare phenomenon in the experiment, with locked modes

almost always remaining locked throughout the discharge. This is thought to be because

Ω0 does not normally reach a sufficiently large value at the end of the discharge to un-

lock the mode. As discussed, the self-consistent evolution of Ω0 is complex and not well

understood.

6.4 Mode-Locking with Differential Wall Rotation

Mode-locking in discharges with differential wall rotation are compared to the predic-

tions of Section 6.2.5, with wall rotation found to affect mode-locking asymmetrically. As

shown in Fig. 6.3, mode-locking is expected to occur at higher frequency for co-rotation

and lower frequency for counter-rotation. For all discharges examined in this Section the

error field ( ~Bext) is held approximately constant by applying more error field current as

wall rotation is increased to overcome the natural shielding effect of the rotating wall.

The co-rotation case is shown in Fig. 6.9, with locking observed at higher ω as wall

rotation is increased. Figure 6.9c illustrates the solutions to Eq. 6.3 with increasing wall

rotation. To better match the data, Ares has been allowed to vary, though Ω0(t) has been

held nearly constant. As shown in Fig. 6.9d, the observed increases in ωlock are greater

than that expected by the constant Ares model, indicating that wall rotation may be af-

fecting other parameters in the simple model of Eq. 6.3, though the data is contained

within a fairly narrow band of Ares.
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Figure 6.9: (a) Radial magnetic field (Br,m=1) traces illustrating mode-locking at higher
frequency due to wall co-rotation (Rm > 0). (b) Mode rotation (ω) traces and correspond-
ing fits to Eqs. 6.3, 6.12. (c) Bifurcation diagram (solutions of Eq. 6.3) for fit parameters
from (b). (d) Comparison of theoretical and experimental locking bifurcation frequency
(ωlock) as Rm is varied for a range of values of Ares.
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Ip = 5.3 kA

Figure 6.10: (a) Radial magnetic field (Br,m=1) traces illustrating mode-locking at lower
frequency due to wall counter-rotation (Rm < 0). (b) Mode rotation (ω) traces and
corresponding fits to Eqs. 6.3, 6.12. (c) Bifurcation diagram (solutions of Eq. 6.3) for fit
parameters from (b). (d) Comparison of theoretical and experimental locking bifurcation
frequency (ωlock) as Rm is varied for a range of Ares. As a lock is only observed for Rm = 0,
only the upper bound of ωlock is known.
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Inhibited locking by counter-rotation is shown in Fig. 6.10. For only these discharges,

Ip has been lowered from 6.0 to 5.3 kA in order to alter ωlock and lock at Rm = 0 with low

~Bext. Note the modification of ωlock as plasma parameters are varied is beyond the scope of

this study. While at early time Ω0(t) is constant between discharges, theRm = 0 case slows

and locks while the Rm < 0 cases continue unlocked throughout the discharge. Figure

6.10c shows the modifications to the solutions of Eq. 6.3 for experimental parameters,

and Fig. 6.10d summarizes the results by noting the expected change in ωlock as Rm is

varied.

6.5 Discussion

Several points are raised by the functional equivalence of Eq. 6.3 to the established torque

balance models [21, 22, 23, 24, 20]. These models are fundamentally layer theories, with

ideal MHD violated either at a rational surface or in a thin inertial layer. Some form

of dissipation, or violation of ideal MHD, is necessary for the electromagnetic torque to

exist [22], as in ideal MHD ∇ · ¯̄T = ∇P which vanishes over surface integration. In this

model, the two main sources of dissipation are resistivity and viscosity. Resistivity in

the wall is explicitly used in the calculation of ΓEM in Eq. 6.7, while resistivity in the

plasma is invoked to approximate Γres in Eq. 6.11. Though viscosity does not explicitly

appear in this study, the use of the rigid-rotor approximation implies it is the dominant

term in setting the rotation profile. The flow profiles of Section 2.4.4 support this in the

core of the device, though at the edge this is less clear. It is thus not surprising that

electromagnetic body torques are present in the experiment despite their absence in ideal

MHD.

The role of the error field ( ~Bext) in the torque balance model is contained entirely

in the Γext term of Eq. 6.3 and ~Bext is shown to exert no net torque over a cycle in



143

Description 〈Ares〉∗106 〈AEM〉∗102 〈Aext〉∗103

m = 0 fields (Fig. 6.4) 0.4± 0.2 0.5± 0.2 0.2± 0.1
m = 1 fields (Fig. 6.5) 1.6± 0.7 1.9± 0.7 1− 4

Sensitivity (Fig. 6.6) 0.5± 0.1 1.0± 0.3 1.0± 0.3
Unlocking (Fig. 6.8) 1.1± 0.5 2.5± 0.5 0.7± 0.2

Co-ω (Fig. 6.9) 0.9± 0.5 0.6± 0.2 0.7± 0.2
Counter-ω (Fig. 6.10) 0.3± 0.1 1.3± 0.5 1.4± 0.4

Table 6.1: Measured values of AEM , Aext, and calculated values of Ares from the discharges
of this study. Errors are estimated from the deviations between and within discharges.

φ. In the long-cylinder model, the error field is resonant with the mode as kz = 0 for

both. Experimentally, however, the cylinder is finite and bounded by highly conducting

electrodes, thus requiring at least two kz 6= 0 for the RWM, and more kz in the presence

of magnetic shear [77]. Thus, the error field is not obviously resonant in the experiment.

Nonetheless, ~Bext is observed to strongly affect mode-locking phenomenology and alter

the locking frequency ωlock as discussed in Section 6.3.2. It is speculated that either the

resonance condition is relaxed by the strong dissipation everywhere in the plasma, or that

some kz are sufficiently small that they are effectively resonant with ~Bext. The relation-

ship between B̃mode and ~Bext has also been neglected in this model. This in contrast to

the treatment of tearing modes, where ~Bext is responsible for driven reconnection which

introduces B̃mode. However, for the experimental geometry it is not evident that B̃mode

would be affected by ~Bext, thus justifying their independence in the model.

Each observation of mode-locking in this study has yielded a measurement of Ares.

An equation to solve for the locking bifurcation point [ωlock,Ω0,lock] is readily obtained as

bifurcation occurs where the discriminant of Eq. 6.3, written as a polynomial in ω, van-

ishes. In the aforementioned discharges ΓEM ,Γext, and ωlock are experimentally measured

by the flux-loop array, giving a unique prediction for Ares. For the discharges of this study,

measured values of AEM , Aext and calculated values of Ares are shown in Table 6.1. De-

spite the wide range of discharges used in each comparison, Ares ≈ O(10−6) for all cases.
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This is smaller than the O(10−5) estimate of Section 6.2.3. This level of disagreement is

acceptable as several approximations were used to arrive at Eq. 6.11, specifically the sim-

plification of the rotation profile of Section 2.4.4 to simple rigid-rotation and the neglect of

other terms in the radial Ohm’s law. Furthermore, though a possible mechanism has been

identified for the restoring torque in Section 6.2.3, other mechanisms could be occurring

in conjunction. Torques from neutral collisions [69], direct losses [78], turbulent stresses

[79], or other anomalous torques can generally be lumped into the parametric form of

Ares(Ω0 − ω) as long as they are linear in ω, and thus they would alter the prediction of

Γres.

In this Chapter and the preceding one, the groundwork for studying the stabilization

of the RWM was laid. This Chapter illustrated the critical importance of the error field

in determining the RWM regime present in the device, for example as shown in Fig. 6.5.

Chapter 5, on the other hand, presented the tools necessary to understand and model

this error field. To study the interaction of the RWM with the rotating wall, locked or

born-locked RWMs must be used as otherwise ω � Ωw and in the plasma frame only

a small relative change in wall velocity is felt. Furthermore, the same RWM regime

must be maintained while Rm is varied, which in turn requires the error field to be held

constant. With both the mode-locking phenomenon and error field interactions relatively

well understood, attention can now be turned to the interaction of the locked and born-

locked RWMs with the rotating wall.
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Chapter 7

Stabilization of the RWM

Stabilization of the resistive wall mode (RWM) by high-speed differentially
rotating conducting walls is demonstrated in the experiment. To observe sta-
bilization, only locked RWMs must be considered. Wall rotation is found to
reduce the locked RWM growth rate, with both wall-locked and slowly rotat-
ing RWMs observed depending on the alignment of wall to plasma rotation.
Asymmetries in the error fields lead to RWM stabilization or destabilization
depending on the wall rotation direction. At high wall rotation rates, born-
locked RWM onset is found to occur at larger plasma currents, thus increasing
the RWM-stable operation window. This is found to be symmetric in wall ro-
tation direction.

The study of resistive wall mode (RWM) stability in a device with a rotating wall

constituted the original motivation for this work. As such, an introduction to this topic

has been provided in Chapter 1 and is not here repeated. In this Chapter experimental

data is presented that demonstrates the stabilizing effect of the rotating wall on the RWM.

The structure of this Chapter is as follows: Section 7.1 presents the theoretical model

used to interpret experimental observations. Section 7.2 presents the effect of the error

field on the locked RWM and associated asymmetry in wall rotation direction. Section

7.3 presents the stabilization of the locked RWM by wall rotation, and Section 7.4 shows

the extension of the RWM-stable operation window. Section 7.5 shows measured RWM

eigenfunctions and discussion is provided in Section 7.6.
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7.1 Theoretical Model

7.1.1 Plasma Dispersion Relation

To predict the stability of the RWM in the line-tied cylinder, a model for the plasma

column must be developed. The plasma model used is that of Hegna [13], which is briefly

summarized here. A screw-pinch equilibrium is first defined, in which the equilibrium

field, B0 = Bz0(r)ẑ +Bθ0(r)θ̂ is axisymmetric and invariant in ẑ. The plasma is taken to

be force free, such that ∇p0 = 0, and ∇×B0 = λ(r)
µ0
B0. The equilibrium plasma is taken

to have a radius rp, and the current profile is taken to be constant within this radius and

zero outside, such that:

λ(r) =




λ0 r < rp

0 r > rp





(7.1)

where J0(r) ≡ λ(r)
µ0
B0(r). For this simple equilibrium, the safety factor q(r) is constant

inside the plasma and is given by:

q(r) =





q0 r < rp

q0

(
r
rp

)2

r > rp





(7.2)

Where q0 = 4π
λ0L

, which is equivalent to the conventional definition of q(r) = rBz
RBθ

=

4π2r2Bz
µ0Ip(r)L

for the line-tied cylinder of length L. An eigenvalue approach is taken to solve

for the unstable modes of the system. Taking the time dependence of perturbations to

the equilibrium to be ∝ e−γt (where γ is complex, and γ < 0 is an unstable mode), the
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momentum and induction equations are linearized, yielding:

γ2ρ0ξ̃ = J̃ ×B0 +
λ

µ0

B0 × B̃ −∇p̃ (7.3)

B̃ = ∇× (ξ̃ ×B0) (7.4)

where ρ0 is the (constant) mass density, and the displacement vector ξ̃ is introduced.

Note the lack of bulk flow in Eq. 7.4. The differential equations of Eqs. 7.3-7.4 are made

algebraic by simplification of spatial gradients. However, due to the line-tied property of

the device Fourier decomposition is only allowed in θ. Hence, ξ̃ and B̃ can be written

ξ̃ = ξ̃(r, z)e−iθ and B̃ = B̃(r, z)e−iθ (only m = 1 kink modes are treated). In this simplified

equilibrium radial gradients in Eqs. 7.3-7.4 only exist at rp. Thus, the radial derivative

is substituted with algebraic ‘jump parameters,’ given as:

∆ξ =
1

ξ̃rp

d

dr
(rξ̃r)r=rp− (7.5)

∆− =
1

B̃rp

d

dr
(rB̃r)r=rp− (7.6)

∆+ =
1

B̃rp

d

dr
(rB̃r)r=rp+ (7.7)

Solutions of the resultant partial differential equation yield two allowable Fourier modes

in z (f(z) ∝ eikzz). Equations 7.3-7.4 thus result in a quadratic equation for kz, whose

solutions are:

kz,{1,2} = − Bθrp

rpBz0

+
λ0

2(1−∆+)
±
√

λ2
0

4(1−∆+)2
+

γ2

V 2
A(1−∆+)

(7.8)

where VA ≡ B2
z0/µ0ρ0 and ∆+ is the only remaining jump condition. The boundary condi-

tion of line-tying relates these two kz to one another, forming the dispersion relationship.

Line-tying requires that ξ̃r(z = 0) = ξ̃r(z = L) = 0. Thus, ξ̃ must be a linear combi-
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nation of two eikzz axial wavenumbers (or two propagating waves), whose relationship is

quantized:

kz1 − kz2 =
2nπ

L
(7.9)

With this quantization, the ideal MHD displacement vector takes the form:

ξ̃(r, θ, z) = f(r)eiθ+i(kz1+kz2)z/2 sin
(nπz
L

)
(7.10)

Which clearly satisfies the line-tying condition. Furthermore, the quantization yields a

dispersion relation for the RWM / XK in the device:

n =

√
4

(q(rp))2(1−∆+)2
+

4γ2τ 2
A

1−∆+

(7.11)

where τA ≡ L/2πVA. As the resistive instabilities of interest have γ ≈ τ−1
w , and τw � τA,

then γτA � 1. Thus, the second term in Eq. 7.11 is negligible and the dispersion relation

(for n = 1) is simply:

1−∆+ =
2

q(rp)
(7.12)

Thus the stability problem has been reduced to a determination of the jump parameter,

∆+. The full device geometry, including rotating walls, is now required.

7.1.2 Matching Problem for RWM Stability

The model geometry is that of plasma within rp, static vacuum vessel wall at ra, and

rotating wall at rb, as shown in Fig. 7.1. From the discussion of Section 5.2.1 The
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Figure 7.1: Geometry used for the RWM stability calculation. rp, ra, rb denote the plasma,
inner static wall, and outer rotating wall radii respectively. The regions between the walls
and plasma are taken to be at vacuum.

functional form of the vacuum fields in these regions is given by:

I : Br(r, θ, t) = <
[
(A0 − A1r

−2)e−iθ
]

II : Br(r, θ, t) = <
[
(A2 − A3r

−2)e−iθ
]

(7.13)

III : Br(r, θ, t) = <
[
(−A4r

−2)e−iθ
]

where An are complex coefficients and ∇ · ~B = 0 can be used to find Bθ. To treat the

walls the induction equation is integrated across each wall, whose thickness is taken to

be thin. As this has been presented in Section 5.2.2, it is not repeated. The matching

conditions at ra, rb are:

Br|r=r
+
w

r=r−w
= 0 (7.14)

Bθ|r=r
+
w

r=r−w
= −(iγ + Ωw)τwBr (7.15)
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where Ωw = 0 for rw = ra. The jump condition ∆+ can be defined in terms of the

coefficients of Eq. 7.13, yielding:

∆+ =
1

B̃rp

d

dr
(rB̃r)r=rp+

∆+

(
A0 − A1r

−2
p

)
= A0 + A1r

−2
p

r2
pδA0 = A1 (7.16)

where shorthand notation δ ≡ −
(

1−∆+

1+∆+

)
= 1

1−q(rp)
is introduced. Note that while An

are complex coefficients, ∆+ must be purely real. Eq. 7.16 constitutes another matching

condition, to be used in conjunction with Eqs. 7.14-7.15. The matrix equation for An

constructed from the matching conditions of Eqs. 7.14-7.16 is:




r2
pδ −1 0 0 0

1 −r−2
a −1 r−2

a 0

γτa + 1 r−2
a (1− γτa) −1 −r−2

a 0

0 0 r2
b −1 1

0 0 r2
b 1 (iΩw − γ)τb − 1







A0

A1

A2

A3

A4




= 0 (7.17)

As the matrix is sparse, it can be reduced to an equivalent coupled differential equation,

where the time dependence has been left in generalized form:




(
2r2
ar

2
pδ

r2
a−r2

pδ

) (
−2r2

a

r2
a−r2

pδ

)

r2
b (2− iRm) iRm




︸ ︷︷ ︸
¯̄M



A2

A3




︸ ︷︷ ︸
~A

+



−r2

aτa τa

−r2
bτb τb




︸ ︷︷ ︸
¯̄D

∂

∂t



A2

A3


 =




0

2Bextr
2
b




︸ ︷︷ ︸
~Bext

(7.18)

where A0 = A2r2
a−A3

r2
a−r2

pδ
, A1 = r2

pδ
(
A2r2

a−A3

r2
a−r2

pδ

)
, and A4 = Bextr

2
b−A2r

2
b +A3 can be used to find

the remaining coefficients. This equation can now be solved both for the normal modes
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(by setting ~Bext = 0) and for steady-state error field amplification (by setting ∂
∂t

= 0).

7.1.3 Plasma Normal Modes (Kink Instabilities)

Equation 7.18 shows that for a given ∆+ a unique set of eigenmodes is present, allowing a

prediction for the growth rate (<[γ] ≡ γr) and rotation frequency (=[γ] ≡ ω). To find the

eigenmodes of the system the forcing ( ~Bext) is set to zero and the characteristic equation

for γ is formed by solving det ( ¯̄M + γ ¯̄D) = 0 in Eq. 7.18, yielding:

0 =aγ2 + bγ + c (7.19)

a =τaτb(1− αb)(1− αpδ)

b =− 2[τaαb(1− αpδ) + τb(αb − αpδ)]− iτaRm(1− αb)(1− αpδ)

c =− 4αb + i2Rm(αb − αpδ)

whose solution is given by:

γ =
1

τb

(
αb

1− αb

)
+

1

τa

(
(αb − αpδ)

(1− αb)(1− αpδ)

)
+ i

Ωw

2
±
[

1

τ 2
a

(
(αb − αpδ)

(1− αb)(1− αpδ)

)2

− Ω2
w

4

+
1

τ 2
b

(
αb

1− αb

)2

+
2αb
τaτb

(
2− αb − αpδ

(1− αpδ)(1− αb)2

)
− i
(

Ωw

1− αb

)[
1

τa

αb − αpδ
(1− αpδ)

− αb
τb

]] 1
2

(7.20)
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decomposing into real and imaginary terms:

γr =
1

τb

(
αb

1− αb

)
+

1

τa

(
(αb − αpδ)

(1− αb)(1− αpδ)

)
±
(
η2
r + η2

i

) 1
4 cos

(
1

2
arctan

(
ηi
ηr

))

(7.21)

ω =
Ωw

2
±
(
η2
r + η2

i

) 1
4 sin

(
1

2
arctan

(
ηi
ηr

))
(7.22)

ηr ≡
1

τ 2
b

(
αb

1− αb

)2

+
1

τ 2
a

(
(αb − αpδ)

(1− αb)(1− αpδ)

)2

+
2αb
τaτb

(
2− αb − αpδ

(1− αpδ)(1− αb)2

)
− Ω2

w

4

ηi ≡−
(

Ωw

1− αb

)[
1

τa

αb − αpδ
(1− αpδ)

− αb
τb

]

where non-dimensional coupling terms αb ≡ r2
b

r2
a

and αp ≡ r2
p

r2
a

have been used. As Eq.

7.20 is lengthy, limiting cases are considered.

Single Wall Limit

The single wall limit (shown in Fig. 5.1a) is found by letting τa 7→ 0 in Eqs. 7.21-7.22.

There is now only one solution for γ, given by:

γ =

(
2

τb

)
1− q(rp)

1− αp − q(rp)
− iΩw (7.23)

where δ ≡ (1− q(rp))−1 has been used. The behavior of <[γ] ≡ γr as a function of q(rp)

is plotted in Fig. 7.2a. The instability threshold is at q(rp) = 1, matching the Kruskal-

Shafranov [2, 3] condition. The ideal-wall stability limit is also found (at q(rp) = 0.5 for

sample parameters) beyond which the neglect of the final term of Eq. 7.11 is invalid.

Wall rotation is shown to be ineffective at stabilizing the mode in the single wall case as

it does not modify γr in Eq. 7.23. Eigenfunctions at a few values of q(rp) are shown in

Fig. 7.2b-d. Unstable (q(rp) < 1) eigenfunctions are dipolar and inhibited from exiting

the wall. The marginally stable (q(rp) = 1) eigenfunction does not feel the wall at all,

and stable (q(rp) > 1) eigenfunctions have fieldlines which are inhibited from entering the
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Figure 7.2: (a) Time constants (eigenvalues) of the exponentially forced single-wall sys-
tem, with forcing specified in terms of the edge safety factor q(rp). Field structures
(eigenfunctions) at (b) q(rp) < 1, (c) q(rp) = 1, and (d) q(rp) > 1.
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Figure 7.3: Predictions for RWM stability in the Hegna model [13].

wall. All cases are consistent with the condition γτA � 1.

7.1.4 Kink Stabilization by Wall Rotation

The model is thus able to predict a complex eigenvalue γ for a given Rm, rp, q(rp). The

behavior of the full Eq. 7.22 is now discussed. As the model current profile is top-hat like,

a well-defined rp exists and stability is uniquely determined by q(rp). First, the dispersion

relation for a fixed equilibrium (single value of q(rp) and rp) is explored, as shown in Fig.
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7.3(a). A real frequency (rotation) is introduced to the RWM as Ωw increases. As Eq.

7.22 predicts two roots (two modes), though one is always stable. The unstable root, how-

ever, is shown to become more stable as Rm is increased. At a critical Rm (≡ Rm,crit ≈ 5

for this equilibrium) the growth rate becomes negative and the RWM is stabilized. This

is equivalent to Gimblett’s original prediction shown in Fig. 1.2.

Figure 7.3(b) illustrates the dependence of the unstable mode γr as q(rp) is varied

for a few Rm. For all Rm, decreasing q(rp) (increasing Ip or decreasing Bz) destabilizes

the RWM. However, as Rm is increased, the stability curves are shifted such that a lower

q(rp) can be achieved for the same level of stability (same γr). That is, more Ip or lower

Bz could be used in a device without becoming unstable to the RWM. Figure 7.3(b) also

illustrates that a critical q(rp) is required for RWM stabilization. For Rm = 0, this value

is q(rp) = 1, the Kruskal-Shafranov condition for the line-tied cylinder [2, 3].

This condition can be inverted, such that for a given q(rp) < 1 a critical rotation

(Rm,crit) is required to maintain stability to the RWM. This condition is given by:

R2
m,crit =

4αa(1− q(rp))
(αa − αb)(q(rp)− 1 + αb)

[
1 +

(
τb
τa

)
q(rp)− 1 + αb
q(rp)− 1 + αa

]2

(7.24)

where αa ≡ (rp/ra)
2, αb ≡ (rp/rb)

2. As q(rp) is decreased, faster rotation is required to

maintain stability. Furthermore, coupling to the rotating wall, and thus stabilization, is

found to be more effective as rp approaches ra (αa 7→ 1).

The full two-wall dispersion relation of Eq. 7.20 illustrates a scaling very reminiscent

of the two-wall vacuum field eigenmodes of Section 5.4.3. Once again, the introduction

of rotation tends to bring the two eigenmodes to a more common value, slowing the fast

root and speeding up the slow root. However, now γr = 0 lies between the two roots,

thus raising the slow root requires it to transition through the stability threshold. Thus,

stabilization of kink modes by wall rotation can also be thought of in terms of coupling the

stable and unstable eigenmodes of the two-wall system. This was the theoretical result
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was first conceptualized by Gimblett [9].

7.1.5 Error Field Amplification

With the linear stability solved, attention is now turned to the driven stable modes pre-

dicted by Eq. 7.18. Error field amplification (EFA, or also called resonant field ampli-

fication) is calculated by finding the steady-state (t 7→ ∞) solution of Eq. 7.18 while

allowing the forcing ~Bext to be finite. In the steady-state, ∂
∂t
7→ 0 and ~A is found by

simple inversion of Eq. 7.18, such that ~AEFA =
(

¯̄M−1
)
~Bext, yielding:

~AEFA =
2Bext

2− iRm

(
r2
p

r2
b

(
1

1−q(rp)

)
− 1
)




1

r2
p

1−q(rp)


 (7.25)

which gives the field structure in all regions after using the definitions for An given after

Eq. 7.18. To evaluate the magnitude of the EFA, the predicted total field ~BEFA|r=rm at

a measurement location rm (taken to be just outside rp in region I) is normalized to the
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applied error field amplitude (| ~Bext|). This yields:

|Br,EFA|
Bext

=

∣∣∣1− r2
p

r2
m

(
1

1−q(rp)

)∣∣∣
√

1 + R2
m

4

(
r2
p

r2
b

(
1

1−q(rp)

)
− 1
)2

(7.26)

As the fields are steady state, only the rotating wall interacts with the error field and

thus Eq. 7.26 has no dependence on the inner wall parameters. Figure 7.4 illustrates the

behavior of the EFA as Rm and q(rp) is varied. When Rm = 0, as q(rp) 7→ 1 (the stability

threshold) the EFA amplitude diverges. However, unbounded growth breaks the steady-

state assumption and thus the full treatment of Eq. 7.18 is required [80]. Nonetheless,

the EFA can be expected to approach large values in this regime.

Finite Rm modifies this picture. First, shielding of Bext occurs, such that in the high-

q(rp) (stable plasma) limit Eq. 7.26 is identically equal to the vacuum field result of Eq.

5.7. This has not been neglected as it was in the calculation of Γext in Section 6.2.2.

Second, the linear stability threshold is brought to lower q(rp) as Rm increases, thus fi-

nite EFA is present at lower q(rp) whereas otherwise instability would result. Note the

EFA is not calculated where the kink is unstable (γr < 0) as a steady state cannot be

reached. Third, and most importantly, the actual amplitude of the EFA is decreased.

This is thought to be because of a poorer overlap of the kink eigenmode to the applied

error field at large Rm. As Rm 7→ ∞, the EFA vanishes.

It should also be noted that another model has been developed to predict EFA [81,

82, 80] which predicts that the amplification factor scales as γvac

γkink
(Eqs. 16-18 in Ref.

[82]), where γkink would be the eigenvalue of the kink mode given by Eq. 7.20 and γvac

would be the vacuum field eigenvalue given by Eq. 5.15. While the EFA as derived

in Section 7.1.5 varies somewhat depending on which rm is chosen, both methods yield

broadly similar results for the impact of wall rotation on the EFA. In the model of Ref

[81], the reduction in amplification can be seen to be due to the imaginary parts of both
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γvac and γkink, present when Rm 6= 0. Inclusion of a finite imaginary component removes

the divergence at marginal stability (γrkink 7→ 0). Additionally, the study of Ref [80] is

distinct from that treated herein due to the presence of differential wall rotation (multiple

walls). Differential rotation precludes the use of Doppler shifts, and introduces non-linear

Ωw dependencies to both γvac and γkink.

7.2 Error Field Mitigation for Locked Discharges

As discussed in Chapters 5-6, the error field is of critical importance in the experiment.

However, it was not included in the linear theory of Section 7.1. Furthermore, the error

field cannot simply be minimized in the experiment, as that leads to rotating modes that

do not lock during the discharge, as suggested by Fig. 6.5. It is clear that some amount of

error field is necessary to lock the RWM. In turn, locked modes are necessary to observe
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stabilization, as otherwise ω � Ωw and the wall would change speeds only very slightly

in the plasma frame.

The experiment is further complicated by the fact that the error field is profoundly

affected by wall rotation, as was detailed in Chapter 5. Figure 7.5 illustrates the depen-

dence of the error field strength on the applied error field Bext and wall rotation Rm, after

a campaign of minimizing intrinsic error fields. This should be contrasted with Fig. 5.7,

where a combination of Beq and Bext yielded large asymmetries in Rm.

For the rest of this Chapter beyond this Section, the complicating effect of the error

field is minimized by performing discharges at constant effective error field while Rm is

increased. This is done by tracing a diagonal trajectory in Bext and Rm, corresponding

to curve (b) in Fig. 7.5. Larger error field currents (larger Bext) are applied at high Rm

to yield the same effective error field. In this way, the time-traces of discharges are nearly

identical for the first few ms, before the RWM amplitude becomes large.

Asymmetry in Wall Rotation due to Error Field Interactions

The importance of keeping the error field constant as Rm is increased is illustrated by

way of contrast with experiments where this was not done. Figure 7.6 illustrates three
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discharges where the current in the error field coil was held constant while Rm was in-

creased, corresponding to trajectory (a) in Fig. 7.5. Clearly, the zeroth order effect is

that the mode is allowed to remain unlocked for a longer duration as the error field has

been reduced. This figure should be contrasted with Fig. 6.5, where similar effects are

seen by directly reducing Bext.

Figure 7.7 illustrates the effect of changing Rm while holding Bext constant in the

presence of large error field asymmetries in Rm, as might be expected from Fig. 5.7.

For Rm = 3, a larger error field is found and RWM locking and destabilization happens

earlier. In contrast, Rm = −3 reduces the error field and again allows the mode to remain

unlocked for a longer duration. Note that the Rm = −3 illustrates more complex dynamics

in both amplitude and phase and is seen to never fully lock during the discharge. Again,

for both directions, the zeroth order effect of the rotating wall on the RWM is indirect.

The rotating wall modifies the error field, which in turn modifies the RWM dynamics. It

is for this reason that all subsequent results are obtained with the effective error field as

constant as possible.
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7.3 Locked Mode Stabilization by Wall Rotation

The stabilizing effect of wall rotation on the RWM is most clearly demonstrated for dis-

charges which lock during the discharge lifetime, shown in Fig. 7.8. Holding the error

field constant (as described in Section 7.2) in a regime where the RWM locks during the

discharge lifetime allows the stabilizing effect of the wall to be isolated. This corresponds

to trajectory (b) in Fig. 7.5. It is found that increasing |Rm| both reduces the growth

rate of Bmode from the Beq baseline and imparts rotation (ω) to the locked mode. Qual-

itatively, these results are in agreement with the theory of Section 7.1 as will be described.

It is important to note that the displayed error field traces (Beq in Fig. 7.8) are exper-

imentally obtained by minimizing B̃z such that the mode rotates very quickly (kHz scale,

irrespective of Bext) as suggested by Fig. 6.4. Bmode is thus shielded from the flux-loop

array by the conducting walls and only Beq is measured. This technique is imperfect, as

can be seen from both the slight deviation of Beq from the mean of Bmode +Beq from 0-4
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ms, as well as the difference between Beq from Rm = 0 to Rm = −5.

Hodograms (Fig. 7.8c) clearly illustrate the discontinuous behavior at the locking

bifurcation, which occurs just after the final circular motion. Progressively larger locked

mode real frequencies (ω) are also observed as Rm is increased. The locked mode rotation

is found to be roughly consistent with the theoretical prediction of ω ≈ Ωw/2 given in

Eq. 7.22, though measurements are complicated by the fact that ω is not constant during

the locked mode evolution. It is also clear that the low Rm locked mode is not exactly

at ω = 0, but that a small residual rotation is present. This will be shown to lead to an

observed asymmetry in Rm.

Asymmetry in Wall Rotation due to Residual Mode Rotation

The residual locked mode rotation (ω) is found to lead to a modest asymmetry in wall

rotation direction. Inspection of Fig. 6.5c illustrates that even in the Rm = 0 case a
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low level residual mode rotation remains whose direction is opposite to the initial plasma

ExB rotation. This requires an additional anomalous torque (Γanom) which does not van-

ish when ω = 0 and is oppositely directed to the ExB restoring torque (Γres in Chapter

6). This torque is not included in the analysis of Chapter 6. However, as the residual ω

(and thus Γanom) is very small, Γanom is thought to be unimportant in the mode locking

bifurcation itself thus the conclusions of Chapter 6 are still valid.

Figure 7.9 illustrates the consequences of Γanom once the mode is locked: wall rotation

with Ωw counter-aligned to Γanom decreases the residual rotation, yielding mode-locking

roughly to the static wall (vacuum vessel). Discharges with Ωw co-aligned to Γanom in-

creases the residual rotation, bringing ω closer to Ωw. To confirm that Γanom arises from

plasma phenomenon (as opposed to error field interactions), the residual rotation is exam-

ined upon reversal of Bz. This is found to reverse this asymmetry (shown in Fig. 7.9d),

thus confirming the importance of the relative rotation of the wall with respect to all

plasma drifts. This should be contrasted with Fig. 5.6, where Bz reversal was found to

not affect the error field asymmetry with Rm.

Despite the asymmetry in Rm, reductions in the growth rate and mode amplitude are

seen in both directions. The two traces are not identical however, though the level of

discrepancy is not large and thus no conclusions are drawn. The possibility of asymmetry

in Rm in RWM stabilization will be treated in Section 7.4 using born-locked modes.

7.4 Born-Locked Mode Stabilization by Wall Rota-

tion

Experiments utilizing born-locked modes allow the demonstration that |Rm| > 0 opera-

tion increases the window of RWM-stable operation, as shown in Fig. 7.10. Discharges

are carried out at constant Bz and Bext, such that RWM onset is found as Ip is increased
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(q(r) decreased). Shot-to-shot reproducibility is used to scan Ip as each data point in Fig.

7.10 is a separate discharge. Born-locked modes (largest amplitude region of Fig. 7.5) are

used to avoid confusion between locking thresholds and RWM onset conditions [26]. This

is especially important given that wall rotation also modestly alters the locking threshold

(ωlock), as discussed in Section 6.4.

Onset is determined by noting where Bmode +Beq diverges from the Beq baseline as Ip

is raised, as shown in Fig. 7.10a,b. As Bext is not directly measured and Beq arises from

plasma equilibrium currents, Beq is linear in Ip. A subtraction of a linear fit to Beq is

carried out to isolate the RWM signature, Bmode. Figure 7.10c illustrates Bmode amplitude,

with higher |Rm| operation yielding mode onset at lower q(r) as measured by the 5 cm

radius anode ring of the segmented anode. The resultant critical q for RWM onset (qcrit)

as |Rm| is increased is shown in Fig. 7.10d and compared to the theoretical prediction.

Specifically, the experimental qcrit is taken from the zero-crossing of the fits in Fig. 7.10c

with errors derived from the confidence intervals of this fit. Theoretical curves are directly

calculated from Eq. 7.24, taking rp = 6.5, 7.5 cm for the upper, lower curve respectively

and using the parameters of Table 5.1. Defining a single rp for the experimental plasma

is ambiguous and thus a source of uncertainty. Also note the model q profile is constant

for r < rp. The experimental qcrit is larger than the theoretical prediction for all Rm,

as will be discussed in Section 6.5. Offsetting the experimental data such that qcrit = 1

when Rm = 0, the change in qcrit as |Rm| increases (≡ ∆qcrit) is found to be in agreement

with theory. Similar agreement is found if the data is scaled rather than offset. It is also

found that the stabilizing effect is relatively modest until high Rm is achieved, consistent

with the quadratic scaling of Eq. 7.24. Furthermore, although q(5 cm) has decreased

by ≈ 25% (Ip(5 cm) increased by ≈ 25%), total current ∆Ip has increased by ≈ 35% as

shown in Fig. 7.10a. Larger Ip plasmas are thus less peaked and have a larger plasma

radius rp, providing a second-order stabilizing effect.
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Figure 7.11: Stabilization of the born-locked RWM with co-rotation.

Symmetry in Wall Rotation

Born-locked mode stabilization with wall rotation in the co-rotation direction (+Rm) is

explored and contrasted with counter-rotation. Using the same experimental procedure

as before, RWM onset with co-rotation is shown in Fig. 7.11. RWM Onset is once again

determined by noting where Bmode + Beq diverges from the Beq baseline as Ip is raised.

Subtracting Beq from the signals, the residual Bmode is found to appear at lower q(rp) as

Rm is increased. Figure 7.11d contrasts the experimental observation with the theoretical

prediction of Eq. 7.24. Once again, the onset is found to be above q(rp) = 1 at Rm = 0.

Scaling the data such that qcrit = 1 when Rm = 0, it is also once again found that the

scaled experimental data is somewhat below the theoretical prediction, though the large

error bars preclude definitive conclusions. Error bars are larger at high Rm due to the

availability of fewer points in the fits of Fig. 7.11c. The confidence intervals of these fits

are the stated error bars.
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A summary of born-locked mode onset for the range of Rm studied in this experiment

is shown in Fig. 7.12. Both directions are found to be stabilizing, and both directions

showed the onset of instability above q(rp) = 1. Thus, while asymmetries in Rm have

been found with error field interactions (Section 5.3.4) and mode-locking (Section 6.2.5),

no asymmetries in born-locked mode stabilization are found at the level of precision of the

experiment. As the error field has been held constant, the only likely remaining source of

asymmetry in this study is the plasma flow. Thus, as no asymmetry is found it can be

inferred that any residual plasma flow in the born-locked mode is unimportant.

7.5 Locked Mode Eigenfunction

Large locked modes in the experiment yield clear measurements of the eigenstructure

of the RWM. As all channels of the Br fluxloop array are digitized simultaneously, the

structure is also known as a function of time. Furthermore, using the theory of Section
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7.1, a prediction for the eigenmode structure is possible:

ξ̃(r, θ, z) = f(r)e
iθ+i(−

Bθrp
rpBz0

+
λ0

2(1−∆+)
)z

sin
(nπz
L

)
(7.27)

B̃ = ∇× (ξ̃ ×B0) (7.28)

Experimental RWM eigenfunctions (shown in Fig. 7.13a) are found to be anode localized

in contrast to theoretical predictions of Eq. 7.28 (shown in Fig. 7.13b). While the cause

of this cathode-anode asymmetry is not fully understood, it is possible that significant

axial flows (Vz) measured in the device (discussed in Section 2.4.4) are advecting the

RWM eigenfunction away from the device midplane. This effect has been predicted by

the theory of Ryutov which treated the plasma as a rigid, infinitely long conducting wire

[46]. However, as axial flow is not included in the theory of Hegna (Section 7.1), this effect

is not captured in Fig 7.13b. Also important to match theory to experiment would be

the proper treatment of the axial flows at the line-tied boundary. Some treatments [61]

allow this flow to be sinked at the boundary (presumably due to surface recombination)

while others enforce it to zero. Interestingly, these same studies have found that the

flow can be either stabilizing or destabilizing, depending on the relative strength of Vz

to VA. Furthermore, the azimuthal flow and flow shear, which is especially strong in

the cathode region (Z < 60 cm) as shown experimentally in Section 2.4.4, has not been

treated. This flow shear may be locally stabilizing the mode in the cathode region, thus

also contributing to the asymmetry. Note that structure in the cathode side of Fig. 7.13a

is without helicity and is dominated by ~Beq. Further measurements of the flow profile

in the locked mode and comparison with a computational stability calculation would be

required to elucidate the dynamics of the locked-mode eigenfunction. It should also be

noted that although detailed internal studies were not made of the eigenfunction, it shares

basic similarities with the structure of the mode leading to the helical equilibrium state
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Figure 7.14: Comparison of hydrogen and deuterium locked mode eigenfunctions

described in Chapter 3. However, while the eigenfunction is similar, the mode leading to

the helical equilibrium was not stabilized by increasing Bz, unlike the mode described in

this Chapter.

Role of Ion Mass

While the device cannot directly control the axial flow, different isotopes of hydrogen can

be used in the device to attempt to slow down the dynamical timescales. For example,

fuel gas is injected into the plasma guns at the local sound speed, which is naturally

a function of the ion (molecular) mass. Comparing hydrogen (H) and deuterium (D)

discharges it was found that hydrogen plasmas tended to exhibit faster unlocked mode

rotation (ω) and consequently were more difficult to lock. Not enough data was collected

to systematically compare this difference in all discharge scenarios, though it was found

that approximately an extra 10 G of B̃z was required to achieve the same rotation rates

in H as in D, using the notation of Section 6.3.1.
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Locked mode eigenfunctions of hydrogen (H), the nominal gas used throughout this

thesis, and deuterium (D) are shown in Fig. 7.14. Interestingly, the anode localization is

less pronounced in D plasmas than H plasmas, potentially supporting the notion that the

localization is related to the axial flow. Notwithstanding, further flow measurements and

comparison with computation are required to confidently understand this observation.

7.6 Discussion

Locked mode stabilization in the device has shown qualitative agreement with the the-

ory of Section 7.1, with wall rotation increasing the RWM stability window, decreasing

the mode growth rate, and imparting rotation to the RWM. Notwithstanding, several

discrepancies remain. Exponential growth is not observed, likely due to the inherent non-

linearities present in the mode-locking bifurcation. The neglected effect of plasma flow

is also thought to be the cause of the anode localization of the RWM eigenfunction, the

residual locked mode rotation, and the subsequent asymmetry in wall rotation direction

seen in the experiment.

The error field amplification calculation presented in Section 7.1.5 raises an interest-

ing question regarding the born-locked mode observations of Section 7.4. In fact, the

born-locked mode results could equally well be interpreted as a reduction in the error

field amplification due to wall rotation (compare Fig. 7.4 to Fig. 7.10c). It is likely be-

yond the reach of a short pulse device to definitively state whether or not the born-locked

mode observation represents a ‘true instability’ as opposed to an amplification of the er-

ror field. In the tokamak, these two effects were differentiated by pulsing the error field

on and off and noting whether or not the mode signature grew or decayed [83, 84, 85].

Nonetheless, for both phenomena the same underlying physics is at play - it is wall sta-

bilization that both reduces the error field amplification and extends the stability window.
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Further, although ∆qcrit is found to be in fairly good agreement, qcrit is measured to

be larger in experiment (q(5 cm)= 1.3) than in theory (q(rp) = 1.0). This disagreement is

most likely explained by non-ideal MHD effects neglected in the model used to derive Eq.

7.24. Here again the flow profile may be to blame if it alters the underling MHD stability

[61]. Also not included is the role of resistivity [86], and pressure [87]. Additionally, as

the experimental current profile does not resemble the top-hat model, a more accurate

treatment of the current profile and magnetic shear [77] is likely required to reach better

agreement. Any deviation from the line-tying boundary condition would also increase qcrit

[46].

Experimentally, the coarseness of the q(r) measurement also introduces uncertainty,

which is also related to the presence of significant magnetic shear in the device. Further-

more, the addition of guide field ripple (B̃z) discussed in Section 6.3 introduces significant

axial structure to the plasma column. Thus, the 1-D formulation of q(r) strictly speaking

no longer applies, and 2-D corrections calculated by integration of the full 2-D equilibrium

would be required to accurately determine the instability criteria. This problem would

likely be tractable only through computation.
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Chapter 8

Conclusion

This thesis is structured such that discussion of results is provided within each Chapter.

As such, only a summary view of the thesis is here provided, along with suggested avenues

of future work on the device. Also note that much of the content of this thesis has already

appeared in the peer-reviewed literature [88, 89, 90, 91, 92].

8.1 Summary of Thesis

This thesis has measured the magnetic structure of the Rotating Wall Machine plasma

and detailed the various means by which a rotating conducting wall interacts with the

plasma column and its MHD instabilities.

The design, manufacture, and implementation of a high-speed rotating wall was car-

ried out successfully. The rotating wall achieved speeds of ≈ 300 km/h, or Rm > 5, in a

safe, consistent, and routine manner. The entire device was also nursed through several

years of experimental campaigns and associated maintenance and upgrade duties.

Insertable probes (B-dot, Mach, Langmuir) were used to characterize the plasma of

the Rotating Wall Machine. This thesis detailed mostly B-dot measurements, which con-

firmed that the device plasma is exceedingly high β, and transitions from diamagnetic at
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low Ip to paramagnetic at high Ip. A boundary layer effect was discovered at the device

anode, inside of which MHD confinement is drastically lost leading to a likely radial out-

flow of particles from the column. At high Ip a helical equilibrium state was discovered

and reconstructed using correlation techniques.

Insertable probes were also used to illustrate that the device’s discretized flux ropes

merge to form an axisymmetric profile within a short spatial distance of the guns. Mea-

surements provided diffusion scale lengths and coefficients for comparison to theory,

though further work is necessary to isolate the physical mechanism allowing non-ambipolar

cross-field transport in the device.

The interaction of error fields with the rotating wall was shown to lead to asymmetries

in wall rotation. Analytic theory was used to obtain a complete picture of these interac-

tions and their asymmetries, illustrating that the total error field for a given wall rotation

is complex and can often overcome the natural shielding of the wall. This proved vital

to understand later measurements of the unstable plasma. Vertical field penetration was

understood using normal mode analysis, yielding intuitive and quantitative understanding

of why the vertical field penetration time decreases as wall rotation increases.

Understanding and subsequent reduction of the error field yielded the discovery of

MHD mode-locking in the device. Analytic theory was employed to develop a torque

balance model for this phenomenon including the effect of the error field, wall rotation

and plasma ExB rotation. This model proved successful in qualitatively explaining the

interaction of error fields and wall rotation with the rotating plasma, and predicted the

observed mode-locking bifurcations. Asymmetry in wall rotation was also found, with

only wall counter-rotation eliminating the mode-locking bifurcations.

Using locked and born-locked RWMs, the stabilizing effect of the rotating wall on the

RWM was experimentally demonstrated. The rotating wall was found to decrease the

locked mode growth rate and increase the stable operating window to higher Ip. It was
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also found that the RWM could be prevented from locking, as the rotating wall shielded

the error field necessary to lock the RWM. This effect could be asymmetric depending

on the error field structure, with one direction of wall rotation locking the RWM earlier

in time and the other direction inhibiting locking. The locked mode was also found to

have a low-level residual rotation at 0 Rm, which Doppler shifted the resultant locked

mode rotation at finite Rm. The extension of the RWM stability window was found to be

symmetric in Rm within the precision of the measurement.

To conclude, the varied role of the rotating wall on the RWM was captured by consid-

ering the error field interactions, the mode-locking bifurcations, and the dynamics of the

locked modes. This study provides a firm foundation for future studies in devices with

flowing liquid metal walls, where much of the same phenomenology should occur. This

study has also shown that the device is a model system for studying the interaction of

MHD modes with error fields, resistive walls, and plasma flows. These results present a

striking parallel to the development of RWM stability in the toroidal geometry, confirming

that common underlying physical mechanisms are at play.
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8.2 Implications for Future Experiments

This experiment has tested, for the first time, the effects of moving conductors on plasma

stability. Should future devices be constructed with rotating solid or flowing liquid metal

boundaries it is natural to ask what insights can be extrapolated from this work.

First and foremost, it has been shown that moving conductors modify the error field in

non-intuitive ways. If a device has been constructed with an error field correction system

designed for static wall operation, the requirements on control may be quite different from

the system with moving conductors. Said differently, the error field eigenmodes of the

static wall system are profoundly different from the eigenmodes of the moving wall sys-

tem, and may overlap less well with the field from a set of correction coils. Furthermore,

if the wall rotation speed is expected to vary throughout an experimental campaign, error

field correction must be re-evaluated at each value of speed. For this experiment, error

fields from misalignments could be canceled by currents in external (trim) coils. However,

upon rotation of the wall this cancellation no longer occurred and the error field quickly

rose. There is no reason to expect this behavior is not universal.

Beyond error fields, this work has shown that fast counter-rotation of a rotating bound-

ary can effectively inhibit mode-locking bifurcations. This is a favorable result for future

devices, as mode-locking is usually followed by a disruption and thus should be avoided.

Furthermore, the stabilizing effect of a rotating boundary has been demonstrated in ex-

periment. Thus, devices with flowing boundaries could be expected to operate closer to

or beyond existing stability boundaries due to the stabilizing effect of the flow.
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8.3 Future Work

While this thesis has elucidated many of the key effects of a moving boundary on the

MHD stability of the linear plasma column, much room for future work exists. Roughly

following the order of the thesis:

The Rotating Wall Machine is a flexible device which can robustly excite rotating

and locked RWMs. Future upgrades could include a further lengthening of the plasma

duration, such that a more complete steady state is reached on the time scale of RWM

dynamics (≈ 10τw). More importantly, the guns are known to produce cold and dense

plasmas, which consequently have an exceedingly low Lundquist number. If a new plasma

source were developed for the experiment (such as LaB6), perhaps hotter and more col-

lisionless plasmas would be generated. As it has been explained that the azimuthal flow

is a direct consequence of the large resistivity in the device, this would also likely reduce

the intrinsic ExB rotation present.

The device was also not designed with a serious campaign of error field reduction in

mind. While in this study meticulous alignment of various conductors minimized the

error field, a more concerted design-level effort could be undertaken. This would have

the benefit of removing the ‘intrinsic’ error field as an unknown quantity. Likely some

external error field would still be required, but at least it would be fully understood.

A fruitful area of further study involves a rigorous campaign of internal profile mea-

surements (using probes) on plasmas which go through the locking bifurcations described

in Chapter 6. Many of the approximations made in that analysis could be relaxed with

dedicated measurements, and comparison with fully non-linear computational codes such

as NIMROD, which has recently been extended to include resistive walls [93], may be

possible. This may form a useful benchmark for the numerical codes as mode-locking is

a fundamentally non-linear phenomena not before observed in such a simple configuration.

Also in the area of mode locking, an area of future study could involve the active con-
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trol of the plasma ExB flow either through a fast switching power supply controlling B̃z,

internal bias probes, or through the biasing of the plasma gun assemblies. Experiments

could then more deterministically approach the mode-locking bifurcation point and also

transition through to the mode-unlocking bifurcation if desired. The hysteresis could then

be measured and compared to the predictions of the simple mode-locking model or future

non-linear computations.

A final avenue for future work on the experiment is the construction of a similarly

scaled azimuthal manifold through which a liquid metal can flow. As the original mo-

tivation for the experiment was to compare solid conductors with liquid metals, in this

sense the experiment is not yet complete. While the rotating wall cannot be strongly

affected by the back-reaction of the MHD onto the flow, the same cannot be said of a

liquid metal. Additionally, turbulence is likely to exist in the manifold, which could affect

mode dynamics in unknown ways.
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Appendices
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Appendix A

Glass Wall Experiments

The effects of a hybrid insulating-conducting boundary condition on kink dy-
namics were explored in the device. A glass liner was placed inside the vacuum
vessel, allowing radial electric fields to exist at the edge while eddy currents
could still be maintained in the conducting walls. The kink mode was not able
to lock to the wall in this configuration, precluding analysis of RWM stabil-
ity. Interestingly, an m = 2 mode was found to be dominant within a narrow
window of Ip.

It was shown in Chapter 6 that significant radial electric fields (Er) were present

throughout the device which gave rise to large ExB flows. However, Er cannot exist at

the conducting wall, and this was corroborated by measurement. In order to modify this

constraint, a liner made of Simax R© (similar to Pyrex R©) was inserted within the vacuum

vessel. The experimental geometry is shown in Fig. A.1. As the glass liner can allow

finite Er at the edge, it was thought that broader current profiles with reduced core ExB

rotation could be achieved.

A.1 Lack of Kink Mode Wall-Locking

A first result of this campaign was that the kink mode was still found to rotate with kHz

scale frequencies, well above the range where the rotating wall could affect the dynamics.
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Figure A.1: End-on view of the experimental geometry with the glass liner.
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Furthermore, the technique of applying localized m = 0 fields (B̃z), described in Chap-

ter 6, was found to be ineffective in slowing down the rotation. Thus, it can be inferred

that axisymmetric radial currents (and associated torques) are inhibited by the glass liner.

The application of a large error field (Bext) was unable to lock the kink mode, as

contrasted in Fig. A.2. This was likely a consequence of the inability of B̃z to slow the

mode, as a slowly rotating kink (≈ 1 kHz) was a precondition for locking via Bext to occur,

as described in Chapter 6. Nonetheless, as the mode could not be locked experiments on

RWM stabilization could not be carried out. The rotating wall did continue to interact

with the error fields in a manner identical to what was described in Chapter 5.

A.2 Appearance of m = 2 Mode

An entirely unexpected consequence of the glass liner was the appearance of a dominantly

m = 2 mode within a limited window in Ip. The contrast of the magnetic fluctuations

with (Fig. A.3(a)) and without (Fig. A.3(b)) the glass wall is stark. With the liner, the

dominant fluctuations were m = 2 unlike the kink modes (m = 1) seen with the purely

conducting wall. Figure A.3(c) illustrates several discharges where both between m = 1

and m = 2 modes is seen. In terms of Ip, (and q), the window of excitation of the m = 2

mode is shown in Fig. A.3(d). This is in contrast to the kink mode explored throughout

this thesis, in which the largest fluctuations are observed at the highest values of Ip.

Recent work by Khalzov [94] has theoretically predicted the existence of a stability

window for higher m modes, which could potentially be destabilized at lower Ip than the

m = 1. The stability is a strong function of the plasma flow, which is consistent with the

hypothesis that the glass wall can modify the Er (and thus ExB flow) profile. Further

analysis of the glass wall modes is beyond the scope of this thesis.
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Appendix B

Residual Magnetism in the Rotating

Wall

Evidence is presented to illustrate that low-level magnetic fields (< 1 G) mea-
sured whenever the rotating wall spins in a magnetic field is due to low-level
residual magnetism in the wall stainless steel. The technique to subtract this
signal is presented and the impact on signal fidelity is described.

The high-speed rotating wall used throughout this thesis was made partly out of a

304 stainless steel (304SS), which was specified to be in fully annealed condition prior

to machining. However, 304SS is susceptible to cold-work magnetization, and as such

the finished product was left with a small amount of residually magnetic ‘hot spots’.

Magnetic surveys indicate that these hot spots were no greater than those of the device’s

other (static) 304SS components. However, as the wall rotates at high speed, the signals

from the moving hot spots were readily detected by the sensitive flux loop array. While

small, these signals initially posed difficulties as they prevented proper subtraction of

integrator drift and subsequently introduced non-physical artifacts. In the rest of this

Section the physical basis for the magnetic hot spot interpretation will be given, as well

as the procedures taken to mitigate them.
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B.1 Identification of Residual Magnetism

When the rotating wall spins in the presence of the axial guide field (Bz), signals of ≤ 1G

are detected on all fluxloops of the Br array, hereafter called Bres. A sample of Bres from

a single coil of the Br array is shown in Fig. B.1(a). Bres has an oscillatory behavior, and

its period is exactly equal to that of the wall rotation period. Thus, Bres is ‘locked’ to the

rotating wall. As the fluxloop array only measures time-varying fields, wall rotation is

required to observe this signal. Looking at the entire Br array as a whole (shown in Fig.

B.1(b)) Bres is strongest at localized positions on the wall and no large-scale structure

is observed. This is in contrast to what might be expected from motor-generator type

behavior, where the dominant field would be large scale.

Scaling of Bres amplitude with guide field illustrates that Bres originates from residual

magnetism in the steel wall. Figure B.1(c) illustrates that the structure of Bres is inde-

pendent of field strength. However, even at Bz = 0, Bres is still visible and its structure

is maintained. As no free currents are in the system with Bz = 0, this Bres must arise

from magnetization currents. Furthermore, Fig. B.1(d) indicates that Bres does not scale

linearly with Bz, another hallmark of magnetization. Thus, Bres is an unwanted and non-

ideal component of the experiment, and efforts were taken to confidently subtract it from

all subsequent analysis, as described in Section B.2.
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Figure B.1: Properties of residual magnetism signal, Bres
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B.2 Subtraction from Plasma Data

As Bres is ‘locked’ to the wall, its subtraction requires knowledge of the wall phase through-

out the discharge. This was measured on the experiment by directly digitizing the optical

tachometer signal, which registered a pulse when a reflective sticker passed into its field

of view. This pulse was also used as a trigger for the entire discharge, thus the phase

of the wall during a discharge was known and controllable. With wall phase controlled,

a baseline shot without plasma at a given speed was taken, which contained only Bres.

This was then subtracted from all other plasma discharges at that wall speed. Baseline

discharges every few hours indicated that Bres was constant over this timescale.

A conducting rod substituting for the plasma column (described in Chapter 5) was

used to confirm the validity of this subtraction scheme. As the rod required no guide field

to form a discharge, shots were taken without Bz and thus without Bres. Figure B.2(a)

illustrates the results of this comparison. In this figure, the hypothesis is that:

~Bpure = ~Braw − ~Bres ≡ ~Bsubtracted (B.1)

The good agreement between Bpure and Bsubtracted indicates this is a good approximation.

Figure B.2(b) shows the agreement of Bpure and Bsubtracted at a variety of Rm, using this

same method.

Turning to real plasma data, Fig. B.2(c), the impact of the subtraction of Bres is

found to be small. Firstly, the magnitude of Bpure is generally much smaller than the

plasma signal in the presence of an instability. Furthermore, the phase-matched subtrac-

tion described above is effective in removing Bres from the plasma signal. Note Bpure is

not available for plasma data as the discharge cannot be formed without the guide field.

It should be noted that an implicit assumption is that the plasma does not respond sig-

nificantly to Bres, thus violating the identity of Eq. B.1. This is not rigorously known,
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though the low amplitude of Bres lends some confidence that this is not an issue.

Similar residual magnetism issues were encountered at the Princeton Magneto-Rotational

Instability (MRI) Experiment [95]. The solution there was to rebuild the experiment us-

ing as little stainless steel and as much plastic components as possible, especially on

machined ports. This was deemed not a practical option on the rotating wall due to the

large stresses on the wall. In conclusion, while it has been shown that magnetic ‘hot

spots’ do not preclude analysis of the plasma in the device, it must be said that in hind-

sight a much more vigilant awareness of residual magnetism was warranted during device

construction. Anneal often.
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Appendix C

Thick Wall Error Field Calculations

For the entirety of this thesis calculations involving eddy currents within the
walls of the device have been treated in a thin-wall formalism. This Appendix
is included to illustrate the implications of relaxing this constraint, both for
the steady-state and time-dependent analysis carried out in Chapter 5. First
the induction equation is solved within the rotating and static walls, and
matching problems are solved to determine the field structure and vertical
field penetration time constant.

C.1 Magnetic Field Functional Form

Evolution of the magnetic field inside of a thick, rotating, conducting wall is given by the

induction equation:

∂ ~B

∂t
= ∇× ~V × ~B +

1

σµ
∇2 ~B (C.1)

Each term is treated in sequence. The long-cylinder approximation is maintained, such

that Bz and derivatives in ẑ are neglected. Letting ~B ∝ exp γt, the time derivative simply

pulls out γ. γ is a complex quantity describing exponential growth, decay, or oscillations.
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To calculate the advection Term, letting ~V = Ωwrθ̂, for solid conductor rotation:

[~V × ~B]ẑ = −VθBr (C.2)

[
∇× ~V × ~B

]
r̂

=
1

r

∂[~V × ~B]ẑ
∂θ

(C.3)

= −1

r

∂(ΩwrBr)

∂θ
(C.4)

= −Ωw
∂Br

∂θ
(C.5)

This equation has to be transformed into an equation for only Br. For the diffusion

operator, an identity is used:

∇2 ~B = −∇× (∇× ~B) +∇(∇ · ~B) (C.6)

= −∇× (∇× ~B) (C.7)

= −
[

1

r2

∂

∂r

(
r
∂Bθ

∂θ

)
− 1

r2

∂2Br

∂θ2

]
r̂ +

∂

∂r

[
1

r

∂

∂r
(rBθ)−

1

r

∂Br

∂θ

]
θ̂ (C.8)

Such that the radial component of the diffusion operator is given by:

[
1

µσ
∇2 ~B

]

r̂

= − 1

µσ

[
1

r2

∂

∂r

(
r
∂Bθ

∂θ

)
− 1

r2

∂2Br

∂θ2

]
(C.9)

The divergence equation states that ∂
∂r

(rBr) = −∂Bθ
∂θ

which then allows Bθ to be replaced

in Eq. C.9, yielding:

[
1

µσ
∇2 ~B

]

r̂

=
1

r2µσ

[
r2∂

2Br

∂r2
+ 3r

∂Br

∂r
+Br +

∂2Br

∂θ2

]
(C.10)

With all terms computed, the full vector induction equation (Eq. C.1) can now be ex-
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pressed in terms of the scalar Br:

0 = γBr + Ωw
∂Br

∂θ
− 1

r2µσ

[
r2∂

2Br

∂r2
+ 3r

∂Br

∂r
+Br +

∂2Br

∂θ2

]
(C.11)

Using the m = 1 nature of the desired field solution, such that Br(r, θ) ∝ e−iθ, to evaluate

the θ̂ derivatives. Cancellation of terms occurs, yielding an ODE for Br:

r2∂
2Br

∂r2
+ 3r

∂Br

∂r
+ r2µσ(iΩw − γ)Br = 0 (C.12)

A coefficient α2 ≡ µσ(iΩw− γ) is now defined. This is a Bessel equation in a transformed

Bowman form [96]:

x2 ∂
2y

∂x2
+ (2p+ 1)x

∂y

∂x
+ (α2x2n + β2)y = 0 (C.13)

where y = Br, x = r, p = 1, β = 0, n = 1. Eq. C.13 has a solution of the form [96]:

f(x) = x−p
[
A1J√p2−β2

n

(α
n
xn
)

+ A1Y√p2−β2

n

(α
n
xn
)]

(C.14)

With these substitutions, the solution for Br can be found to be:

Br(r, θ) =
1

r
[A1J1(αr) + A2Y1(αr)] e−iθ (C.15)

Using ∇ · ~B = 0, the Bθ solution is also readily obtained.

Bθ(r, θ) = −i
[
A1

(
αJ0(αr)− 1

r
J1(αr)

)
+ A2

(
αY0(αr)− 1

r
Y1(αr)

)]
e−iθ (C.16)
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C.2 Thick Wall Vertical Field Penetration

If the shaft is hollow, then the full solution of Eqs. C.15-C.16 must be kept, giving field

solutions of the form:

Br(r, θ) =
1

r
[A1J1(αr) + A2Y1(αr)] e−iθ (C.17)

Bθ(r, θ) = −i
[
A1

(
αJ0(αr)− 1

r
J1(αr)

)
+ A2

(
αY0(αr)− 1

r
Y1(αr)

)]
e−iθ (C.18)

These field equations are then used in a matching problem to calculate vertical field

penetration field structures with a rotating wall. In this case, two matching regions are

present at r = {a, b}, the inner and outer radius. This gives 4 equations for 4 unknowns.

Canceling the e−iθ dependence yields:

r̂ : (B0 − A1b
−2) =

1

b
[C1J1(αb) + C2Y1(αb)] (C.19)

θ̂ : (B0 + A1b
−2) =

[
C1

(
αJ0(αb)− 1

b
J1(αb)

)
+ C2

(
αY0(αb)− 1

b
Y1(αb)

)]
(C.20)

r̂ : D1 =
1

a
[C1J1(αa) + C2Y1(αa)] (C.21)

θ̂ : D1 =

[
C1

(
αJ0(αa)− 1

a
J1(αa)

)
+ C2

(
αY0(αa)− 1

a
Y1(αa)

)]
(C.22)

This is written in matrix form with the coefficients = [A1, C1, C2, D1].




1
b2

1
b
J1(αb) 1

b
Y1(αb) 0

− 1
b2

(
αJ0(αb)− 1

b
J1(αb)

) (
αY0(αb)− 1

b
Y1(αb)

)
0

0 1
a
J1(αa) 1

a
Y1(αa) −1

0
(
αJ0(αa)− 1

a
J1(αa)

) (
αY0(αa)− 1

a
Y1(αa)

)
−1







A1

C1

C2

D1




=




B0

B0

0

0



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Inverting the matrix yields the required coefficients:

G =αaJ0(αb)Y0(αa) + 2Y0(αb)J1(αa)− αaY0(αb)J0(αa)− 2J0(αb)Y1(αa) (C.23)

A1 =
B0b

αG

[
α2ab(J0bY0a − Y0bJ0a) + 2α(a(Y1bJ0a − J1bY0a)

+b(Y0bJ1a − J0bY1a)) + 4(J1bY1a − Y1bJ1a)] (C.24)

C1 =
2B0

αG
(αaY0(αa)− 2Y1(αa)) (C.25)

C2 =− 2B0

αG
(αaJ0(αa)− 2J1(αa)) (C.26)

D1 =
2B0

G
(J1(αa)Y0(αa)− Y1(αa)J0(αa)) (C.27)

The coefficients are then inserted into the field solution, given by the real component of:

Br,r>b(r, θ) = (B0 − A1r
−2)e−iθ (C.28)

Bθ,r>b(r, θ) = −i(B0 + A1r
−2)e−iθ (C.29)

Br,a<r<b(r, θ) =
1

r
[C1J1(αr) + C2Y1(αr)] e−iθ (C.30)

Bθ,a<r<b(r, θ) = −i
[
C1

(
αJ0(αr)− 1

r
J1(αr)

)
+ C2

(
αY0(αr)− 1

r
Y1(αr)

)]
e−iθ (C.31)

Br,r<a(r, θ) = D1e
−iθ (C.32)

Bθ,r<a(r, θ) = −iD1e
−iθ (C.33)

Figure C.1 shows solution fieldlines to the field of Eqs. C.28-C.33 shows similar behavior

to that of Fig. 5.3, though now with the behavior in the wall resolved. As with Fig. 5.3,

flux exclusion and phase shifting occurs. However, the limit that δφ 7→ ±π at Rm 7→ ±∞

is now relaxed. Thicker walls produce larger phase shifts.
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Figure C.1: (a)-(c) Fieldlines for hollow thick shell penetration at a variety of wall rotation
speeds (Rm). (d)-(e) Flux exclusion and resultant phase shift for the thick wall.
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C.3 Solid Shaft Field Penetration

The solution to the fields, given in Eqs. C.15-C.16, are modified if the shaft is solid. As

r = 0 is included in the solution boundary, then coefficient A2 must vanish. The solution

is then:

Br(r, θ) =
1

r
A1J1(αr)e−iθ (C.34)

Bθ(r, θ) = −iA1

(
αJ0(αr)− 1

r
J1(αr)

)
e−iθ (C.35)

Only one boundary exists, at r = a, which matches the solid shaft solution C.35 and the

infinite vacuum solution described in Section 5.2.1. The matching equations are:

r̂ : (B0 − A2a
−2) =

1

a
A1J1(αa) (C.36)

θ̂ : (B0 + A2a
−2) = A1

(
αJ0(αa)− 1

r
J1(αa)

)
(C.37)

This system of equations is solved to give the required coefficients. Note this case has

been treated in Perry [97].

A1 =
2B0

αJ0(αa)
(C.38)

A2 = a2B0

(
1− 2J1(αa)

αaJ0(αa)

)
(C.39)
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Rm= 0 Rm=5 Rm=10

a) b) c)

Figure C.2: Field solution for penetration through a solid rotating shaft at various rotation
speeds (Rm)

The solution to the fields in this case is then the real component of:

Br,out(r, θ) = B0

[
1− a2

r2

(
1− 2J1(αa)

αaJ0(αa)

)]
e−iθ (C.40)

Bθ,out(r, θ) = −iB0

[
1 +

a2

r2

(
1− 2J1(αa)

αaJ0(αa)

)]
e−iθ (C.41)

Br,in(r, θ) =
1

r

(
2B0

αJ0(αa)

)
J1(αr)e−iθ (C.42)

Bθ,in(r, θ) = −i
(

2B0

αJ0(αa)

)(
αJ0(αr)− 1

r
J1(αr)

)
e−iθ (C.43)

Populating these field solutions for a variety of wall rotation rates is shown in Fig. C.2.

Note that the field is no longer constant in the interior, and flux exclusion and phase shift

are now functions of the radial coordinate.
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C.4 Thick Wall Penetration Time

To solve the thick wall vertical field penetration time, in analogy with the normal mode

approach described in Section 5.4, a matching problem without forcing is formulated and

non-trivial solutions found. The same functional forms of Section C.2 are used, though

taking Ωw = 0 and as such α2 ≡ iµ0σ(iγ). Again r = a, b are the inner and outer radius

respectively. The matching equations are:

Br,r>b(r, θ) = (−A0r
−2)e−iθ (C.44)

Bθ,r>b(r, θ) = −i(A0r
−2)e−iθ (C.45)

Br,a<r<b(r, θ) =
1

r
[A1J1(αr) + A2Y1(αr)] e−iθ (C.46)

Bθ,a<r<b(r, θ) = −i
[
A1

(
αJ0(αr)− 1

r
J1(αr)

)
+ A2

(
αY0(αr)− 1

r
Y1(αr)

)]
e−iθ (C.47)

Br,r<a(r, θ) = A3e
−iθ (C.48)

Bθ,r<a(r, θ) = −iA3e
−iθ (C.49)

Which in matrix form is:




1
b2

1
b
J1(αb) 1

b
Y1(αb) 0

− 1
b2

(
αJ0(αb)− 1

b
J1(αb)

) (
αY0(αb)− 1

b
Y1(αb)

)
0

0 1
a
J1(αa) 1

a
Y1(αa) −1

0
(
αJ0(αa)− 1

a
J1(αa)

) (
αY0(αa)− 1

a
Y1(αa)

)
−1







A0

A1

A2

A3




= 0 (C.50)

Taking the determinant to be equal to zero, a transcendental eigenvalue equation for α is

found:

0 = α2 [J0(αb)Y0(αa)− J0(αa)Y0(αb)] +
2α

a
[J1(αa)Y0(αb)− J0(αb)Y1(αa)] (C.51)
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Figure C.3: Deviation from the thin-wall time-constant as wall thickness is increased

Using the fact that b = a + δw, a Taylor expansion is performed. To first order, the thin

wall result of τ = σµ0aδw is recovered. Expanding Eq. C.51 to second order gives the

first correction term,

0 =

[
2α

ra
− α3δ

]
(J1aY0a − Y1aJ0a) +

α3δ

2
(J1aY0a − Y1aJ0a)

+
α3δ2

ra
(J1aY2a − Y1aJ2a) +

α4δ2

2
(Y0aJ2a − J0aY2a) (C.52)

The first term is the first order result, and the subsequent correction terms are from

the second order expansion. This is solved numerically and is shown in Fig. C.3. The

influence of finite wall thickness on the thin-wall time constant (γ0τw = −2) is found to

vary slowly as non-dimensionalized thickness δw
rw

is increased.



200

Appendix D

Mode Locking with Active Feedback

Wall rotation was found to have a profound effect on the mode-locking bifurcations,

as explored throughout Chapter 6. However, it is also known that a rotating wall is

a physical realization of an ideal control system, albeit with a single value of complex

gain [98]. It would thus be expected that an active feedback system would modify the

mode-locking bifurcations of the plasma, and that different feedback schemes would yield

different results. This idea will be studied in this Appendix using the formalism developed

in Chapter 6.

D.1 Derivation of Torque

The geometry of the simplified configuration is presented in Fig D.1. As before, Laplace’s

equation is solved between the walls to form the field solutions:

I : Br(r, θ) = <
[
(A0 − b̃r−2)e−iθ

]

II : Br(r, θ) = <
[
(A1 − A2r

−2)e−iθ
]

III : Br(r, θ) = <
[
(−A3)r−2e−iθ

]
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Figure D.1: Geometry used to calculate active feedback torques. The dotted line corre-
sponds to the actuator location.

Where Eq. 6.5 can be used to find the Bθ component. At the static resistive wall at rw,

the matching conditions are:

Br|r=r
+
w

r=r−w
= 0

Bθ|r=r
+
w

r=r−w
= −ωτBr|r=rw

where τ is the wall time and ω is the mode rotation. At the control coil location, rc, the

matching conditions are:

Br|r=r
+
c

r=r−c
= 0

Bθ|r=r
+
c

r=r−c
= KBθ|r=r−w +GBr|r=rw

Where K ≡ Kr + iKi and G ≡ Gr + iGi. Thus, only proportional gain is considered,

and to simplify the analysis we assume the sensors are located at rw. In this form, it will

be found that the location of rc is unimportant. Note the phase of {K,G} relates to the

spatial orientation of the feedback. It is clear that the feedback scheme corresponding
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to the rotating is given by Gr = −Ωwτ . Using these matching conditions, a matrix is

generated to solve for the unknown field coefficients:




r2
w −r2

w 1 0

−r2
w (1 + iωτ)r2

w (1− iωτ) 0

0 r2
c −1 1

−(K + iG) −1 −r−2
c r−2

c







A0

A1

A2

A3




=




b̃

b̃

0

b̃r−2
w (K − iG)




This matrix can be inverted to obtain the required coefficients An. Equation 6.6 can then

be used to calculate the torque in this configuration. It is given by:

ΓEM = −AEM
Ki(1−Gi)− (1 +Kr)(Gr − ωτ)

(2 +Kr −Gi)2 + (Ki +Gr − ωτ)2
(D.1)

Where AEM ≡ 4b̃2πL
r2
wµ0

is a constant coefficient related to the mode amplitude and other

constants. The full torque balance equation, corresponding to Eq. 6.3 takes the form:

0 =Ares(Ω0 − ω)− AEM
Ki(1−Gi)− (1 +Kr)(Gr − ωτ)

(2 +Kr −Gi)2 + (Ki − ωτ +Gr)2
(D.2)

As Eq. D.2 has many input parameters (K,G, ωτ), limits are explored. As before, solu-

tions to Eq. D.2 correspond to equilibrium solutions, and points at which the discriminant

of Eq. D.2 vanish are the bifurcations.

D.2 Feedback on Azimuthal Field

With G 7→ 0, the only feedback is proportional to Bθ and thus corresponds to the most

commonly used active control scheme. This scheme is preferred as there is less cross-talk

between sensor and actuator in typical geometries [99]. In this scheme Eq. D.1 reduces
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Figure D.2: Solutions to Eq. D.2 as mode amplitude b̃ is increased, withG = 0, illustrating
bifurcations.

to:

ΓEM = −AEM
Ki + (1 +Kr)ωτ

(2 +Kr)2 + (Ki − ωτ)2
(D.3)

Note that this expression diverges at Kr = −2 and Ki = ωτ . These are unphysical and

are removed by placing the sensors at r 6= rw. Nonetheless, away from the divergence,

the effect of this type of feedback is shown in Fig. D.2. Note that unlike prior plots, here

the bifurcation diagrams are shown in the more traditional sense (ie, vs mode amplitude

b̃). Thus, as an instability grows the plot is traversed from left to right, encountering a

bifurcation.

Without feedback, Fig. D.2(a) shows the traditional picture. For large enough Ω0, a

bifurcation is reached at a critical mode amplitude. Note that no bifurcation is possible

if Ω0 is small. Figure D.2(b) shows effect of Kr feedback. The ability of the mode to lock

to the wall is eliminated for large enough Kr. Thus, this feedback scheme is favorable

from the point of view of avoiding mode-locking. Figure D.2(c) shows that Ki feedback

is less effective at suppressing mode-locking, but instead tends to rotate large amplitude

modes. This is consistent with the result that imaginary gain in general yields rotation

of the mode under control.
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Figure D.3: Solutions to Eq. D.2 as mode amplitude b̃ is increased, with K = 0, illus-
trating bifurcations.

D.3 Feedback on Radial Field

With gain only proportional to Br, a less common scheme is explored. The limit of Eq.

D.1 as K 7→ 0, the torque is:

ΓEM = −AEM
(ωτ −Gr)

(2−Gi)2 + (Gr − ωτ)2
(D.4)

Fig. D.3 compares this scheme to the no-feedback case. In Fig. D.3(b) it can be seen

that Gr feedback has effectively shifted the curves vertically, such that the new zero point

is at approximately ω/Ω0 = 0.25. As Gr feedback is the rotating wall limit, and only one

wall is included in this model, this is expected. The Gr feedback has Doppler shifted the

entire problem by Gr/τ . Figure D.3(c) shows that Gi feedback has tended to shift the

curves to the right. Thus, this feedback scheme is favorable to avoid mode-locking.
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Appendix E

List of Data Campaigns

A list of data campaigns undertaken as part of this thesis is presented. During
a two year time-frame over 10,000 shots were taken with an average duty cycle
of 3 minutes between discharges. Working on a small experiment yields the
added challenge and experience of maintaining an experimental device and
all associated subsystems throughout the campaigns. While engineering and
maintenance work is not captured in this thesis, the sheer number of shots
does illustrate the operational aspects of experimental work.

0 50 100 150 200
0

2

4

6

8

10

Shots / Day

D
ay
s

Distribution of shots per day over total data campaign
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Tri-Bdot Probe Campaign (Summer 2010)

Z (cm)
Description Amps/gun Field 10 20 36 62 89 115 121

c7 0 500 X X
c7 300 500 X X X X X X X
c7 500 500 X X X X X X X
c7 750 500 X X X X X X
c7 1000 500 X

m6 500 500 X X X X X X X
m6 580 500 X
m6 750 300 X X X X
m6 750 500 X X X X X X
m6 750 750 X X X X X
m6 1000 500 X X X X

m6, no g10 arc 750 500 X X X X X X
m6, no g10 arc 1000 500 X

c7 all ramp 300-630 500 X X X
m6 all ramp 300-630 500 X X X
c7 g10 ramp 500-1000 500 X X X X X
c7 g10 ramp 500-1000 750 X X X X X
m6 float dot 300 500 X X X X
m6 float dot 500 500 X X X
m6 float dot 750 500 X X X

Table E.1: Magnetic Probe Sweeps (in radius)
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Rotating Wall Pre-Error Field Coil Campaign (Winter 2010-2011)

Bz (G)
Gas Gun 400 500 600 700

H m6 X X X X
H c7 X X X X

He m6 X X X X
He c7 X X X X

Table E.2: Ip Scans - Unbalanced - Sept 2010.

Ip
Gas Gun Field 250A 500A 750A 1000A

H c7 ±500G X X
H m6 ±500G X

He c7 ±500G X X X X
He m6 ±500G X

Table E.3: Rm Scans - Unbalanced - Oct 2010.

Rm

Gas Gun Bz 3 2 1 0 -1 -2 -3

H m6 500G X X X X X X X
He c7 500G X X X X X X X

Table E.4: Ip Scans - Unbalanced - Jan/Feb 2011.

Rm

Gas Gun Bz 3 1 0 -1 -3

H c7 500G X X X
H c7 -500G X
H m6 ±500G X

He c7 350G X X X X
He c7 500G X X X X
He c7 750G X X X X X

Table E.5: Ip Scans - Balanced. Mar/April 2011.
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Rotating Wall and Error Field Coil Campaign (Spring 2011)

Rm

Vcoil Bz Iλ 5 3 1 0 -1 -3 -5

Y -500 G + X X X X X X X
Y -500 G − X X X X
N -500 G + X X X X X X X
N -500 G − X X X X X X X
N 500 G − X X X X X X X
N 500 G + X X X X X X X

Table E.6: Iλ Scans: H, m6noArc, 1000a

Rm

Ip 5 3 1 0 -1 -3 -5

500A X X X X
625A X X X X X X X
750A X X X X X X X
875A X X X X X X X

1000A X X X X X X X

Table E.7: Iλ Scans: H, m6noArc, Bz=-500G, Iλ=+ve, with Vcoil.

Rm

Bz Iλ 5 3 1 0 -1 -3 -5

-500 G 400 X X X
-500 G 600 X X
-500 G 800 X X
-500 G 1200 X X
-750 G 400 X
-500 G 200 X
-500 G 400 X

Table E.8: Ip Scans: H, m6noArc, with Vcoil.
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