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We are headed towards an increasingly data-driven society due to the vast amounts of data that are

both more readily available, and more valuable than ever. Consumer and enterprise services such as social

networking sites and traditional retailers are working together to gather and use data to increase the efficiency

and effectiveness of their business operations. Additionally, the health-care industry is also taking advantage

of readily available research, drug, and treatment data to increase both the efficiency of services and the

quality of care for patients. In short, the value of “big data” analytics is now widely recognized across all

sectors of society.

The IT industry and academic researchers have raced to develop new systems that enable the extrac-

tion of insights from vast data repositories. These systems are being built and run in (public and private)

“cloud” clusters and housed in large data warehouses. Unfortunately, to-date, little attention has been paid

to the rising costs of deploying and running such systems ($10M-100Ms per data warehouse). Two major

cost components in operating such big data systems are: a) the cost to purchase the computing hardware and

b) the cost to power the hardware. Together, these two components make up roughly 88% of the monthly

ownership cost.

This dissertation provides a comprehensive look at the relationship between the following three fac-

tors: (i) the performance of the data processing system; (ii) the allocation of hardware resources; and (iii)

the energy consumption of the system. We ask questions like: “How can we meet user performance targets

while minimizing the hardware provisioning costs?” and, “How much does the latency and energy con-

sumption of a database query change if we decrease the computing resources that are assigned to process

that query?” The key challenges involve modeling the relationships between performance, hardware, and

energy, as well as developing frameworks to effectively trade-off one for another. We find that we can modu-

late the performance and hardware/energy costs of data processing in a controlled way by changing the way
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that the software uses its hardware resources, and/or by changing the way we build our servers/clusters for

data-processing systems. The main contributions of this dissertation involve the identification, formulation,

and evaluation of models and frameworks for desirable trade-offs between hardware/energy costs and data

processing performance. The implications of this thesis is that the methods presented here can be used to re-

duce the overall dollar cost of running big data analysis in the cloud, while meeting any applicable workload

performance targets.



Chapter 1

Introduction

Many aspects of society are increasingly data driven as nearly every facet of both enterprise and

consumer services rely on data processing and analysis. For example, in the consumer services space, large

social networks like Facebook are able to generate 30 billion pieces of information a month. By arming

themselves with consumer information, it has been estimated that retailers in the private sector may be able

to raise their operating margins by 60%. The public sector can also benefit from this shift; for example, by

leveraging health-care data, it has been estimated that the national health-care expenditure can be reduced

by 8% [119].

To maintain acceptable levels of performance in this “Big Data”-era, practitioners of Big Data an-

alytics have rushed to develop larger and more powerful data-processing systems. Typically, these data-

processing systems require large clusters of servers that are deployed in a “cloud” data center (public or

private1 ). As the number of servers in a data-processing cluster increase, this has a direct effect on the total

cost of ownership (TCO) of the cloud cluster. Furthermore, with perpetually rising energy costs, using more

hardware for analysis amplifies today’s increasing energy bills. Figure 1.1 presents a recently published

cost breakdown of a modern 46,000 server Amazon datacenter [81]. In this breakdown, the four major cost

components presented are: the 36 month amortized server costs, direct energy and power-related infrastruc-

ture costs, networking infrastructure costs, and other miscellaneous infrastructure costs. From Figure 1.1,

it is clear that the two largest cost components are the server (which excludes network switches and net-

working infrastructure) costs and energy costs. These two costs make up 88% of the monthly costs, almost
1 Public clouds refer to hosted clusters shared by customers and open to the public. Private clouds refer to clusters not generally

available to the public and generally are owned and used by the same institution/corporate entity.
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Figure 1.1: Four major cost components of a modern datacenter: server costs amortized over 36mo., direct
energy and power-related infrastructure costs, networking infrastructure, and other miscellaneous infrastruc-
ture costs [81]

$3M/month, in a modern 46,000 server data center [81]. It is for this reason that this thesis targets server

and energy costs for optimization.

Consequently, from the observations from Figure 1.1, IT professionals that manage data-processing

infrastructure are faced with two optimization goals: (1) Keep up with the increasing load on their infrastruc-

ture and provide acceptable levels of data-processing performance; and (2) Maintain low costs by prudently

deploying computing software and infrastructure as well as increasing the system energy efficiency. The

broad goals of this dissertation are to understand how the two main cost components of data processing,

server hardware and energy, contribute to performance, and then formulating and evaluating models and

frameworks to trade performance for lower costs in a controlled manner.

1.1 Key Challenges

The key challenge when optimizing for performance and cost is that they are interconnected, often in

a complex way. Traditionally, given a data processing system and increasing amounts of data, the simplest

means of maintaining throughput or latency performance has been to buy new/more hardware. Such a
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solution increases costs through more server hardware as well as the corresponding increase in the power

footprint of the IT infrastructure. This dissertation considers how performance is affected by both sources

of cost: server costs and the energy costs of data processing.

1.1.1 Cost-effective Server Provisioning

One question we want to address for large-scale data processing environments is how IT managers

should configure and purchase servers for their clusters while adhering to their users’ performance require-

ments. As mentioned above, one straightforward approach to maintaining user performance with increasing

data volume (or user load) is to simply purchase more hardware. However, there are two approaches to

managing this cost: (1) Determining the minimum cluster resources that must be deployed for the user load;

and/or (2) Configuring the server components such that we can try to minimize the purchase cost while

delivering performance. Both of these approaches come with considerable challenges. For instance, in the

first approach, how do we characterize the users’ workloads and performance objectives and then formulate

a cost optimization? With the second approach, using less expensive servers may require a larger cluster

deployment which, for some workloads, suffers from diminishing returns in performance. This dissertation

addresses some of the key challenges associated with cost/performance trade-offs.

1.1.2 Energy-aware Data Processing

The biggest change in the industry-standard, Transaction Processing Council (TPC) benchmarks in

over two decades is now well underway – namely the addition of an energy-efficiency metric along with

traditional performance metrics [167]. Managing the energy consumption of data processing infrastructure

has now become necessary because of numerous factors like: (1) In a modern data center, the cost of

electricity has already surpassed $1M a month in some cases, and is expected to equal if not dominate

monthly amortized server costs in the near future [81, 141]; (2) Future CPUs are likely to require that

software systems work within a tight power budget [31]; and (3) Emerging legislative conservation policies

may limit the energy consumption of data centers [27]. In the same way that energy efficiency forced a

radical shift in automotive design, we are at the cusp of shifting toward energy-efficient designs of next



4

generation data processing infrastructure [59, 96].

Unfortunately, reducing the energy consumption of the system when running a data processing task

is typically accompanied by a drop in performance. In most environments, performance has been, and will

continue to be, a first-class optimization goal. Luckily, we can take advantage of two key facts to tackle this

problem. First, data processing systems are typically provisioned for peak load, which, on average delivers

higher performance than what the user needs. Secondly, hardware manufacturers as well as the architecture

and systems research communities have been studying and developing various types of power/performance

trade-off mechanisms that are accessible to software systems [121]. Thus, we have a trade-off opportunity to

use various hardware and software techniques to reduce performance to user-acceptable levels in controlled

way so that we can minimize the energy consumption (while meeting performance targets). However, a lack

of understanding of the relationship between energy consumption and performance is the first step that must

be addressed before pursuing any trade-off solutions.
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Figure 1.2: A breakdown of the approaches taken to tackle balancing data processing cost with performance.

Summary: With these key challenges of cost/performance and energy/performance trade-offs, the

work in this dissertation can be roughly partitioned along these two categories – server costs versus energy
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costs. Further, we can also consider data processing in a single server (the traditional DBMS environments)

versus scale-out, shared-nothing parallel data processing in clusters. These dimensions are visualized in

Figure 1.2 which also provides an overview of the technical contributions of this dissertation.

1.2 Overview of Technical Contributions of this Dissertation

In Figure 1.2, the four broad areas of focus covered by this dissertation are illustrated in a quad chart.

The two dimensions of this quad chart are: (1) trading performance for lower server cost or higher energy

efficiency, and (2) examining trade-off opportunities in a cluster environment or within a single server.

To explore trading off performance at the cluster and server level, we leverage power/performance and

cost/performance hardware mechanisms at various spatial granularities. This is shown in Figure 1.3 which is

a map of the hardware mechanisms exploitable by data processing systems [121]. This map shows that there

are mechanisms that target server components, all the way to cluster-level mechanisms. We can see that as

the spatial granularity increases, so does the mechanism switching time (plotted on the y-axis). For example,

as we have shown in Figure 1.3, parking a processing core of a CPU is a mechanism that operates at around

the micro-second time scale, while shutting down a server can take up to a minute. This increase in the

mechanism’s switching time affects the performance trade-off capability because the hardware mechanism

can significantly reduce data processing performance. This dissertation presents work that covers the entire
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space of these available mechanisms.

Below is a brief overview of the work covered by each of the quadrants of Figure 1.2 and the mecha-

nism space shown in Figure 1.3.

1.2.1 Cost-effective Cluster Design and Performance Objectives in the Cloud

The focus of this work is on tackling the deployment cost problem by examining how to provision and

use cluster resources efficiently in a multi-tenant cloud environment, represented by the upper-left quadrant

of Figure 1.2. The “mechanism” that we employ here can be categorized as cluster-level management and

falls in the “cluster” column of Figure 1.3. As traditional and mission-critical relational database work-

loads migrate to the cloud in the form of Database-as-a-Service (DaaS), there is an increasing motivation to

provide performance goals in Service Level Objectives (SLOs) [12]. Providing such performance goals is

challenging for DaaS providers as they must balance the performance that they can deliver to tenants against

the data center’s operating costs [40]. In general, aggressively aggregating tenants on each server reduces the

operating costs but degrades performance for the tenants, and vice versa. This work presents a framework

that takes as input the tenant workloads, their performance SLOs, and the server hardware that is available

to the DaaS provider, and outputs a cost-effective recipe that specifies how much hardware to provision and

how to schedule the tenants on each hardware resource. An evaluation of the proposed method shows that

it produces effective solutions that can reduce the costs for the DaaS provider while meeting performance

goals.

This work was accepted into the Proceedings of the IEEE International Conference on Data Engineer-

ing (ICDE), 2012 [109], as well as invited for submission for a special issue (Best Papers of ICDE) of the

IEEE Transactions on Knowledge and Data Engineering (TKDE) journal [110]. The content of this work

can be found in Chapter 2 of this dissertation.

1.2.2 The Costs of Using Non-Traditional Server Hardware

This work examines the impact of changing the configuration of server nodes in a cluster on the

price/performance of parallel database analytics workloads, represented by the upper-right quadrant of Fig-
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ure 1.2. The work here considers using different components, servers, and ways to provision clusters; it

covers the corresponding three columns of Figure 1.3. The high cost associated with powering servers

has introduced new challenges in improving the energy efficiency of clusters running data processing jobs.

Traditional high-performance servers are largely energy inefficient due to various factors such as the over-

provisioning of resources. There has been an increasing movement to replace traditional high-performance

server nodes with low-power low-end nodes in clusters. This approach has recently been touted as a so-

lution to the cluster cost/energy problem [13, 145, 174]. However, the key tacit assumption that drives

such a solution is that the scale-out of such low-power cluster nodes results in a constant scaleup in per-

formance. Here, we challenge the validity of such an assumption using measured price and performance

results from a low-power Atom-based node and a traditional Xeon-based server and a number of published

parallel scaleup results. Our results show that in most cases, computationally complex queries exhibit dis-

proportionate scaleup characteristics which potentially makes scale-out with low-end nodes an expensive

and lower performance solution.

This work was accepted into the Proceedings of the International Workshop on Data Management on

New Hardware (DaMoN), 2010 and awarded best paper [108]. The content of this work can be found in

Chapter 3 of this dissertation.

While some of the results regarding costs are dependent on the current market for commodity hard-

ware, our results in this chapter focus on the impact of poor scalability in traditional database analytics

tasks. Our energy efficiency results in this work show that despite the poor scalability of large wimpy

node clusters, in certain cases, they can still be markedly more energy efficient than clusters of traditional

high-performance servers. This provides our segue into the discussions on the energy efficiency of data

processing.

1.2.3 Energy-aware Parallel Data Processing

This portion of the dissertation investigates some opportunities and challenges that arise in energy-

aware computing in a cluster of servers running data-intensive workloads – this covers the bottom-left quad-

rant of Figure 1.2. The operational mechanisms we consider here range from cluster-level, to server-level, as
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well as using different components in the server. Thus, the following three topics cover the three right-most

columns of Figure 1.3.

On the Energy-efficient Design of Clusters

Although a number of recent studies have investigated the energy efficiency of DBMSs [140,141,171,

181], none of these studies have looked at the architectural design space of energy-efficient parallel DBMS

clusters. There are many challenges to increasing the energy efficiency of a DBMS cluster, including dealing

with the inherent scaling inefficiency of parallel data processing, and choosing the appropriate energy-

efficient hardware. In this discussion, we experimentally examine and analyze a number of key parameters

related to these challenges for designing energy-efficient database clusters. We explore the cluster design

space using empirical results and propose a model that considers the key bottlenecks to energy efficiency

in a parallel DBMS. This study represents a key first step in designing energy-efficient database clusters,

which is increasingly important given the trend toward custom parallel database appliances.

This work was accepted into the Proceedings of the International Conference on Very Large Data

Bases (VLDB), 2012 [101] The content of this work can be found in Chapter 4 of this dissertation.

On the Management of MapReduce Clusters

Since the area of cluster-level energy management has attracted significant research attention over

the past few years, a number of broad classes of techniques have been studied [39, 112, 165]. One class of

techniques to reduce the energy consumption of clusters is to selectively power down nodes during periods

of low utilization to increase energy efficiency. One can think of a number of ways of selectively powering

down nodes, each with varying impact on the workload response time and overall energy consumption.

Since the MapReduce framework is becoming “ubiquitous”, the focus of this discussion is on developing a

framework for systematically considering various MapReduce node power down strategies, and their impact

on the overall energy consumption and workload response time. (The methods examined here, however, can

also be applied to other distributed computing frameworks.)

This discussion closely examined two extreme techniques that can be accommodated in this frame-

work. The first is based on a recently proposed technique called “Covering Set” (CS) that keeps only a small

fraction of the nodes powered up during periods of low utilization [112]. At the other extreme is a technique
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that is proposed in this study, called the All-In Strategy (AIS). AIS uses all the nodes in the cluster to run

a workload and then powers down the entire cluster. Using both actual evaluation and analytical modeling,

this work brings out the differences between these two extreme techniques and we show the scenarios under

which AIS (or CS) is the right energy-saving strategy.

This work was accepted into the Proceedings of the International Conference on Very Large Data

Bases (VLDB), 2010 [104] The content of this work can be found in Chapter 5 of this dissertation.

Exploiting Data Replication Schemes for Energy Efficiency

Drawing on the insight that servers in a cluster are often underutilized [140], this makes it attractive

to consider powering down some servers and redistributing their load to others. Of course, powering down

servers naı̈vely will render data stored only on the powered-down servers inaccessible. While data repli-

cation can be exploited to power down servers without losing access to data, unfortunately, care must be

taken in the design of the replication and server power-down schemes to avoid creating load imbalances on

the remaining “live” servers. Accordingly, this work analyzes the interaction between energy management,

load balancing, and replication strategies for data-intensive cluster computing. In particular, it is shown

that Chained Declustering [90] – a replication strategy proposed more than 20 years ago – can support very

flexible energy management schemes.

This work was accepted for publication into an issue of the SIGMOD Record, 2009 [106] and was

also released as an extended University of Wisconsin-Madison technical report [107]. The content of this

work can be found in Chapter 6 of this dissertation.

1.2.4 Energy-aware Database Management Systems

As we have discussed, there is a growing, real, and urgent demand for energy-efficient database

processing. Database query processing engines must now consider becoming energy-aware, else they risk

missing many opportunities for significant energy savings. While other recent work has focused on solely

optimizing for energy efficiency [171, 181], such methods are only practical if they also consider perfor-

mance requirements specified in SLAs. The focus of this discussion is on the design and evaluation of a

general framework for query optimization that considers both performance constraints and energy consump-
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tion as first-class optimization criteria. This framework recognizes and exploits the evolution of modern

computing hardware that allows hardware components to operate in different energy and performance states

(Figure 1.3) [121]. The optimization framework considers these states and uses an energy consumption

model for database query operations. An energy model was also built for an actual commercial DBMS.

Using this model the query optimizer can pick query plans that meet traditional performance goals (e.g.,

specified by SLAs), but result in lower energy consumption. Through numerous experimental evaluations,

it is shown that the system-wide energy savings can be significant and point toward greater opportunities

with upcoming energy-aware technologies on the horizon. While the discussion will focus on a single-server

DBMS environment (bottom-right quadrant of Figure 1.2), this framework is generic and can also apply to

distributed parallel data processing environments.

This work is a compilation of a number of publications and presentations: the Proceedings of the

Conference on Innovative Data Systems Research (CIDR), 2009 [103] an issue of the IEEE Data Engineer-

ing Bulletin, 2011 [102] and presented at the New England Database Summit (NEDS), 2012 [105]. These

works can be found in Chapter 7 of this dissertation.

1.3 Summary

This dissertation tackles the problem of data processing cost through two main avenues of: (1) man-

aging server deployment costs, and (2) managing the energy consumption of data processing systems.

For both of these avenues of cost management, this dissertation further breaks down the categories into two

approaches: (i) cluster-centric solutions, and (ii) server-centric solutions. The over-arching challenge is

to be able to balance potential trade-offs of performance for lower costs in a controllable, predictable, and

significant manner. In all four combinations of approaches, analysis of the performance/cost relationship

is studied to develop optimization and/or operational frameworks for trading performance for lower server

deployment cost and lower energy cost.



Chapter 2

Cost-effective Cluster Provisioning and Performance Objectives in the Cloud

Traditional relational database workloads are quickly moving to the cloud in the form of Database-as-

a-Service (DaaS). Such cloud deployments are projected to surpass the “on-premises” market by 2014 [146].

As this move to the cloud accelerates, increasing numbers of mission-critical workloads will also move to the

cloud, and in turn will demand that the cloud service provider furnish some assurances on meeting certain

quality-of-service metrics. Some of these metrics, such as uptime/availability, have been widely adopted by

DaaS providers as Service Level Objective (SLOs) [12,182]. (SLOs are specific objectives that are specified

in the encompassing Service Level Agreement – SLA.) Unfortunately, performance-based SLOs have still

not been widely adopted in DaaS SLAs. Performance-based SLOs have been proposed in other (non-DaaS)

cloud settings [85], and in the near future it is likely that DaaS users will demand these SLOs (especially

if they are running mission-critical database applications that require a certain level of performance). DaaS

providers may also provide performance-based SLOs as a way to differentiate their services from their

competitors.

DaaS providers want to promise high performance to their tenants, but this goal can often conflict with

the goal of minimizing the overall operating costs. Data centers that house database services can have high

fixed monthly costs that impact the DaaS providers’ bottom line [38, 80]. For a DaaS provider, servicing

the same tenants with fewer servers decreases the amortized monthly costs [158]. Hence, consolidation via

multi-tenancy (where multiple database tenants are run on the same physical server) is a straight-forward

way to increase the cost-effectiveness of the DaaS deployment.

In a traditional single tenant database setting, two key factors that determine performance are: a) The
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workload characteristics; and b) The server hardware on which the database management system (DBMS)

is being run. In a multi-tenant setting, the degree of multi-tenancy becomes an additional factor that impacts

performance, both for the overall system and the performance that is experienced by each individual tenant.

In general, increasing the degree of multi-tenancy decreases per-tenant performance, but reduces the overall

operating cost for the DaaS provider.

Hence, the important question for a DaaS provider is how to balance multi-tenancy with performance-

based SLOs. This chapter focuses on posing this question and presenting an initial answer. There are many

open questions that need to be answered beyond the work here, which points to a rich direction of future

work (see Section 9.2, Chapter 9).

In this study, we propose a general DaaS provisioning and scheduling framework that optimizes for

operating costs while adhering to desired performance-based SLOs. Developing a framework to optimize

DBMS clusters for performance-based SLOs is challenging because of a number of specific issues, namely:

(a) The DaaS provider may have a number of different hardware SKUs (Stock Keeping Units) to choose

from, and needs to know how many machines of each SKU to provision for a given set of tenants – thus the

provider needs a hardware provisioning policy; and (b) The DaaS provider also needs to know an efficient

mapping of the tenants to the provisioned SKUs that meets the SLOs for each tenant while minimizing the

overall cost of provisioning the SKUs – thus the DaaS provider needs a tenant scheduling policy. Note that

the tenants on the same server may have different performance requirements, and the tenants may interfere

with each other, making the mapping of tenants to the SKUs challenging.

2.1 Motivating Illustrative Experiments

Let us consider a concrete example to illustrate these issues. Assume that a DaaS provider has many

tenants that have workloads that are like TPC-C scale factor 10. The performance metric that is of interest

here is transactions per second (tps). Assume that the DaaS provider has 10,000 tenants split into two

classes: ‘H’ and ‘L’. The tenants in the H class are associated with a high performance SLO of 100 tps,

whereas the tenants in the L class are associated with a lower performance SLO of 10 tps (and presumably a

lower price). Assume that 20% of the tenants (2000 tenants) belong to the class H and the remaining (8000
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Figure 2.1: Average performance seen by tenants in class H (100tps) and class L (10tps) on TPC-C scale fac-
tor 10 database, as the tenant mix is varied. In both figures, circles annotated with the same letter correspond
to the same operating point.

tenants) belong to the class L. For this example, imagine that there is only one SKU, and assume that all the

tenants have the same query workload characteristics (i.e., all tenants have the same query workload, and

issue queries to the server with the same frequency).

To find a hardware provisioning policy and the associated tenant scheduling policy, we first need to

understand how the performance of the tenants in class H (and class L) changes for a workload that consists

of a mix of these tenants. In other words, we need to characterize the performance that each tenant sees for

varying mixes of tenants from the two classes, when these tenants are scheduled on the same server. We

capture this performance trait in a SKU performance characterizing model.

To produce the SKU performance characterizing model, we first benchmark the server SKU for a

homogeneous mix of tenants. This benchmark shows that we can accommodate around 25 tenants of class

H (100 tps). Scheduling more than 25 tenants results in the tps dropping below 100 tps, and hence breaks
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the performance SLO. Similarly, we find that this SKU can accommodate up to 100 tenants of class L (10

tps). Points A and B in Figure 2.1 correspond to the findings from this homogeneous benchmark. (Below

we describe what Figure 2.1 shows in more detail.)

The homogeneous benchmark above defines the boundaries of how many tenants of each class we can

pack on a given server. Next, we need to characterize the space to allow for an arbitrary mix of tenants. We

note that while it is possible that an optimal hardware provisioning policy and associated tenant scheduling

policy could only have SKUs with homogeneous tenants (i.e., no SKU has a mix of tenants from the two

classes), it is also possible that the optimal policy has a mix of tenants from the two classes on some

or all the SKUs. This may be the case if different tenant workloads have different resource utilizations

(memory vs. disk vs. CPU) on a SKU. Thus, the SKU performance characterizing model must also consider

heterogeneous mixes of tenants.

To complete the SKU performance characterizing model, we need to benchmark the server for varying

mixes of tenants from the two performance classes, and measure the throughput that each tenant in each

class sees. Figure 2.1 shows the SKU performance characterizing model for an actual SSD-based server

SKU using experimental results for the 100 tps and the 10 tps TPC-C tenant classes. (See Section 5.2 for

details.)

In Figure 2.1, the performance of the class H tenants is shown in Figure 2.1(a), while the performance

that the class L tenants experience is shown in Figure 2.1(b).

First, consider a homogeneous tenant scheduling policy that uses only the points A (25 100tps ten-

ants), and B (100 10tps tenants). In this case, the DaaS provider needs to provision 160 SSD-based servers

for the 10,000 tenants (80 for the H class tenants, and 80 for the L class tenants).

But, could we do better than using a homogeneous tenant scheduling policy? To answer this question,

we need to systematically explore the entire space of tenant workload mixes, and the associated hardware

provisioning (to compute the operating cost). Essentially, we need to explore the entire space shown in

Figure 2.1. Note that some of the points in this space are not feasible “solutions”, as they violate the perfor-

mance SLOs. For example, at the operating point F in Figure 2.1(a), the H class tenants see a performance

level that is below 100 tps, since the point F is in the yellow zone that corresponds to 10-100 tps. In Fig-
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ure 2.1(b), at point F, the L class tenants do not reach a satisfactory performance either.

On the other hand, in Figure 2.1, the operating points C, D, and E are all feasible, but they result

in different hardware provisioning policies, which in turn impacts the overall operating costs. In this case,

the operating point E is the most cost-effective of these three operating points, because it only requires 143

SKUs (14 H tenants and 56 L tenants per SKU). In contrast, the operating point D (10 H and 40 L tenants

per SKU) and the operating point C (5 H and 20 L tenants per SKU) require 200 and 400 SKUs respectively.

Notice that the policy from point E results in 17 fewer servers required than the homogeneous policy from

point A and B.

The problem illustrated above becomes even more complicated if the DaaS provider has a mix of

SKUs to choose from. In this case, assume that the DaaS provider has another SKU that is less expensive, but

has lower overall performance on this workload. In this case, the DaaS provider needs to consider the cost

ratio between the two different SKUs and the relative performance differences, and provision hardware that

reduces the overall operating cost. Note that the lowest cost feasible operating point could involve deploying

a mix of the two (or, in general, more) SKUs, as shown by various examples in Section 2.4. Thus, the

overall optimization problem involves finding a mix of SKUs to deploy for a given set of tenants belonging

to different performance-based SLO classes, along with a tenant scheduling policy for each deployed SKU.

Here, we present and evaluate a solution to this problem.

2.2 Technical Contributions

The above example not only highlights the difficult optimization problem that our framework tackles

but also the two component solution: the output of our framework is an SLO compliant tenant schedul-

ing policy and a cost minimizing hardware provisioning policy. In this chapter, we fully define the

optimization framework to provide these provisioning and scheduling solutions, discuss how to solve the

optimization problem, and show interesting policies that arise from empirical results.
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Figure 2.2: A work-flow diagram for using our cost-optimization framework.

2.3 Performance SLO Framework

In this section, we describe our optimization framework, which has three steps as shown in Figure 2.2.

Recall that the goal of this framework is to provide hardware provisioning and tenant scheduling policies

that minimize the costs to DaaS providers while satisfying the performance-related specifications in tenant

SLOs.

In the first step in Figure 2.2 (described in Section 2.3.1), we benchmark the performance of each

server SKU in a homogeneous multi-tenant environment. At the end of this step, we understand the tenant

performance for each tenant class on each hardware SKU, producing Output 1 in Figure 2.2. From this first

step, for a specific performance level, we can determine the maximum number of tenants of a given class

that can be scheduled on a specific server SKU, such that the performance SLOs can be satisfied for each

tenant. Essentially, in this step we find points like A and B in Figure 2.1 for every tenant class for every

hardware SKU.

The next step, marked as Step 2 in Figure 2.2, uses Output 1 to compute the boundaries of the space of

mixed class workloads that should be considered. Then, for each hardware SKU this space is characterized

by running actual benchmarks. In other words, Step 2 computes Figure 2.1 for every hardware SKU as

Output 2. Now, we understand the impact of scheduling a workload with tenants that have different SLO

requirements on the same server box. This step is discussed in more detail in Section 2.3.2.

The last step in Figure 2.2 takes as input the set of SKU performance characterizing models (i.e.,

Output 2) and computes an optimal strategy to deploy the workload. This step uses an optimization method

that takes as input (i) A set of performance SLOs; (ii) A set of hardware SKUs with specific costs and

performance characteristics; (iii) A set of tenants with different performance SLOs to be scheduled; and
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computes the hardware provisioning and the tenant scheduling policies that minimize costs while satisfying

all SLOs. This step is discussed in more detail in Section 2.3.3.

2.3.1 Characterizing Multi-Tenant Performance

This section discusses the first step in our framework that is shown in Figure 2.2.

Workload and Performance Metric

To make the discussion concrete, in this work, we use TPC-C as a model workload, which has also

been used before to study DaaS [47].

Each of our TPC-C transactions were implemented as stored procedures within SQL Server. Our

application driver issued stored procedure calls to SQL Server via .NET connections from network-attached

clients. Like prior studies [94], we maintained the full transaction mix ratio as dictated by TPC but elimi-

nated think-time pauses, implemented each tenant with a single remote application driver, and did not scale

the number of clients with warehouses. As a performance metric, we use the throughput of the new-order

transactions, as is done for reporting TPC-C results1 .

Hardware SKUs

Table 2.1 shows the two server SKUs, ssdC and diskC, that we use in this study. Both servers are

identical except for the storage subsystem. Both server SKUs are configured with low-power Nehalem-based

L5630 Intel processors (dual quad cores), and 32GB DDR3 memory, running Windows Server 2008R2 and

the latest internal version of SQL Server. The OS and the DBMS are installed on a separate 10K RPM

300GB SAS drive. In the ssdC configuration, all the data files and log files of the database are stored on

three Crucial C300 256GB SSDs while in the diskC configuration, these are stored on three 10K RPM

300GB SAS drives.

We note that the storage subsystem has a big impact on the RDBMS performance in a multi-tenant

environment, since the load imposed on the hardware when serving independent tenant requests naturally

leads to randomized data access. This behavior is in contrast to traditional single-tenant environments where
1 Disclaimer: While we have used the TPC-C benchmark as a representative workload in this work, the results presented are

not audited or official results, and, in fact, were not run in a way that meets all of the benchmark requirements. Consequently, these
results should not be used as a basis to determine SQL Server’s performance on this or any other related benchmarks.
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ssdC diskC

CPU 2X Intel L5630 2X Intel L5630
RAM 32GB DDR3 32GB DDR3

OS Storage 10K SAS 300GB 10K SAS 300GB
DB Data 2X Crucial C300 256GB 2X 10K SAS 300GB
DB Log Crucial C300 256GB 10K SAS 300GB

RAID Cntlr w/BBC YES YES
Cost $4,500 $4,000

Table 2.1: Two server configurations (SKUs)

the DBMS schedules data accesses to be as sequential as possible.

Multi-Tenancy and Performance

There are many ways to deploy a DaaS on a cluster with multi-tenancy [16, 17, 42, 47, 146]. We

list four main approaches to housing tenants that have emerged recently in decreasing order of complexity:

(1) all tenant data are stored together within the same database and the same tables with extra annotation

such as ‘TenantID’ to differentiate the records from different tenants [16, 17]; (2) tenants are housed within

a single database, but with separate schemas to differentiate their tables and provide better schema-level

security; (3) each tenant is housed in a separate database within the same DBMS instance (for even greater

security); (4) each tenant has a separate Virtual Machine (VM) with an OS and DBMS, which allows for

resource control via VM management [47].

We use option 3 to implement multi-tenancy, since this option above provides a good trade-off be-

tween wasted resources due to extra OSs in the VM method (option 4), and the complex manageability and

security issues associated with options 1 and 2 [47]. Looking at the other options is an interesting direction

for future work.

In our experiments, we consider a workload comprised of 1GB TPC-C tenants with 10 warehouses.

We recorded the average per-tenant TPC-C transactions per second achieved on both hardware SKUs for

varying degrees of multi-tenancy over a time span of 100s. These results are shown in Figure 2.3.

There are a few important observations from Figure 2.3. First, on our hardware SKUs, the only way

tenants can achieve a performance of 100tps is if their datasets almost completely fit in memory. Note
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Figure 2.3: Performance for the ssdC and diskC SKUs (see Table 2.1) as we increase the number of tenants
on a single SKU.

the drop-off in tps when the number of tenants is increased beyond 25 (i.e., after the combined tenant size

crosses 25GB). Second, when the datasets fit completely in memory, the cheaper diskC server can deliver

the same per-tenant performance as the more expensive ssdC server since the storage subsystem is not the

bottleneck. Finally, notice that at the lower performance levels, the ssdC server can support significantly

more concurrent tenants than the diskC server. This behavior is due to the better random I/O performance of

the SSD storage compared to the mechanical disk storage. For instance, in Figure 2.3, the measured log disk

utilization at 10 tenants for the ssdC and diskC SKUs was 39% and 41% respectively. As we increased the

number of tenants to 25, the log disk utilization increased to 50% and 66% for these two SKUs respectively.

Finally, at 50 tenants and beyond, the log disk utilization is saturated at more than 95% for both SKUs.

The curve shown in Figure 2.3 defines the maximum number of tenants that each SKU can support

while maintaining a specific performance level per tenant. This homogeneous multi-tenant benchmarking is

a necessary first step since it defines the boundaries of the performance that the DaaS provider can promise

in their SLOs.

Definition 2.3.1. Let the set S = {s1, s2, ..., sk} represent the k SLOs published by a DaaS provider.

Typically, k > 1 since different tenants may require (and be willing to pay for) different levels of

performance. Given a set of tenants with different SLOs to schedule on a cluster, a natural scheduling policy

is to schedule the tenants of each class on the type of server that can handle the most number of tenants of

that class. However, this approach ignores the relative cost of different SKUs, as well as the possibility of
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scheduling tenants of different classes on the same server to reduce the overall provisioning and operating

costs. The next step (Section 2.3.2) is to determine the behavior of a single SKU when loaded with tenants

that are associated with different SLOs.

2.3.2 Characterizing Heterogeneous SLOs

A number of mechanisms can be used to provide different performance SLOs on the same server.

One simple mechanism is resource governance whereby tenants are allocated specific amounts of critical

resources like CPU and DBMS buffer pages to limit their resource consumption. Another mechanism is to

use an admission control server that throttles incoming tenant requests accordingly. Studying the different

mechanisms to implement performance SLOs is an interesting topic, but is orthogonal to our optimization

framework, and hence beyond the scope of this work.

To avoid the additional complexity of an admission control server, we chose to simulate a buffer

pool resource governance mechanism on top of SQL Server. In our method, we start separate SQL Server

instances within each physical server with one instance for each SLO class si (there are k of these as per

Definition 2.3.1). All tenants that belong to the same SLO class si are assigned to the same SQL Server

instance. The performance of each SQL Server instance is throttled by limiting the amount of main memory

that is allocated to it. The amount of main memory that is allocated to each SQL Server instance (SLO

class) is an average of two factors. The first factor is the fraction of the tps requirements for that SLO class

compared to the aggregate total tps across all the SLO classes. The second factor is the ratio of tenants in

that SLO class to the total number of tenants. This memory allocation method provides a balance between

allocating memory purely based on tps and purely based on the number of tenants. (We experimented with

other methods, but found that this method provided the best overall behavior allowing us to pack far more

tenants per SKU than other simpler methods.)

Recall that Figure 2.3 characterizes the performance of the server SKUs ssdC and diskC when all the

tenants on a SKU have equal access to resources. Given tenants with different SLOs (Definition 2.3.1), we

need to characterize the performance delivered by each server SKU to each tenant class si. For this purpose,

we use a SKU performance characterizing function, which is described next.
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Definition 2.3.2. For a given SKU, let ~b = [b1 b2 ... bk]
T where bi represents the number of tenants

of class si scheduled on the server. For this server, the SKU performance characterizing function, f(~b),

represents the performance delivered over a specific time interval for different tenant scheduling policies.

Here f(~b) = [φ1 φ2 ... φk]
T where φi is the random variable representing the performance achieved by the

tenants of class si scheduled on the server.

Using this definition for function f , it is possible to provide the performance SLOs in the same way

as the current uptime SLAs. For instance, say that for a given SKU with a load defined by ~b, we determine

that the distribution of the measured performance over 100 seconds for the tenants of class si (say, a 100tps

class) is normal, with an average of 130 tps and a standard deviation of 10tps; that is, φi ∼ N(130, 10).

Then, according to the definition of a normal distribution, for all the 100tps tenants that are scheduled on

this server, we can guarantee the desired performance 99.6% of the time.

The ability to provide such guarantees makes our formulation of the SKU characterizing function

f very powerful in defining performance SLOs. In practice, fully characterizing f is likely to be very

challenging and one has to simplify this function. Here, we consider the following simplification of f to a

boolean characterizing function (exploring other options is an interesting direction for future work).

Definition 2.3.3. Given a certain server SKU and~b from Definition 2.3.2, a simplified boolean SKU perfor-

mance characterizing function f̂(~b) returns true if all the tenants achieve their respective SLO performance

based on a set of summary statistics of the random variables and false otherwise.

As a simplification for our experiments, we ignored other statistics such as variance and defined f̂(~b)

in terms of the average transactions per second over 100s. For example, consider Figure 2.1, we plotted

f(~b) = [E[φ1] E[φ2] ... E[φk]]
T for ssdC (see Table 2.1) for two SLO classes, S = {100tps, 10tps}.

Having defined the SKU performance characterizing function, the next question is to find acceptable

operating zones that deliver the promised performance to each tenant in each class si. Again, using Fig-

ure 2.1 as an example, we wish to compute the area in both sub-figures where both the 100tps tenants and

the 10tps tenants meet their performance requirements. This area defines the acceptable “operating zone”

for the ssdC SKU, and is distinguished from the other areas using Definition 2.3.3.
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To evaluate the function f̂ , a systematic search of the tenant scheduling space is performed as follows:

We first start by scheduling the maximum number of highest-performance tenants as determined by the

benchmarking step in Section 2.3.1. Then, we systematically substitute a fixed small number of these

highest-performance tenants with low-performance tenants (if there are more than two tenant classes, in

this step, we can iterate through fixed size combinations of the lower performance tenant classes). For

each sample, we run a benchmark with the current mix of tenants, and record the observed per-tenant

performance. If the observed performance satisfies all tenant SLOs, then f̂ returns true for this tenant

scheduling policy and for all other scheduling policies where there are fewer tenants in any of the classes.

If f̂ returns true, we also try adding more low-performance tenants (iteratively in every low performance

class) and repeat the experiment. We keep pushing up the number of the tenants in the low performing tenant

class(es) until f̂ returns false, in which case we know we have reached the boundary of the f̂ function. Thus,

we determine a tenant scheduling “frontier”, so that f̂ is true on one side of the frontier and false on the other

side. (As part of future work, it would be interesting to consider obtaining this frontier via other methods

such as augmenting the query optimizer module to generate/estimate this frontier [30, 55].)

Frontier for the SLO mix – 10tps and 1tps Consider the SLO set S = {10tps, 1tps}, and the SKUs ssdC

and diskC (see Table 2.1). The frontiers for this case are shown in Figure 2.4 as the solid black line. The

diamond points in this figure represent some of the actual benchmark tests that were run. The points that

lie above a frontier line represent tenant scheduling policies that fail to meet tenant SLOs (f̂ = false),

whereas the points that lie on the frontier line will satisfy all tenant SLOs. The area below the frontier line

contains scheduling policies that will satisfy tenant SLOs but potentially waste resources (i.e., are potentially

over-provisioned).

An interesting point about the performance characteristics shown in Figure 2.4 is that the bottleneck

for the points in the frontier is the log disk. Each database has a log file and as more tenants are added, the

I/Os to the log disk become more random, and each log I/O becomes relatively more expensive. As a result,

if we look at the pure 10tps case (upper left point in the graph) and remove x of the 10tps tenants, we can

add far fewer than 10x 1tps tenants.

Having a linear frontier as is the case in Figure 2.4 implies that we can add/remove tenants of different
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Figure 2.4: SKU performance characterizing functions for S = {10tps, 1tps}

classes to a server according to a constant ratio. For example, consider again the frontier for the diskC SKU

(Figure 2.4(a)) and the ssdC SKU (Figure 2.4(b)). The slope of the lines in both graphs is −1
2 , which

implies that for any operating point along these two frontier lines, the DaaS provider can safely swap one

10tps tenant for two 1tps tenants. Thus, a linear frontier simplifies the tenant scheduling policies. As we

discuss below, we may not always observe a linear frontier.

Frontier for the SLO mix – 100tps and 1tps Suppose that a DaaS provider wishes to publish a 100tps

SLO. From Figure 2.3, we know that for both SKUs, we are limited to about 25 100tps tenants on either

SKU. Figures 2.5(a) and (b) show the observed frontiers for both the diskC and ssdC SKUs respectively,

for S = {100tps, 1tps}. The frontiers are no longer linear and show that if we start from the case of only

100tps tenants (upper left point in both graphs), the initial curve is convex and then tapers off into a concave

shape. At the “only 100tps tenants” point, the system is memory bound (see Figure 2.3). As we move to the

right along the frontier, the system now becomes log disk bound.
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Figure 2.5: SKU performance characterizing functions for S = {100tps, 1tps}

The initial shape of the frontier is convex since the log disk saturates a little beyond the proportions

dictated by the line formed by connecting the two end points of the frontiers. For example, in Figure 2.5(a)

as we move from the 25 100tps case to the right, we reach a point where there are 20 100tps tenants. If the

frontier were linear, then we should only be able to add 5 × 4 = 20 1 tps tenants, but we can add 25 1tps

tenants before the log disk saturates.

Now consider the concave tail of the frontier in Figure 2.5. Again this has to do with the log disk.

Consider the (bottom) right-most point in the frontier. Here we have only 1 tps tenants. At this point, the

system is bottlenecked on the log disk. This behavior is captured in Figure 2.6, which plots the log disk

performance (y axis) of an ssdC server with one 100tps tenant as the number of 1tps tenants is varied (x

axis). The log write wait time is shown as a range by a vertical bar where the low point denotes the first

quartile and the high point denotes the third quartile. The horizontal (green) bar denotes the average. The

performance achieved by the 100tps tenant (shown on the right vertical axis) is plotted using round dots.
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Figure 2.6: Average database log write wait time with vertical bars spanning the 1st to the 3rd quartiles,
along with the average tps achievable by a single 100tps tenant on the ssdC SKU.

In Figure 2.6, we see that at the 200/0 point, the log disk writes takes an average of 12 ms (and the log

disk is saturated at this point). If we move to the left from this point by dropping 25 1 tps tenants and adding

one 100 tps tenant, then the 100tps tenant only achieves around 20 tps. As we continuously decrease the

number of 1tps tenants by 25, we observe that the average log write wait time decreases only after 125 1tps

tenants. The performance achieved by the 100tps tenant very closely follows with a jump at 100 1tps tenants.

These results show why scheduling one 100tps tenant onto the server in Figure 2.5 requires a substantial

drop in 1tps tenants. To summarize, a high performance tenant requires disproportionately large headroom

in log disk provisioning to process transactions with a high throughput. Thus, even though the tenants are

all running the same workload, the sheer increased performance requirement of some tenants over others

causes resource requirement disparities similar to tenants running different workloads.

Frontier for the SLO mix – 100tps and 10tps Now let us consider a mix of 100tps and 10tps tenants, i.e.,

S = {100tps, 10tps}. The results for this case are shown in Figures 2.7(a) and (b) for the diskC and the

ssdC SKUs respectively. For the same reasons as discussed above for the 100tps/1tps case, we observe the

a knee near the lower right corner of the frontier line, and a convex shape near the upper left corner of the

frontier line.
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Figure 2.7: SKU performance characterizing functions for S = {100tps, 10tps}

2.3.3 Putting It All Together

In the previous section, we described how to compute the SKU performance characterizing func-

tion for each SKU. We can now use these functions to formulate and solve the optimization problem for

provisioning hardware and scheduling tenants that satisfy different performance SLOs (namely Step 3 in

Figure 2.2).

Definition 2.3.4. M is a multiset {m1,m2, ...,mp} where each mj represents a server SKU defined by

a pair mj = (f̂j , cj) where function f̂j is the simplified SKU characterizing function (defined in Defini-

tion 2.3.3) and cj represents the amortized monthly operating cost for a server.

Note that since M is a multiset, mj need not be unique. This allows a single server SKU to be

scheduled with tenants in different ways.

Recall that we have the set of published SLOs as defined in Definition 2.3.1. We must now associate

each tenant with its corresponding SLO.
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Definition 2.3.5. Let ti represent the set of tenants that subscribe to SLO si as defined in Definition 2.3.1.

We represent all tenants by the set T = ∪ki=1ti.

Using Definitions 2.3.1 to 2.3.5, the following definition describes the main optimization (minimiza-

tion) problem.

Problem Definition 1. Given the sets S, T , and multiset M , compute a = [α1 α2 ... αp] and B =

[~b1 ~b2 ... ~bp]
T , where αi is the needed number of servers of type mi, and ~bi is a vector of length k indicating

how many tenants of each of the k SLO classes should be scheduled on an individual server of type mi. The

objective function C = Σp
i=1αici satisfies the following constraints:

Constraint 1 : aB = [|t1| |t2| ... |tk|] (cover all the tenants)

Constraint 2 : f̂i(~bi) returns true for 1 ≤ i ≤ p (all SLOs are satisfied)

Problem Definition 1 is a non-linear programming problem in the general case2 . Here, we need to

compute the following variables:

(1) a – the number of servers used for each SKU. This vector determines the total cost for provisioning the

servers.

(2) B – the tenant scheduling policy.

The entire space of solutions does not need to be fully explored since the feasible regions are defined

by the f̂ characterizing functions and the curves defined by Constraint 1 of Problem Statement 1. Since

our space of solutions is relatively small, a brute-force solver that explores the non-negative integer space

bounded by these curves sufficed for our purposes.3 Exploring other approaches is part of future work.

With this brute-force solver and the experimental results from Section 2.3.2, we now have the tools

that we need to evaluate our framework.
2 In simple cases, we can parameterize the problem into a linear programming problem, but this is increasingly onerous when

faced with non-linear piecewise frontier functions that characterize the server SKUs. The approach we take to solving the non-linear
programming problem is much more straight-forward.

3 For a 5000 100tps tenant and 5000 10tps tenant problem, our single-threaded brute-force solver finds a solution within 80
seconds on a 2.67Ghz Intel i7 CPU.
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Tenant diskC Amortized

Scenario SLO set Ratio Cost
SC1 S1={10tps, 1tps} 20:80 $111
SC2 S1={10tps, 1tps} 50:50 $111
SC3 S1={10tps, 1tps} 80:20 $111
SC4 S1={10tps, 1tps} 20:80 $88
SC5 S1={10tps, 1tps} 50:50 $88
SC6 S1={10tps, 1tps} 80:20 $88
SC7 S2={100tps, 1tps} 20:80 $111
SC8 S2={100tps, 1tps} 50:50 $111
SC9 S2={100tps, 1tps} 80:20 $111

SC10 S2={100tps, 1tps} 20:80 $88
SC11 S2={100tps, 1tps} 50:50 $88
SC12 S2={100tps, 1tps} 80:20 $88
SC13 S3={100tps, 10tps} 20:80 $111
SC14 S3={100tps, 10tps} 50:50 $111
SC15 S3={100tps, 10tps} 80:20 $111
SC16 S3={100tps, 10tps} 20:80 $88
SC17 S3={100tps, 10tps} 50:50 $88
SC18 S3={100tps, 10tps} 80:20 $88

Table 2.2: Experimental parameters for evaluating various scenarios. Tenant ratios divide 10,000 tenants
across two SLOs for each scenario. The ssdC SKU amortized cost over 36 months is $125.

2.4 Evaluation

In this section we apply the framework described in Section 2.3 to hypothetical DaaS scenarios to

illustrate the merits of the hardware provisioning and tenant scheduling policies obtained as solutions to the

cost-optimization problem defined in Problem Definition 1.

In our evaluation, we assume that the hypothetical DaaS provider must accommodate a total of 10,000

tenants running TPC-C scale 10 workloads, with two available SKUs – ssdC and diskC – as described in

Section 2.3.1. We varied the following three parameters to arrive at the 18 scenarios listed in Table 2.2.

(1) Published set of SLOs: We limited ourselves to three sets of SLOs discussed in Section 2.3.2, namely

S1 = {10tps, 1tps}, S2 = {100tps, 1tps}, and S3 = {100tps, 10tps}. We used average tps over 100s

as the metric to determine if an SLO is satisfied or not.

(2) Tenant ratios: For each SLO set Si, we varied the relative proportion of tenants belonging to one SLO
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versus the other. We used three ratios in our scenarios – 20:80, 50:50 and 80:20. For instance, a 20:80

ratio for the SLO set {100tps, 1tps} means that 2000 tenants are associated with the 100tps SLO while

8000 tenants are associated with the 1tps SLO.

(3) Relative costs between server SKUs: The true purchase costs of a single ssdC and diskC server are

$4,500 and $4,000 respectively. Amortized over 36 months [80], we arrived at monthly costs of $125

and $111 respectively. Although in reality the diskC server is 10% less expensive than ssdC, we also

considered a hypothetical diskC price point of $3,150 ($88 amortized, 30% less than ssdC) to consider

what happens if the relative costs of the hard disks were lower (e.g., if we had used less expensive SATA3

disks). We note that this method of running our framework with different scenarios can potentially

be used by a DaaS provider as a way of “scoping out” the impact of varying SKUs when making a

purchasing decision.

2.4.1 Solutions From The Framework

Hardware provisioning and tenant scheduling policies are depicted using bubble plots in a 2-dimensional

space. Each bubble represents a single hardware SKU with a specific tenant schedule as determined by the

coordinates of the center of the bubble. The size of the bubble denotes the number of servers provisioned

from that SKU (i.e., αi in Problem Definition 1). The position of the bubble corresponds to the the tenant

scheduling policy represented by vector~bi in the problem definition. That is, the y coordinate is the number

of high-performance tenants scheduled on that SKU, and the x coordinate is the number of low-performance

tenants. Recall that Definition 2.3.4 allows a single hardware SKU to be used multiple ways with different

tenant scheduling policies. Thus, even though we have only two types of servers, ssdC and diskC, a single

plot may contain more than two bubbles.

Next, we discuss the hardware provisioning and tenant scheduling policies obtained for each set of

SLOs in turn.

SLO Set 1 – 10tps and 1tps

As shown in Figures 2.4(a) and (b), this set of SLOs results in linear SKU performance characterizing
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Figure 2.8: Solutions for (a) SC1 - $7,500; (b) SC2 - $9,375; (c) SC3 - $11,250 (see Table 2.2 for de-
tails). Circle positions indicate tenant scheduling policy and circle size/annotation indicate hardware SKU
provisioning policy.

functions for both the ssdC and diskC SKUs. Since the ssdC SKU can serve twice the number of 10tps and

1tps tenants as the diskC SKU, we expect the optimal hardware provisioning policy to favor ssdC servers,

given that the price of an ssdC server is less than twice the price of a diskC server.
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Figures 2.8(a)-(c) shows the optimal solutions for scenarios SC1, SC2 and SC3 (diskC costs 10% less

than ssdC). As expected, the optimal provisioning policy uses only ssdC SKUs. Note that since exactly one

SKU is used, the ratio of tenants scheduled on each server (determined by the y and the x coordinates) cor-

responds exactly to the total tenant ratio (20:80, 50:50 and 80:20 in Figures 2.8(a), (b) and (c) respectively).

The total costs of the optimal solutions in each case are indicated at the bottom of figure. We can see that as

the proportion of 10tps tenants increases from (a) to (c), more servers are required, which increases the total

solution cost.

Next, we evaluated the scenarios SC4-SC6 (i.e., the diskC SKU is 30% less expensive than the ssdC

SKU). The optimal policies obtained in this case are identical to those of scenarios SC1-SC3 shown in

Figure 2.8 (and hence the figures are omitted). Since the solutions only used ssdC SKUs, the change in the

diskC SKU cost does not affect the optimal solution cost. Again, this is expected given the much higher

performance delivered by the ssdC servers for this set of SLOs.

These results suggests that since the diskC SKU used in our evaluation delivers roughly half the

performance of the ssdC SKU, it must cost less than half the ssdC SKU to be considered cost-effective.

As this experiment (and recent studies [108]) show, the considerable performance benefits obtained by the

SSDs may in some cases compensate for the price premium.

SLO Set 2 – 100tps and 1tps

Figures 2.9(a)-(c) show the optimal hardware provisioning and the tenant scheduling policies for

scenarios SC7, SC8, and SC9 respectively (diskC costs 10% less than ssdC). As expected, the less expensive

diskC SKU plays a large role in the optimal solution. In fact, when the tenant mix contains a large proportion

of 100tps tenants (Figure 2.9(c)), the ssdC SKU is not used at all! Furthermore, note that even when the

ssdC servers are used (Figures 2.9(a) and (b)), only the 1tps tenants are scheduled on these servers. These

results are somewhat counter-intuitive, since the high-end SKU is scheduled only with the low-end tenants.

In Figure 2.10(a)-(c), we show the optimal solutions for scenarios SC10, SC11 and SC12 (diskC

costs 30% less than ssdC). Now, compared to the results shown in Figure 2.9, we observe that the hardware

provisioning policy uses even fewer ssdC servers due to their higher relative cost.

An interesting observation from these results is that in the recommended hardware provisioning pol-
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Figure 2.9: Solutions for (a) SC7 - $13,861; (b) SC8 - $25,264; (c) SC9 - $36,667 (see Table 2.2 for
details). Circle positions indicate tenant scheduling policy and circle size/annotation indicate hardware
SKU provisioning policy.

icy, the ratio of the number of servers of one SKU over the number of servers of the other SKU is very large.

Examples of this can be found for SC8 and SC11, Figure 2.9(b) and Figure 2.10(b) respectively, where the

number of ssdC servers is an order magnitude less than the number of diskC servers. An alternative (al-
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Figure 2.10: Solutions for (a) SC10 - $11,900; (b) SC11 - $20,338; (c) SC12 - $28,875 (see Table 2.2 for
details). Circle positions indicate tenant scheduling policy and circle size/annotation indicate hardware SKU
provisioning policy.

beit suboptimal) SKU provisioning strategy is to simply use only diskC servers, and ignore ssdC altogether

(or vice versa). The advantage of this strategy is that it produces a homogeneous cluster that is easier to

manage and administer. In Section 2.4.2, we discuss this and other suboptimal (from the initial hardware
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Figure 2.11: Solutions for (a) SC13 - $17,681; (b) SC14 - $26,486; (c) SC15 - $37,264 (see Table 2.2 for
details). Circle positions indicate tenant scheduling policy and circle size/annotation indicate hardware SKU
provisioning policy.

provisioning cost perspective) alternatives and their costs.

SLO Set 3 – 100tps and 10tps

Here we consider SLO Set S3 corresponding to scenarios SC13-15 and SC16-18 in Table 2.2. Fig-
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Figure 2.12: Solutions for (a) SC16 - $16,250; (b) SC17 - $21,000; (c) SC18 - $29,400 (see Table 2.2 for
details). Circle positions indicate tenant scheduling policy and circle size/annotation indicate hardware SKU
provisioning policy.

ure 2.11 plots SC13-15 where the diskC SKU costs 10% less than the ssdC SKU, and Figure 2.12 plots

SC16-18 for the case where the diskC SKU costs 30% less.

Interestingly, for this set of SLOs, in some scenarios, the optimal solution uses the ssdC SKU with
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two different tenant scheduling policies. As seen in Figures 2.11(a) and 2.12(a), there are two blue bubbles

representing ssdC servers – one bubble represents servers that are scheduled with only 10tps tenants and the

other represents servers that are scheduled with a mix of tenants.

Since we have a 100tps SLO in S3, the diskC servers provide better value because they can handle

the same number of 100tps tenants at a lower price. This is why we predominantly see diskC servers in

the solutions as the tenant ratio shifts toward the high-performance tenants. Similar to Figure 2.10, as

we decrease the cost of the diskC SKU (Figure 2.12), or increase the number of 100tps tenants (SC15 in

Figure 2.11 and SC18 in Figure 2.12), the optimal solution provisions mostly less expensive diskC servers.

Note that in Figure 2.11(c), the diskC servers (red bubble) are scheduled with just one 10tps tenant

per server. A simpler solution (with a possibly higher cost) might be to simply schedule no 10tps tenants on

the diskC servers. Such solutions are discussed in the following section.

2.4.2 Suboptimal Solutions – Simplicity vs Cost

Methods ssdC SKU diskC SKU
Optimal heterogeneous SLOs heterogeneous SLOs
ssdC-only heterogeneous SLOs –
diskC-only – heterogeneous SLOs
ssdC-hightps homogeneous high-perf homogeneous low-perf
ssdC-lowtps homogeneous low-perf homogeneous high-perf

Table 2.3: Comparing heuristic tenant scheduling on two hardware SKUs.

In this section, we discuss issues related to the simplicity and manageability of the hardware pro-

visioning and tenant scheduling policies dictated by our framework. At the outset, note that our notion of

“total cost” is simplistic as it is only defined in terms of the costs of individual servers. In cloud deployments,

issues such as cluster manageability also carry a cost and play an important role in provisioning decisions.

In particular, heterogeneous clusters comprised of multiple SKUs can be harder to maintain, manage, and

administer compared to homogeneous clusters comprised of a single SKU. A related issue is the complexity

of scheduling policies. A straightforward scheduling policy (e.g., assign all tenants with SLO s1 on SKU
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Figure 2.13: Relative costs corresponding to solutions for {10tps, 1tps} Scenarios (a) SC1-3 and (b) SC4-6
(see Table 2.2) using our framework and 4 simple methods (see Table 2.3).

1, s2 on SKU 2, etc.) may simplify hardware provisioning decisions as well as tenant pricing policies. For

instance, if tenants of a given SLO class are tied to a certain SKU, then they can be charged at a rate de-

termined by the price of that SKU. Here we do not attempt to quantify the notion of cluster “complexity”,

but leave that as part of future work. Nevertheless, the additional server costs imposed by simpler hardware

provisioning and tenant scheduling policies can be determined.

Table 2.3 lists four alternative methods to our optimizing framework. In method ssdC-only, we use

a homogeneous cluster comprised only of the ssdC SKU. Note that this method allows a heterogeneous

mix of tenants with different SLOs on a server and also allows for different tenant scheduling policies on

different ssdC servers. Method diskC-only is similar, but with diskC servers taking the place of the ssdC

servers. In method ssdC-hightps, all of the high-end tenants are scheduled on the ssdC servers, and all of the

low-end tenants on the diskC servers. In method ssdC-lowtps, this assignment is reversed. Thus, in the latter

two policies, the SLOs are tied to SKUs. Note that another possible method is to provision a homogeneous
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Figure 2.14: Relative costs corresponding to solutions for {100tps, 1tps} Scenarios (a) SC7-9 and (b) SC10-
12 (see Table 2.2) using our framework and 4 simple methods (see Table 2.3).

cluster and maintain a homogeneous tenant scheduling policy each server. We omit this method since it is

subsumed by the ssdC-only and the diskC-only methods that allow for both homogeneous and heterogeneous

tenant scheduling policies.

In Figures 2.13-2.15, we plot the total costs obtained by the five methods outlined in Table 2.3 for the

18 scenarios described Table 2.2. All solutions are plotted relative to the cost-optimal solution (shown as the

left-most bar) discussed in Section 2.4.1. At a high-level, while in each case there are some solutions that

are identical or very close to the optimal solution, there is no single method that consistently gives a solution

that is close to the optimal solution in all scenarios. For example, while ssdC-lowtps seems to match optimal

cost in the S = {100tps, 1tps} cases, this is not the trend when S = {10tps, 1tps}. In another case, while

the ssdC-only solution is optimal for the scenarios depicted in Figure 2.13, it is not optimal for the scenarios

shown in Figure 2.14.

Let us examine a few solutions in more detail. In Figure 2.13(a) and (b), which correspond to the
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Figure 2.15: Relative costs corresponding to solutions for {100tps, 10tps} Scenarios (a) SC13-15 and (b)
SC16-18 (see Table 2.2) using our framework and 4 simple methods (see Table 2.3).

{10tps, 1tps} SLO scenarios SC1-3 (diskC SKU cost 10% less than the ssdC SKU) and SC4-6 (diskC

SKU cost 30% less than the ssdC SKU) in Table 2.2 respectively, the diskC-only solution is significantly

worse than the optimal solution while the ssdC-only solution is optimal. The ssdC-hightps method appears

increasingly attractive as the proportion of 10tps tenants (high-perf. tenants) grows. The costliest solutions

are the diskC-only and ssdC-lowtps methods. In Figure 2.14 (the S = {100tps, 1tps} case), the ssdC-only

and the ssdC-hightps methods are expensive solutions in Figures 2.14(b) and (a) respectively, since the ssdC

and the diskC SKUs can both handle only 25 100 tps tenants, but the ssdC server is more expensive. Also,

a homogeneous diskC cluster is generally more expensive when the tenants skew towards the 1tps SLO.

This is because the ssdC SKU can schedule many per 1tps tenants than diskC SKU (Figure 2.3). The trends

shown in Figure 2.15 (for S = {100tps, 10tps}) are similar to those of Figure 2.14 for the same reason.

This analysis shows that simpler provisioning methods may come close to the optimal solution pro-

vided by our framework, but no single method produces consistently good solutions. Moreover, these sim-
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pler heuristics still require SKU performance characterization in order to schedule tenants while adhering

to tenant SLOs. Our framework produces low-cost hardware provisioning and tenant scheduling policies for

multi-tenant database clusters that are up to 33% less costly than simpler provisioning methods. Thus, the

cost benefit of an optimal solution over a suboptimal solution must be weighed against cluster manageability

and simplicity.

2.4.3 Suboptimal Solutions – Dynamic Tenants

Throughout our previous analysis and discussion, we have assumed that the DaaS provider only

needs to optimize once for a static number of tenants. In this section, we will relax this assumption and

consider what happens when the tenant population changes in size and/or SLO make-up (the ratio of high-

performance tenants to low-performance tenants).

Specifically, we consider the following problem: first, the DaaS provider has an active set of ten-

ants, T1, that have been optimally scheduled to a set of provisioned servers according to our optimization

framework. In addition, the provider has another set of tenants, T2, that potentially has a different ratio of

high-performance tenants to low-performance tenants. The set T2 is intermittently active and is also opti-

mally scheduled to provisioned servers using our framework. The problem we consider is: Given that the

provider knows the T2 tenant set will become active for time length w4 , should the provider (i) keep the two

tenant populations independently locally-optimized; or, (ii) globally-optimize all T1 ∪ T2 tenants?

When considering a global optimization across T1 ∪ T2, we must consider what happens when a

T2 tenant that was scheduled onto a particular server is re-scheduled onto a different server. In such a

scenario, we must migrate the tenant’s database from one server to another.5 Since tenant migration

consumes resources, this action is not free and so we associate a cost function g(dest, source), in dollars,

with migrating a tenant from server source to server dest (assuming a fixed size tenant).

Formally, we define an extension to Problem Statement 1 that compares the cost of keeping tenant
4 If w = ∞, this is the case where the T2 tenants will remain active indefinitely.
5 In environments with high availability (HA) SLAs, tenant databases are replicated across multiple servers and we may only

need to re-direct user requests to a replica. This “swap” approach is generally not as expensive as migrating tenant data. However,
considering HA SLAs is beyond the scope of this study and is the focus of future work. For our discussion, we will simply consider
a single replication environment, or one with a fixed primary copy, which in turn requires tenant data migration.
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populations locally-optimized or globally-optimizing all the tenants:

Problem Definition 2. We are given SLO set S, server SKU multisetM , and two tenant sets T1 and T2. Us-

ing our framework to solve Problem Statement 1 independently for T1 and T2, we get the locally-optimized

solutions (a1, B1) and (a2, B2) respectively. Over a time length w, the amortized server cost of the T1 solu-

tion (a1, B1) will be Cw1 and the amortized server cost of the T2 solution (a2, B2) will be Cw2 . Alternatively,

the provider can globally-optimize the combined tenant set T1 ∪ T2 using our framework and get a schedul-

ing and provisioning solution (a1∪2, B1∪2) with a cost of Cw1∪2. However, during this global optimization,

the set of tenants π ⊆ T1 ∪ T2 need to be migrated with the cost Σ∀τi∈πg(to(τi) , from(τi) ) where from(τi)

and to(τi) provide the source and destination servers for migrating τi respectively. The provider should only

globally-optimize all T1 ∪ T2 tenants for the upcoming w time span if:

Cw1 + Cw2 > Cw1∪2 + Σ∀τi∈πg(to(τi), from(τi)) (2.1)

In the following section, we will first analyze the difference between the sum of the costs of the

locally-optimized solutions, C∞1 + C∞2 , and the cost of the globally-optimized solution, C∞1∪2. Following

that, we will consider the cost of migration for globally optimizing the entire tenant population.

The Cost of Locally-optimal solutions vs Globally-optimal solutions

From Equation 2.1, it is intuitive to see thatC∞1 +C∞2 −C∞1∪2 bounds the migration cost if the provider

wishes to globally optimize T1 ∪ T2. If the cost difference between the locally-optimal solutions and the

globally-optimal solution is small, then it means that tenant migration must be done in a very cheap way to

make global re-optimization viable. We now present some results that show how big the cost differences

can be.

In Figure 2.16, we plot (C∞1 + C∞2 )/C∞1∪2 for various sets of T1 and T2 tenants where S = {H,L},

where H corresponds to the 100tps SLO, and L corresponds to the 10tps SLO. In all of the sub-figures, we

considered a variety of T2 populations from 1,000 to 20,000 (x-axis) and the new ratios that we considered

are 1H:6L, 1H:4L, 1H:2L, 1H:1L, 2H:1L, 4H:1L, and 6H:1L (the various data series). The three sub-figures

(a)-(c) correspond to 10,000 T1 tenants with tenant ratios 1H:4L, 1H:1L, and 4H:1L respectively.
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Figure 2.16: The relative cost difference between the two locally-optimized solutions, (C1 + C2), and a
single globally-optimized solution, C1∪2. The tenants have either “H” (100tps) or “L” (10tps) SLOs. There
are 10,000 T1 tenants. We varied the size of the T2 tenant set and also the ratio of “H” and “L” tenants in
each sub-figure. The diskC server SKU is 10% less expensive than the ssdC server SKU.

In Figure 2.16(a), we see that if the T2 population has a SLO ratio skewed toward the 100tps – ‘H’

objective, the global re-optimization solution is significantly less expensive (over 5%). Since the T1 tenants

are skewed in a 1H:4L ratio, the 2H:1L, 4H:1L, and 6H:1L are oppositely skewed. Intuitively, separately

optimizing for two oppositely skewed populations should result in a higher cost than a solution that has
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optimized for the combined populations. Furthermore, we notice that as the T2 population increases in size,

dwarfing T1, the cost differences begin to shrink since a dominating percentage of (T1 ∪ T2) is T2 which

was optimally scheduled onto an optimal server provisioning. We also notice that if the set T2 has a similar

tenant ratio (1H:2L, 1H:4L, 1H:6L – the dashed curves in Figure 2.16(a)) as T1, then there is a negligible

cost difference between the locally-optimized and globally-optimized solutions.

So from the results shown in Figure 2.16(a), we put forth a rule of thumb for dealing with Problem

Definition 2: The globally-optimized solution is preferred when the T1 and T2 tenant sets have opposing

SLO ratios. For example, in Figure 2.16(a), when T1 has a 1H:4L SLO ratio and T2 has a 4H:1L SLO ratio,

optimizing the tenant sets separately is the most costly.

This rule of thumb is also validated in Figure 2.16(c), where the T1 population has an SLO ratio

of 4H:1L. The analysis shows that the 1H:2L, 1H:4L, and 1H:6L T2 population curves have higher cost

(over 6%). If T2 has an H-oriented skew (the solid curves), we see that there is a negligible cost difference

between the two solutions. In Figure 2.16(b), where the T1 population is balanced at 1H:1L, we see that

cost differences also arise when the T2 tenants are skewed toward the 10tps (L) SLO. However, in this case,

the cost difference between the locally-optimized and the global-optimized solutions is never over 3%.

Next, let us consider the analysis above again, but with a lower price-point for the diskC server SKU

(30% less than the ssdC SKU, see Section 2.4.1). We continue to use the 100tps, 10tps SLOs as we did in

Figure 2.16. The results of our analysis for these three scenarios are shown in Figure 2.17. Again, in each

sub-figure, we varied the T2 population as we did in Figure 2.16; now, Figure 2.17(a)-(c) correspond to T1

tenants with 1H:4L, 1H:1L, and 4H:1L SLO ratios respectively.

The rule of thumb we put forth in our prior discussion for Figure 2.16 continues to hold for the results

shown in Figure 2.17. In Figure 2.17(a), the 10,000 T1 tenants had an SLO ratio of 1H:4L. Again, we see

that the characteristic of the tenant set T2 that causes the largest cost difference between the locally-optimal

and globally-optimal solutions is an SLO ratio skewed towards the high performance (100 tps) tenants (the

solid curves). Since the diskC servers are now less expensive than in Figure 2.16(a), this results in cost

differences in Figure 2.17(a) that are greater than in Figure 2.16(a).

Similarly, in Figure 2.17(c) (where the T1 tenants have an SLO mix of 4H:1L), we see that the cost
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Figure 2.17: The relative cost difference between the two locally-optimized solutions, (C1 + C2), and a
single globally-optimized solution, C1∪2. The tenants have either “H” (100tps) or “L” (10tps) SLOs. There
are 10,000 T1 tenants. We varied the size of the T2 tenant set and also the ratio of “H” and “L” tenants in
each sub-figure. The diskC server SKU is 30% cheaper than the ssdC server SKU.

differences are also larger than the results shown in Figure 2.16(c). Here the 1H:2L, 1H:4L, and 1H:6L T2

scenarios result in locally-optimal solutions that could be over 9% more expensive than the globally-optimal

solution. As in Figure 2.16(b), the case where the T1 population was evenly skewed (1H:1L), we see that

the price difference is quite low and again is never above 3%.
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Bounding the Cost of Migration for Global-optimization

Now that we have seen that there can be significant cost differences between having two locally-

optimized solutions versus one globally-optimized solution, we can analyze the bounds on the migration

costs.

Recall Equation 2.1 (the cost comparison model from Problem Statement 2): Cw1 + Cw2 > Cw1∪2 +

Σ∀τi∈πg(to(τi), from(τi)), where Cwi is the cost of the optimized solution for tenant set Ti over the time

span w, and π is the set of tenants that is migrated as a result of global-optimization. For this discussion, let

us simplify our model so that all the tenant migrations cost the same amount γ, i.e. g(to(τi), from(τi)) =

γ,∀τi ∈ π. Therefore, we can simplify our migration cost in Equation 2.1 to the number of migrations, |π|,

multiplied by the migration cost, γ, and bound the re-optimization migration cost as follows:

(Cw1 + Cw2 − Cw1∪2 > |π|γ) (2.2)

We can apply this equation to our results in Figures 2.16 and 2.17. First, let us consider Figure 2.16(a),

which corresponds to T1 tenants from the scenario SC13 (10,000 tenants, 1H:4L, see Table 2.2). Now,

consider the case when |T2| = 5000 with a ratio of 4H:1L (in Figure 2.16(a)). In this case, the locally-

optimized solutions are around 5% more expensive than the globally-optimized solution. If we consider

w =∞, then Cw1 + Cw2 − Cw1∪2 = 66528.

Now, to consider migration, we have to construct the set π. To compute the set π, we first identified

server SKUs from the T1 solution where more tenants of a given SLO class were scheduled onto the SKU

than the T1∪2 solution. Then, we count the tenants that need to be migrated away from this server SKU so

that its tenant scheduling policy matches the globally-optimized solution. For example, if the T1 solution

requires 94 ssdC servers with a (20H, 38L) scheduling policy while the T1∪2 solution requires 274 ssdC

servers with a (22H, 33L) scheduling policy, then we calculate that 94× (38L− 33L) = 470L tenants need

to be migrated. We only count the tenants that need to be migrated away from the server and ignore tenants

that need to migrate to a server to avoid double counting. After we count the migrating tenants from the T1

solution, we do the same for the T2 solution.6

6 We acknowledge this approach may not be optimal and is a complex problem in its own right. It is the focus of future work.
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Following the step above, we find that |π| = 8285, thus γ must be less than $8.03 (since 66528 >

8285γ). Thus, if the cost of migration is greater or equal to $8.03, then it is not worthwhile to globally-

optimize all the tenants. Since $8.03 is the bounding cost of migrating our 1GB tenant, this suggests that it

may be advantageous to re-optimize all the tenants if we are faced with this decision only once (w =∞).

On the other hand, say the provider knows that T2 is active for 12hrs and then inactive for the sub-

sequent 12hrs every day (e.g., a diurnal pattern). Thus, w = 12hrs, and Cw1 + Cw2 − Cw1∪2 = 1.28. Now,

if |π| = 8285, then γ < $0.0001 for migration to be cost effective (1.28/8285 = 0.0001) This means that

globally-optimizing every 12hrs is only feasible when migration can be done at a very low cost.

As another example, consider Figure 2.17(a), where the T1 tenants comes from the scenario SC16

(10,000 tenants, 1H:4L, diskC is 30% less expensive than ssdC). Again, consider the case where |T2| = 5000

with a ratio of 4H:1L. In Figure 2.17(a), the cost gap is around 9%. If we consider w = ∞, Cw1 + Cw2 −

Cw1∪2 = 100656. Using the method described above, |π| = 6012, and γ must be less than $16.74 (since

100656 > 6012γ). This is an even looser bound on the migration cost than our previous discussion, albeit

for a lifetime time span of w =∞. But, if we consider w = 12hrs, Cw1 + Cw2 − Cw1∪2 = 1.94. and we find

that 1.94/6012 > γ and so γ must be lower than $0.0003. This migration cost bound is 3 times greater than

the previous example, which may help provide provide some slack to globally-optimize all the tenants every

12hrs.

To summarize, in this section, we have discussed how (i) tenant populations that vary in size, and (ii)

tenant populations that vary in SLO make-up can change the way we apply our optimization framework.

Intuitively, optimizing two independent sets of tenants results in a solution that is more costly than optimiz-

ing across the combined set of tenants. A globally optimal solution may be more cost effective (than the

independent optimized solutions), but to dynamically switch to the global optimal solution required consider

tenant migration costs. Using the method described in this section, we can incorporate the migration cost to

determine if the data center should switch to the globally-optimal solution.
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2.4.4 Discussion

While the focus of this chapter is on performance SLOs in a DaaS, we have not discussed the impact

of tenant replication (a solution for currently prevalent uptime SLAs) on our performance models. While

data replication may improve performance for read-mostly workloads, maintaining replica consistency under

update-heavy OLTP workloads places additional demands on the resources of DaaS providers. A careful

study of how to deal with replica consistency and availability while providing performance SLOs is beyond

the scope of this study, but we sketch an initial method to deal with this issue.

For our framework to handle replica updates, we can modify the benchmarking method that is used

to determine the SKU performance characterizing function (Section 2.3.2) to account for the extra work

that is needed to maintain replica consistency. For example, instead of measuring tenant performance on a

single server as we have done, we would measure the tps observed by a tenant whose replicas are placed on

r servers and maintained via eager or lazy updates. The functions obtained from such a benchmark could

be used as constraints to the optimization problem defined in Section 2.3.3.

Using our framework, we can pose another interesting question: given a cluster with a specific com-

position of hardware SKUs, what (performance) SLOs can the DaaS provide agree to, so that it maximizes

the number of tenants that can fit on this cluster? For this question, we need to formulate a new objective

function that optimizes for max(|T |) in Problem Definition 1 where T is the set of all tenants. Our other

constraints would remain the same as specified in Problem Definition 1.

We note that in calculating the amortized monthly costs, we have not accounted for run time energy

costs or amortized infrastructure cost (e.g., for the building, networking equipment, and associated power

and cooling equipments). However, these can be accommodated in our framework (provided there were an

accurate model to compute these costs for each SKU) by simply adding these costs to the amortized monthly

cost that we use in this study.

Finally, in this chapter we have shown an explicit benchmarking approach for understanding the

effects of mixing SLO classes and tenants. However, our framework is modular in that it is possible to

leverage other analytic approaches that predict the impact of mixing tenants with different workloads and
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SLOs [30, 55].

2.5 Summary

This work presents the first study of a cost-optimization framework for multi-tenant performance

SLOs in a DaaS environment. Our framework requires as input, a set of performance SLOs and the number

of tenants in each of these SLOs classes, along with the server hardware SKUs that are available to the DaaS

provider. With these inputs, we produce server characterizing models that can be used to provide constraints

into an optimization module. By solving this optimization problem, the framework provides a hardware

provisioning policy as well as a tenant scheduling policy for the selected server SKUs. We have evaluated

our framework, and shown that in many cases a mixed hardware cluster is optimal. We have also explored

the impact of simpler hardware provisioning and tenant scheduling policies. Additionally, we have also

shown how our framework can be extended to deal with some dynamic changes in the workload mix.

To the best of our knowledge, this is the first study to formulate a new problem of performance-based

SLOs for DaaS, presenting a framework for thinking about this problem, presenting an initial solution, and

evaluating this initial solution to show its merits.

To limit the scope of our study, we have made some simplifying assumptions on aspects such as

performance metrics, tenant workload, and multi-tenancy control mechanism. Relaxing these assumptions

provides a rich direction for future work. One direction for future work is to include the impact of replication

and load-balancing in our framework, perhaps building on the ideas presented in Chapter 6. Additionally,

while our experimental evaluation uses average performance as an SLO metric, it could be extended to in-

clude variance as well (as implied by the use of random variables in Definition 2.3.2). Imbalanced load

or flash-crowd effects could be modeled in our framework as additional tenant classes with high perfor-

mance requirements – this would produce a hardware “over-provisioning” policy to deal with these effects.

If workload spikes are detected in practice, tenants could be dynamically re-scheduled on these extra ma-

chines to maintain performance objectives. In addition, while the tenant classes used in this study have

different memory and disk requirements, other workloads should be considered as well. Finally, in our

framework we have taken an approach of explicitly benchmarking the tenant workload classes and mixes,
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but our framework could be extended to take a more analytical approach that could predict the impact on

performance of a different workload mixes, perhaps by using multi-query optimization-based approach to

estimate the impact on performance.



Chapter 3

The Costs of Using Non-Traditional Server Hardware

Data center deployment is a big investment for any enterprise. Such data center costs are ultimately

factored into the company bottom line through the monthly amortized costs. The largest proportions of this

monthly total cost of ownership (TCO) are the server costs, power distribution and cooling, and the actual

energy costs. Combined, they make up 88% of the total monthly TCO (3 year server, 10 year infrastruc-

ture amortization) [81]. The energy and energy related costs can account for a third of the monthly TCO,

and several studies have shown that these costs are projected to increase as a proportion of the monthly

TCO [23,34]. Consequently, there has been expanding interest in reducing data center power costs [21] (see

Chapter 8).

In this chapter, we study the price/performance characteristics of parallel scale-out clusters where our

notion of price includes server costs and direct energy costs thereby accounting for roughly two thirds of

the monthly TCO.

To reduce the monthly TCO, a growing number of recent studies have focused on redesigning data

center server clusters with low-cost, low-power “wimpy” nodes [13,145]. The argument for wimpy nodes is

that they are relatively well-balanced [147,162]. With low-end CPUs and the use of low-power components,

these nodes are claimed to be more energy-efficient. However, low-end nodes lag far behind traditional

nodes in performance. Therefore, a small cluster of traditional nodes must be replaced by a larger cluster of

low-end nodes.

These previous studies have generally come to the conclusion that a scale-out deployment of large

clusters of “wimpy” nodes is the most effective solution. However, these published results focused on sim-
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ple key-value workloads [13] and web-search environments [145], where near-perfect performance scaleup

complements the poor performance of individual wimpy nodes. In [13], the authors admit that their approach

targets “data-intensive, computationally simple applications”. Consequently, their system is described as a

datastore instead of a database to emphasize that they do not provide transactional and relational interfaces.

Such simple data lookup environments lack the complexities of more complex data processing workloads,

and the focus of this chapter is to consider if the same conclusions apply for complex data processing work-

loads.

Recently, proponents of wimpy node clusters theorize that such architectures will also be able to

handle more complex workloads such as sorting [173]. However, these arguments are based on single

node, performance/Watt comparisons of Atom and Nehalem-based servers. Without the analysis of how

performance is affected with increasing scale-out, which is the focus of this work, such arguments are

largely based on theoretical ideal performance. The purpose of this work is to show that for complex

database workloads, previously observed results show that parallel data processing overhead is significant

enough to dilute the benefits of large wimpy node clusters. This work directly leads to Chapter 4 where we

explore cluster designs that incorporate both low-power, “wimpy” nodes and traditional, “beefy” nodes into

the cluster.

3.1 Motivating Illustrative Experiments

There are two factors that come into play when evaluating the efficiency of traditional versus low-

end cluster deployments: (1) The individual node price/performance when processing the partitioned data;

and (2) The effects of diminishing returns when undergoing parallel scaleup (constant response time when

the data size and computing resources increase proportionally) due to startup-interference-skew factors (see

Section 3.3 for further discussion).

Consider Figure 3.1(a), where our price and performance metrics are plotted for various types of

nodes and different TPC-H workloads on a commercial DBMS. The amortized monthly TCO is calculated

as the sum of the amortized node cost as well as the monthly energy costs for the node continuously running

TPC-H (see Section 3.4). (Here, for the node cost, we have simply divided the purchase cost over 36
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Figure 3.1: (a) Amortized Monthly TCO (includes energy costs) as a function of Performance over various
hardware configurations and TPC-H scale factors. (b) Price/Performance metric of Amortized Monthly
TCO ($) and Performance (QphH@Size) System details can be found in Section 3.4.1. QphH@Size is the
unit for the TPC-H Power Test.

months.) Performance is provided by the TPC-H Power Test [168]. ‘Atom’ and ‘Xeon’ represent Atom (low-

end node) and Xeon (traditional node) processors respectively. Both types of nodes were then outfitted with

either SSD or mechanical HDD disks (see Section 3.4.1 for detailed node specs). Figure 3.1(a) plots costs

versus performance for different node configurations and TPC-H scale factors. There are two interesting

patterns to observe. First, SSDs provide better performance than regular disks. Second, the Atom nodes

lag far behind the Xeon nodes in performance, which means that we must deploy significantly more Atom

nodes in a cluster to equal the performance of a Xeon cluster.

We combined the two metrics in Figure 3.1(a) into a single price/performance metric as shown in
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Figure 3.1(b). When we consider the more expensive SSD configurations of the Atom and Xeon, we notice

that all their results for various TPC-H scale factors are tightly clustered together at the cheapest end of

the price/performance spectrum. Even though the purchase cost for the systems increase with SSDs, the

performance increase outpaces the cost increase and so we see better price/performance (similarly seen

in [5]). This suggests that if we partition the TPC-H workload and use multiple Atom nodes, we can achieve

similar performance as a Xeon node at a similar price point (assuming perfect parallel scaleup).

For example, assuming ideal scaleup, we could run a TPC-H scale 10 workload partitioned on 5

Atom-SSD nodes (i.e., 2GB per node) in the same time as a scale 2 workload on a single Atom-SSD node.

This can also be done with even smaller partition sizes per Atom-SSD node, thereby changing the cluster

size. If we used a 1GB partition size, we would need 10 Atom nodes. Since the measured performance

for TPC-H scale 1 on the Atom is greater than 1000 QphH, ideal scaleup would infer a cluster performance

greater than 10000 QphH. This would outperform a single Xeon-SSD running TPC-H scale 10 (9000 QphH).

3.2 Technical Contributions

The problem is that parallel database research has already shown two decades ago that the ideal

proportional scaleup discussed in our motivating example, is far from guaranteed [53]. In this chapter, we

will show published examples of such deviations. Essentially, replacing traditional clusters with increasing

numbers of low-power nodes may result in diminishing returns in performance and as such, cost.

In this chapter, we will present real price/performance results for a traditional server versus a modern

low-power wimpy node (detailed results in Section 3.4.3- 3.4.4). With these results, the interesting problem

that we focus on in this chapter is how these results fit into various scaleup models. Since the parallel scaleup

for a given workload is dependent on the parallel software system and node hardware configuration, we need

to examine the effects of different scaleup models on a low-power cluster versus a traditional cluster. To

this end, we will present several real scaleup profiles from various published parallelized data processing

systems (see Section 3.3) and use our measured results to show that traditional server clusters may be more

cost effective than a massively scaled-out wimpy node clusters.
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Figure 3.2: (a) DB-X running a 535MB/node SELECT query [135]. (b) Vertica running a 20GB/node
SELECT aggregate query [135]. (c) DB-X running a join query (large table 20GB/node, small table
1GB/node) [135].

3.3 Background – Parallel Databases and Scaleup

This section recalls the lessons learned from more than two decades of parallel database research.

Specifically, we discuss the factors that impact the ability to achieve ideal parallel scaleup when deploying

larger clusters.

To start, we clarify the parallelism goals that often get misused with the overloaded term cluster

“scale-out”. Often, scale-out is used as a blanket term for increasing the size of a parallel data processing

cluster to achieve ideal performance benefits. However, as defined in [53], this idea can be divided into two

distinct goals: linear speedup and linear scaleup.

For example, given 100 machines processing 1TB of data in 1min, if the parallel system has the ideal

linear speedup property, 400 machines could process the same 1TB in 15sec. On the other hand, given the

same cluster nodes, a parallel system exhibiting ideal linear scaleup could process 10TB with 1000 machines

in 1min. Scaleup can be further broken up into transactional or batch which essentially describe throughput

or latency-based definitions of performance respectively.

DeWitt and Gray [53] identified three main threats to successful scaleup behavior of a parallel DBMS:

startup, interference, and skew. Startup costs refer to overhead in time needed to start the parallel processing

jobs. For example, if synchronization is required across hundreds of nodes for starting a short query, then
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this cost can make up a significant fraction of the total response time. The impact of such costs often

diminishes with long running queries. Interference costs are those caused by processes that need to share

resources such as memory or disk. Finally, the last impediment of skew refers to the behavior that with

increased parallelism and decreasing per node computation time, the the variance of node computation time

can start to dominate the average runtime.

Consider Figure 3.2 where we have plotted the scaleup profiles of a simple selection query, another

selection query but with an aggregate operation, and a third query with a join and an aggregation operation.

These queries are taken from the recent paper by Pavlo et al. [135]. We present these real scaleup results, not

for comparison purposes, but to illustrate the point that in practice, scaleup is often not ideally proportional

for complex data processing workloads.

Figure 3.2(a) reports scaleup response time for a commercial parallel database, DB-X, running a

simple SELECT scan where each node had 535MB partitions shows that there is significant response time

degradation as the cluster size increases.

SELECT * FROM Data WHERE field LIKE ‘%XYZ%’;

Table ‘Data’ has two rows ‘key’ and ‘field’ with sizes 10 and 90 characters respectively. Even for a

workload as simple as a scan, the response time degradation at a 100X scaleup factor is 1.6 times worse than

ideal.

Figure 3.2(b) shows an aggregate selection query with a scaleup from one node to 100 nodes. On a

different commercial database, Vertica [175], the following query was run on a 233B wide table:

SELECT sourceIP, SUM(adRevenue)

FROM UserVisits GROUP BY SUBSTR(sourceIP,1,7);

Each node stored 20GB partitions of the table. This result showed that a different commercial parallel

database also exhibits diminishing returns when the environment is scaled up; at 100X scaleup, there is a
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1.4X performance degradation from the ideal performance.

Finally, Figure 3.2(c) shows a scaleup model for a complex join query on DB-X between the ‘UserVis-

its’ table in the above query, to a 108B table (1GB/node). The query also has an aggregation and date range

predicate:

SELECT INTO Temp sourceIP, AVG(pageRank) as avgPageRank,

SUM(adRevenue) as totalRevenue

FROM Rankings AS R, UserVisits AS UV

WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN Date(‘2000-01-15’)

AND DATE(‘2000-01-22’)

GROUP BY UV.sourceIP;

For DB-X, at 100X scaleup, the response time degradation is 2X worse than the ideal scaleup perfor-

mance. Full details of the queries can be found in [135].

All three scaleup models show that there is a large startup cost between the one node ‘cluster’ and any

multi-node cluster. As a result, we have fitted logarithmic models to the DB-X results and an exponential

model to the Vertica result to account for the initial drop in performance. The chosen models provided the

best correlation coefficient of various regression models we applied.

The core point of this discussion is to show that scaleup performance is not ideally constant for com-

plex data processing workloads; in which case wimpy node scale-out to save energy and purchasing costs

may not be more cost effective than traditional servers if equivalent performance is sought. Equivalently,

in real (as opposed to ideal) scaleup environments, price/performance degrades as the scaleup factor is

increased (i.e., it gets more expensive to achieve the same level of performance). Next, we will show exper-

imental results incorporating our price/performance results in Figure 3.1 and analyze the cost effectiveness

of traditional clusters versus low-power/low-cost clusters.
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3.4 Experimental Evaluation

In this section, we discuss our experimental results which includes energy measurements of our nodes

under different workloads using a commercial database system as well as scaleup experiments using pub-

lished scaleup results. We start by describing the node characteristics and costs, followed by the measure-

ment methods, and finally we present our results.

3.4.1 Server Costs and Specifications

In our tests, we use an Atom node (wimpy) and a typical high-end server-class Xeon node. Both

ran the same commercial database system on Windows 7 Professional (Atom) and Windows Server 2008

(Xeon) which share the same kernel [149].

Atom Node: The Atom node had a dual core, hyper-threaded Intel D510 Atom processor with accom-

panying Intel motherboard ($80). The motherboard was filled with the maximum allowed 2x2GB GSkill

DDR2 memory ($95). Our power supply was an 80plus certified Corsair VX450 ($65). We tried two dif-

ferent power supplies units (PSU); a cheap 120W PSU and a 450W Corsair. Even though the Corsair can

provide almost 4X more power than the cheap PSU, we found that the power drawn by the system with the

Corsair was almost half of that when using the cheap PSU. Given this, we chose the larger, but more efficient

Corsair. We had two disk configurations: (1) the SSD configuration had an OCZ SATA2 64GB drive ($200)

for the OS and DBMS applications and an Intel X-25E 32GB drive ($383) as the database data storage

drive; (2) the mechanical HDD configuration used two WD Caviar Green SATA2 32MB Cache drives each

with 500GB storage where both drives were used for database data storage ($120). The mechanical HDD

configuration costs $360 while the SSD configuration costs $823.

Xeon Node: The Xeon node is an HP Proliant DL380GS with two quad core Xeon E5410 processors

and 16GB of memory. The server has eight 146GB 10K RPM SAS drives with two in RAID1 for the

OS and DBMS applications, another two in RAID1 for the DBMS log, and four drives for database data

storage. This configuration cost approximately $3500. Each SAS drive can be purchased at $270 a drive.

Our SSD configuration consists of removing the four data drives and replacing them with two Intel X25-E
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SSDs (priced as above). The server cost now is approximately $3186. This drop in cost between the high

capacity SAS configuration and SSD configuration is similar to [5].

To keep this study manageable, we only explored a limited number of IO hardware configurations.

Tuning this IO system for price, performance and energy is an interesting topic for future research, and

beyond the scope of this study.

3.4.2 Energy Measurement

AC current was measured at the wall outlet using a Fluke i200s AC current clamp (1.5% accuracy

at 0.5A). The Fluke clamp was connected to an NI USB-6008 Multifunction DAQ and collected using NI’s

LabView, sampling at 1KHz. RMS current was calculated using a sliding window of 16 sample points (1

period) given an AC frequency of 50Hz. The RMS voltage was measured at 118V. Power was calculated

as the product of the RMS current and the RMS voltage. Finally, energy consumption was calculated by

summing the time discretized real power values over the length of the workload.

3.4.3 Single Node TPC-H

The raw energy and response time data that was used to create Figure 3.1 is shown in Figure 3.3. In

this figure, we plotted the measured response time to complete the TPC-H Power Test against the energy

consumed by the node during the run. There are a number of interesting features to note in Figure 3.3. First,

for any given scale factor of TPC-H, the Atom node with the SSD configuration always consumes the least

amount of energy. This is unsurprising given the low voltage of the Atom processor and SSDs. Second,

the Xeon node with any storage configuration always finishes faster than the Atom-SSD node. This is also

unsurprising given that the Xeon node has eight cores while the Atom only has two (four w/hyper-threading)

and the Xeon node also has four times the memory of the Atom node.

Using these results, we calculated the amortized monthly total cost of ownership (TCO) using the

node purchase prices (see Section 3.4.1) and a $0.07kWh data center energy cost [80]. Furthermore, we

calculated the TPC-H Power@Size metric using the definition provided in [168]. Figure 3.1 shows our

single node TPC-H results after transformation to a price/performance metric.
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3.4.4 Single Node TPC-E

While TPC-H is a benchmark for decision support system (DSS), we also wanted to understand the

performance and energy consumption profiles for OLTP workloads. Figure 3.4 shows a TPC-E throughput
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versus energy consumption plot similar to Figure 3.3. Here we have measured the throughput (in transac-

tions per second/E – tpsE [169]) over a 10min period. This measurement period was preceded by a 10min

warm up time where both systems stabilized. The energy measurements represent the energy consumption

over 10min. Here we notice that the Xeon nodes always provide very high tpsE for both 1000 and 2000

scale factors because the system is essentially CPU bound at scale 1000 and 2000. The Atom nodes have

significantly lower throughput but also about an order magnitude lower energy consumption.

Figure 3.5 shows the similar price/performance plot as Figure 3.1, but now for TPC-E. We notice that

while Figure 3.4 shows that there was massive differences in energy consumption between the Xeon nodes

and the Atom nodes, Figure 3.5 shows that the actual price/ performance values for the nodes is only factors

in difference and in the case of scale 1000, the Atom-SSD node has the same price/ performance as the Xeon

nodes.

TPC-E is a workload that was designed to reflect a more realistic benchmark compared to TPC-C, and

is well-known to not have the easily-partitionable characteristics of TPC-C. Thus the impediments to perfect

scaleup (see Section 3.3) will likely affect the scale-out story for TPC-E like workloads. In this discussion,

we will not consider TPC-E further, and focus only on the DSS TPC-H workload.

3.4.5 TPC-H Parallel Scaleup

Now, we examine the price and performance metrics for various scale-out clusters built from either

traditional server nodes, or low-power Atom nodes. As we have seen in Figure 3.2(a-c), since scaleup

characteristics are largely determined by the query workload, we apply these example scaleup models of

Figure 3.2 to examine cluster price/performance. While these models are from various parallel systems and

hardware, the goal here is to show how the scale-out of our nodes would affect scaleup price/performance

given various possible scaleup models.

Modeling Cluster Performance Here we will describe the way we have applied the published scaleup

models to our single node measurements in order to get cluster performance for a parallel data processing

workload. First, the response time models we presented in Figure 3.2 are converted to give scaleup factors.

Consider this example that illustrates how this is done: given that the DB-X Join response time model shows
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that using two nodes the workload response time will be 1.14X the response of one node, then the scaleup

factor will be 2× 1/1.14 = 1.75. This scaleup factor can then be used with our measured performance data

to provide cluster performance.

Performance for a xy GB TPC-H dataset using x nodes at y GB partition each is calculated as

P (y)M(x) where P (y) is the performance for the single node (Section 3.4.3) running TPC-H at scale y

and M(x) is the modeled scaleup factor given a cluster of x nodes (using the models in Figure 3.2). The

ideal scaleup factor for x nodes is M(x) = x. For example, given a single node 10GB performance value
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Figure 3.6: Parallel scaleup of a 10GB TPC-H workload on Atom and Xeon clusters using different pub-
lished scaleup models (5 Atom-SSD nodes and 1 Xeon-SSD node respectively). Atom nodes have 2GB
partitions and the Xeon node has the entire 10GB dataset. For all figures, the effects of an ideal constant
scaleup is shown. (a): DB-X Scan scaleup model (Figure 3.2(a)). (b): Vertica Aggregation scaleup model
(Figure 3.2(b)). (c): DB-X Join scaleup model (Figure 3.2(c)).

of P (10) = 9000QphH , the ideal cluster performance for M(2) nodes is 18000QphH while the modeled

performance is 9000QphH × 1.75 = 15840QphH for the Join model.

Wimpy Clusters vs One Xeon

Here we examine the effect of the startup costs, seen in Figure 3.2, on the cost of the Atom-SSD

clusters as compared to a single Xeon-SSD node (which has no startup or any other parallel scale-out).

In Figure 3.6(a-c), we have applied each of the scaleup models of Figure 3.2 to the results shown in

Figure 3.1. We have also included the data points for the ideal (constant) scaleup model. Since Figure 3.1

has shown us that outfitting nodes with SSDs typically decreases price/performance for both Atom and

Xeon nodes, for our analysis here, we have used the SSD configurations of our nodes. To begin, consider

Figure 3.6 which shows the results of scaleup when one Xeon node is compared to a cluster of Atom nodes.

For this discussion, we use the price and performance results for the Xeon-SSD node when running

a TPC-H workload at scale 10. Based on the results shown in Figure 3.1(b), the Atom-SSD running TPC-H
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scale 2 has a similar price/performance rating as the Xeon-SSD at scale 10. Figure 3.1(b) shows that the

Atom-SSD at TPC-H scale 2 (diamond) and the Xeon-SSD at TPC-H scale 10 (downward triangle) both

have a price/performance of $0.011.

To match the Xeon-SSD workload size, Atom-SSD cluster will be made up of 5 Atom-SSD nodes

each with 2GB partitions. This means that the monthly TCO of the Atom cluster will be 5 times the single

node monthly TCO (at TPC-H scale 2). If we had ideal scaleup, then this Atom-SSD cluster would also pro-

vide 5 times the performance of a single Atom-SSD node thereby retaining a price/performance of $0.011.

However, Figure 3.2 shows that this ideal scaleup does not happen and we calculate the performance of such

a cluster using the methods described above.

In Figure 3.6(a), we show the price as a function of performance for two setups when applying the

DB-X Scan scaleup model of Figure 3.2(a). Since we are only using a single Xeon-SSD, there is no scaleup

effects and the modeled price and performance is identical to the ideal. The Atom cluster price/performance

is 18% worse than the Xeon node for a 10GB workload.

Similarly, for Figure 3.6(b) and (c), we have applied the Vertica Aggregate scaleup (Figure 3.2(b))

and DB-X Join scaleup (Figure 3.2(c)) respectively. The Atom cluster price/performance is 13% and 31%

worse than the Xeon node for the Vertica Aggregate and DB-X Join models respectively. It is clear that

if the scaleup behavior, such as those in Figure 3.2(a-c), has poor degradation, this will be reflected in the

cluster performance.

The results in this section are for a single Xeon node and an Atom cluster. The next results are for

multi-node Xeon clusters and larger Atom clusters.

Wimpy Clusters vs Traditional Clusters

The following results are for various levels of Atom-SSD scaleup for a 60GB TPC-H workload where

the Xeon-SSD cluster is made of 6 nodes, each running 10GB partitions. We applied the DB-X Join scaleup

model from Figure 3.2(c) as it represented the most complex workload of the three we discussed. Modeling

was done as described previously above.

Figure 3.7(a-c) shows the price as a function of performance similar to Figure 3.6. In these figures,

the amount of data (partition size) per Atom-SSD node decreases from 3GB (Figure 3.7(a)) to 1GB (Fig-
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Figure 3.7: Parallel scaleup of a 60GB TPC-H workload on Atom (with different partition sizes) and Xeon
(10GB partitions) clusters using the join scaleup model from Figure 3.2(c). (a) 3GB Atom-SSD partitions,
(b) 2GB Atom-SSD partitions, (c) 1GB Atom-SSD partitions.

ure 3.7(c)).

In the progression of decreasing partition size for the Atom cluster, as the partition size decreases, the

size of the Atom cluster increases. First, we notice that the 20 node Atom cluster is cheaper than the Xeon

cluster in Figure 3.7(a). However, its performance is about half of the Xeon-SSD cluster. If we consider the

price/ performance, the 20 node Atom cluster is 55% higher than the 6 node Xeon cluster.

Next, in Figure 3.7(b), where the Atom cluster is 30 nodes large, both clusters have roughly equivalent

performance. However, we notice that the cost of the Atom cluster is 20% higher than the Xeon cluster. In

this case, the 30 node Atom cluster is 23% higher in price/performance than the 6 node Xeon.

Finally, in Figure 3.7(c), we notice that as the Atom cluster increases with decreasing partition size,

the performance increases. However, this is an effect of the increasing performance of the Atom-SSD as it

works on a smaller, in memory dataset (at 1GB partition). It is quite clear in Figure 3.7(c), where the 60 node

Atom-SSD cluster has higher performance than the 6 node Xeon-SSD cluster, that the cost to deploy such a

wimpy node cluster is significantly higher than the Xeon-SSD cluster. While the Atom cluster’s performance
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Figure 3.8: Analysis of TPC-H workload: (a) Performance, (b) Price, and (c) Price/Performance for Atom-
SSD and Xeon-SSD based clusters using the Join scaleup model (Figure 3.2(c)). Atom-SSD nodes have
2GB partitions and Xeon-SSD nodes have 10GB partitions.

is 2X better than the Xeon, it is 2.4X more costly. This translates to a 19% increase in price/performance

over the Xeon cluster.

Since this analysis has held the Xeon-SSD cluster size constant while we varied the Atom-SSD cluster

size, it is necessary to compare the cluster price/performance when both clusters vary in size.

Consider Figure 3.8, where we plot the (a) performance, (b) price, and (c) price/performance as a

function of the dataset size for both clusters when the Join scaleup model is applied (Figure 3.2(c)). Here

we partition the data so each Atom-SSD has 2GB partitions and each Xeon-SSD has 10GB partitions.
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Figure 3.8(a) shows that as the clusters scaleup, the Atom-SSD cluster starts to exhibit higher perfor-

mance than the Xeon-SSD cluster. This is because the Xeon cluster is growing and starts to become affected

by the DB-X Join scaleup degradation. This performance difference in Figure 3.8(a) can be explained by

the models in Figure 3.2 that show that parallel scaleup behavior flattens out as the cluster sizes increases.

While the Atom cluster has slightly better performance with larger scaleup, Figure 3.8(b) shows that this is

accompanied by higher cluster cost. Finally, Figure 3.8(c) shows the price/performance of both clusters un-

der scaleup. It shows that the increase in performance and cost of the Atom-SSD cluster over the Xeon-SSD

cluster is largely proportional.

Discussion

We have shown the effects of various scaleup models on two types of clusters running TPC-H work-

loads: an Atom-SSD cluster and a Xeon-SSD cluster. While these models are not directly drawn from a

TPC-H workload, the purpose of using these models is to show how scale-out of different cluster architec-

tures can be affected by different scaleup behavior. As such we have applied a variety of published scaleup

models to the TPC-H measurements we collected.

With computationally simple workloads, such as those of [174], “wimpy” node clusters are claimed

to be more effective than clusters made from traditional nodes. However, this analysis has shown that for

data-intensive workloads (Figure 3.6, 3.7, and 3.8), large wimpy node clusters suffer from poor scaleup

effects and are therefore potentially slower and a costlier solution than smaller Xeon clusters. The reason

for this is because larger wimpy clusters are more affected by a diminishing return scaleup effect than a

smaller traditional cluster.

Furthermore, small relative gains in performance or price/performance by a larger, low-power clus-

ter over a smaller traditional cluster may not be worth the increase in mean-time-to-failure for the entire

cluster [153, 154]. Providing fault tolerance over a large number of wimpy nodes requires replication and

over-provisioning, thereby increasing the price/performance of such clusters.

Finally, increasing the cluster size by migrating over to Atom nodes requires substantially more net-

work infrastructure. For example, if we assume that the wimpy node clusters will require 4X more nodes

than the traditional cluster, then given a 16 node Xeon cluster that requires one 48 port switch, a wimpy 64
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node cluster will require two 48 port switches. High performance network hardware cannot be sacrificed in

wimpy node clusters and anecdotally we found this to be true in real deployments of Atom clusters. Opti-

mistically assuming enterprise class 48 port 10 Gigabit switches cost $10,000 each, the additional amortized

switch cost per wimpy node is $313 which doubles the cost of the spindle-based Atom node to $700 and

increases the SSD-based Atom cost to $1150!

Our results suggest that there may be an interesting middle ground between wimpy Atom node clus-

ters and traditional Xeon node clusters that lies with hybrid cluster deployments [43]. Such clusters made

up of both wimpy and traditional nodes may be the most effective deployment. We pursue this avenue of

research in the next chapter.

3.5 Summary

Our study presents evidence that for complex data processing workloads, a scale-out solution of a

low-power low-end CPU-based cluster may not be as cost-effective (or produce equivalent performance)

as a smaller scale-out cluster of traditional high-end server nodes. We have shown that depending on the

scaleup characteristics of the query workload and the software system, poor scaleup behavior can occur

when increasing the cluster size. Poor scaleup degrades the price/performance of a larger cluster. Thus, the

parallel scaleup characteristics of the environment largely determines the feasibility of so-called “wimpy”

node configuration for building clusters for such complex data processing workloads.

While our results suggest that wimpy node clusters are not suited for complex database workloads, it

does open up the area of hybrid (heterogeneous) cluster deployment. Hybrid cluster deployment strategies,

job scheduling, and scaleup analysis are studied in the following chapter.



Chapter 4

Energy-aware Parallel Data Processing I – Designing Energy Efficient Clusters

In recent years, energy efficiency has become an important database research topic since the cost of

powering clusters is a big component of the total operational cost [67, 79, 97]. This trend will drive up the

need for designing energy-efficient data processing clusters. The focus of this chapter is on designing such

energy-efficient clusters for database analytic query processing.

As we presented in Chapter 3, an important problem regarding the energy efficiency of database

clusters surrounds the classical problem of non-linear scalability in parallel data processing [53]. Recall,

non-linear scalability refers to the inability of a parallel system to proportionally increase performance as

the computational resources/nodes are increased. In that chapter, using prior work in the literature [135],

we overlaid single node performance and energy measurements to extrapolate cluster price/performance

ratings. In this chapter, we do an in-depth study on designing energy-efficient clusters with different node

architectures.

4.1 Motivating Illustrative Experiments

First, we present two results that show how varying the cluster size and changing the cluster design

can allow us to trade performance for reduced energy consumption for a single query workload.

In this chapter, we study the effect of this undesirable scalability phenomenon on the energy efficiency

of parallel data processing clusters using a number of parallel DBMSs, including Vertica and HadoopDB.

Our first result is shown in Figure 4.1(a) for TPC-H Q12 (at scale factor 1000) for Vertica. In this figure,

we show the relative change, compared to a 16 node cluster, in the energy consumed by the cluster and the
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Figure 4.1: (a) Empirical energy consumption and performance results for Vertica running TPC-H Q12 (at
scale factor of 1000). The dotted line indicates trading an X% decrease in performance for an X% decrease
in energy consumed so that the Energy Delay Product (EDP= energy × delay) metric is constant relative
to the 16 node cluster. (b) Modeled performance and energy efficiency of an 8 node cluster made of various
traditional Beefy nodes and low-power Wimpy nodes when performing a parallel hash join on our custom
parallel execution engine P-store. Wimpy nodes only scan and filter the data before shuffling it to the Beefy
nodes for further processing. A constant EDP relative to the all Beefy cluster is shown by the dotted line.

query performance1 as we decrease the cluster size two nodes at a time (please see Section 4.3.1 for more

details). Next, we discuss three key insights that can be drawn from Figure 4.1(a), which also shape the

theme of this chapter.

First, this result shows the classic sub-linear parallel speedup phenomenon; namely, given a fixed

problem size, increasing the computing resources by a factor of X provides less than an X times increase

in performance [53]. Or, conversely, decreasing the resources to 1/X , results in a relative performance

greater than 1/X . We can observe this phenomenon in Figure 4.1(a) because reducing the cluster size

from 16 nodes (16N) to eight nodes (8N), results in a performance ratio greater than 50%. Note that since

performance is the inverse of the response time, a performance ratio greater than 50% at 8N means that the

response time at 16N is more than half the response time at 8N (i.e., sub-linear speedup).
1 Here performance is the inverse of the query response time.
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Second, as shown by the solid curve in Figure 4.1(a), the total energy required to execute the query

decreases as we reduce the cluster size from 16N, even though it takes longer to run the query. Recall that

energy is a product of the average power drawn by the cluster and the response time of the query. Due to

the sub-linear speedup, going from 16N to 8N reduces the performance by only 36%, but the average power

drops by roughly half (since we have half the number of nodes). Consequently, the energy consumption ratio

(relative to the 16N case) for fewer than 16 nodes is less than 1.0. This is an encouraging energy efficiency

gain, albeit at the cost of increased query response time.

Lastly, in Figure 4.1(a), the dotted line shows the line where the Energy Delay Product (EDP) is

constant, relative to the 16N case. EDP is defined as energy × delay (measured in Joules seconds), and

is commonly used in the architecture community as a way of studying designs that trade-off energy for

performance2 . Here “energy” refers to the query energy consumption and “delay” refers to the query

response time. A constant EDP means that we have traded x% of performance for an x% drop in energy

consumption. Preferably, it would be nice to identify design points that lie below the EDP curve, as such

points represent trading proportionally less performance for greater energy savings.

In Figure 4.1(a), all the actual data/design points (on the solid line) are above the EDP curve. In

other words, as we reduce the cluster size from 16 nodes to 8 nodes, we are giving up proportionately more

performance than we are gaining in energy efficiency. For example, the 10 node configuration (10N) pays a

24% penalty in performance for a 16% decrease in energy consumption over the 16N case. Such trade-offs

may or may not be reasonable depending on the tolerance for performance penalties, but the EDP curve

makes it clear in which directions the trade-offs are skewed. This observation motivates the key question

that is addressed in this chapter: What are the key factors to consider when we design an energy-efficient

DBMS cluster so that we can favorably trade less performance for more energy savings (i.e., lie below the

EDP curve)?

To understand the reasons why our observed data points lie above the EDP curve in Figure 4.1(a), and

to carefully study the conditions that can produce design points that lie below the EDP curve, we built and
2 With the growing viewpoint of considering an entire cluster as a single computer [22], EDP is also a useful way of

thinking about the interactions between energy consumption and performance when designing data centers [103,181].
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modeled a custom parallel data execution kernel called P-store. The data that we collected from real parallel

DBMSs was used to validate the performance and energy model of P-store (see Section 4.4 for details).

Then, using P-store, we systematically explored both the query parameters and the cluster design space

parameters to examine their impact on performance and energy efficiency. We also developed an analytical

model that allows us to further explore the design space.

One of the interesting insights we found using both P-store and our analytical model is that there

are query scenarios where certain design points lie below the EDP curve. One such result is shown in

Figure 4.1(b). Here, we use our analytical model to show the energy versus performance trade-off for various

eight node cluster designs, when performing a join between the TPC-H LINEITEM and the ORDERS tables (see

Section 4.5 for details). In this figure, similar to Figure 4.1(a), we plot the relative energy consumed by

the system and the response time against a reference point of an eight node Xeon-based (“Beefy”) cluster.

We then gradually replaced these nodes with mobile Intel i7 based laptops (“Wimpy”)3 nodes. The wimpy

nodes do not have enough memory to build in-memory hash tables for the join, and so they only scan and

filter the table data before shuffling them off to the beefy nodes (where the actual join is performed). As

opposed to Figure 4.1(a), which is an experiment done with homogeneous beefy nodes, Figure 4.1(b) shows

data points below the EDP curve. This result is interesting as it shows that it is possible to achieve a relatively

greater energy savings than response time penalty (to lower the EDP) when considering alternative cluster

designs.

Energy-efficient cluster design with potentially heterogeneous cluster nodes needs to be considered

since non-traditional heterogeneous clusters are now showing up as database appliances, such as Oracle’s

Exadata Database Machine [131]. Thus, to a certain extent, commercial systems designers have already

started down the road to heterogeneous clusters and appliances. Such considerations may also become

important as future hardware (e.g., processor and/or memory subsystems) allows systems to dynamically

control their power/performance trade-offs. This chapter provides a systematic study of both the software

and the hardware design space parameters in an effort to draw conclusions about important design decisions

when designing energy-efficient database clusters.
3 We use the term “wimpy” as in [174], i.e. “slower but [energy] efficient”.
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4.2 Technical Contributions

The key contributions of this work are: first, we empirically examine the interactions between the

scalability of parallel DBMSs and energy efficiency. Using three DBMSs: Vertica, HadoopDB, and a

custom-built parallel data processing kernel, we explore the trade-offs in performance versus energy ef-

ficiency when performing speedup experiments on TPC-H queries (e.g., Figure 4.1(a)). From these results,

we identify distinct bottlenecks for performance and energy efficiency that should be avoided for energy-

efficient cluster design.

Second, non-traditional/wimpy low-power server hardware has been evaluated for its performance/energy-

efficiency trade-offs, and we leverage these insights along with our own energy-efficiency micro-benchmarks

to explore the design space for parallel DBMS clusters. Using P-store, we provide a model that takes into

account these different server configurations and the parallel data processing bottlenecks, and predicts data

processing performance and energy efficiency for various node configurations of a database cluster.

Third, using our model we study the design space for parallel DBMS clusters, and illustrate interesting

cluster design points, under varying query parameters for a typical hash join (e.g., Figure 4.1(b)).

Finally, we organize the insights from this study as (initial) guiding principles for energy-efficient

data processing cluster design.

cluster-V cluster-H
DBMS Vertica HadoopDB
# nodes 16 12

TPC-H size 1TB (scale 1000) 120GB (scale 120)
CPU Intel X5550 2 sockets Intel X3370 1 socket
RAM 48GB 8 GB
Disks 8x300GB 4x750GB

Network 1Gb/s 1Gb/s
SysPower 130.03C0.2369 13.81ln(C) + 111.46

C = CPU utilization C = CPU utilization

Table 4.1: Cluster Configuration
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4.3 Parallel Database Behavior

In this section we examine the performance behavior and speedup in shared-nothing DBMS clusters,

and examine its effect on energy efficiency. We see that bottlenecks that degrade performance, like net-

work bottlenecks, decrease the energy efficiency of a cluster design. We experiment with two off-the-shelf,

column-oriented, parallel DBMSs, Vertica [175] and HadoopDB [7] (with Vectorwise [92]). Vertica was

deployed on cluster-V (see Table 4.1), and we used queries from the TPC-H benchmark at scale factor 1000.

HadoopDB was deployed on cluster-H (see Table 4.1) and also used queries from the TPC-H benchmark,

but at scale factor 120. These configurations were chosen based on a combination of factors, including

finding the largest clusters that we could get dedicated access to, and with the appropriate software licenses.

4.3.1 Vertica

We used Vertica v.4.0.12-0 64 bit RHEL5 running on 16 HP ProLiant DL360G6 servers (the cluster

configuration is described in Table 4.1), varying the cluster size between 8 and 16 nodes, in 2 node incre-

ments. We only present results with a warm buffer pool. Given the use of column-store in Vertica, the

working sets for all the queries fit in main memory (even in the 8 node case).

We did not have physical access to our clusters so we used real power readings from the iLO2 remote

management interface [89] to develop server power models based on CPU utilization, following an approach

that has been used before [165]. Using a single cluster-V node, we used a custom parallel hash-join program

(see Section 4.4) to generate CPU load, and iLO2 measured the reported power drawn by the node usage.

We varied the number of concurrent joins to control the utilization on the nodes. iLO2 reports measurements

averaged over a 5 minute window, and we ran the experiments for three 5 minute windows for each CPU

utilization measurement. The power readings at each CPU utilization level were stable, and we use the

average of the three readings to create our server power models. (Our measurements of physically accessible

servers, not using iLO2, in Section 4.5 produced similar models.) Figure 4.2 shows the measured data and

our fitted power model and is listed in Table 4.1 as “SysPower”. (In this study, we explored exponential,

power, and logarithmic regression models, and picked the one with the best R2 value.)
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Figure 4.2: Modeling a cluster-V node’s power as a function of its CPU utilization by using a our custom
parallel hash-join program to generate CPU load and measuring the server power through iLO2.

We employed Vertica’s hash segmentation capability which hash partitions a table across the cluster

nodes on a user-defined attribute. We partitioned the LINEITEM, ORDERS, and CUSTOMER tables using the hash

segmentation, while all the remaining TPC-H tables were replicated on each node. The ORDERS and the

CUSTOMER tables were hashed on the O CUSTKEY and C CUSTKEY attributes respectively, so that a join between

these two tables does not require any shuffling/partitioning of the input tables on-the-fly. The LINEITEM table

was hashed on the L ORDERKEY attribute.

We ran a number of TPC-H queries and present a selection of our results in this section. In Fig-

ure 4.3(a) we show the energy consumed and performance (i.e., the inverse of the query response time)

for various cluster sizes running the TPC-H Query 1. This query does not involve any joins and only does

simple aggregations on the LINEITEM table. The data points are shown relative to the largest cluster size of

16 nodes, and the “break-even” EDP line is also plotted, as was also done earlier in Figure 4.1(a). Recall

from the beginning of this chapter, that this dotted line represents data points that trade energy savings for a

performance penalty such that the EDP remains constant.

In Figure 4.3(a), we observe that Vertica’s performance scales linearly, as the 8 node cluster has a

performance ratio of about 0.5 compared to the 16 node case. Consequently, the energy consumption ratio

is fairly constant since the 50% performance degradation is offset by a 50% drop in average cluster power.

This result is important because it shows that a partitionable analytics workload (like TPC-H Query 1),

exhibits ideal speedup as we allocate more nodes to the cluster. Thus the energy consumption will remain
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Figure 4.3: Vertica TPC-H (a) Q1, (b) Q21 (scale 1000) empirical parallel speedup results and its effect on
energy efficiency under various cluster sizes. “Cluster-V” details can be found in Table 4.1. The dotted line
indicates trading a proportional decrease in performance for a decrease in energy consumed such that the
EDP (= energy × delay) metric is constant.

roughly constant as we change the cluster size. In other words, one interesting energy-efficient design point

is to simply provision as many nodes as possible for this type of query (as there is no change in energy

consumption, but there is a performance penalty).

Let us consider a more complex query. Figure 4.3(b) shows the results for TPC-H Query 21, which

is a query that involves a join across four tables: SUPPLIER, LINEITEM, ORDERS, and NATION. The SUPPLIER and

NATION tables were replicated across all the nodes, so only the join between the LINEITEM and the ORDERS

tables on the ORDERKEY attribute required repartitioning (of the ORDERS table on O ORDERKEY). Besides the

four table join, Query 21 also contains SELECT subqueries on the LINEITEM table within the WHERE clause.

Surprisingly, the results for the more complex TPC-H Query 21 results, shown in Figure 4.3(b), is

similar to that of the simpler TPC-H Query 1, which is shown in Figure 4.3(a). Since both queries scale well,

the energy consumption is fairly flat in both cases. It is interesting to consider why the more complex TPC-H

Query 21 scales well, even though it requires a repartitioning of the ORDERS table during query processing.
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The reason for this behavior is that the bulk of this query (94.5% of the total query time for eight nodes –

8N) is spent doing node local execution. Only 5.5% of the total query time is spent repartitioning for the

LINEITEM and ORDERS join. Since the bulk of the query is processed locally on each node, this means that

increasing the cluster size increases performance nearly linearly. Thus, for a query with few bottlenecks,

Vertica exhibits nearly ideal speedup, and so the energy-efficient cluster design is to simply use as many

nodes as possible.

However, we have already seen a complex query where Vertica does not exhibit ideal speedup. Com-

pare the TPC-H Query 21 result to Query 12 (shown above in Figure 4.1(a)), which is a much simpler two

table join between the ORDERS and the LINEITEM tables, and performs the same repartitioning as Query 21.

Compared to the 5.5% time spent network bottlenecked during repartitioning in Query 21, Query 12 spends

48% of the query time network bottlenecked during repartitioning with the eight node cluster. Since the

proportional amount of total query time spent doing node local processing is now dramatically reduced, we

see in Figure 4.1(a), that increasing the cluster size does not result in a proportional increase in performance.

As such, the energy efficiency suffers dramatically as we increase the cluster size from 8 to 16 nodes.

Summary: Our Vertica results show that for queries that do not involve significant time repartitioning

(i.e., most of the query execution time is spent on local computation at each node), the energy consumption

vs. performance curves are roughly flat. This implies that an interesting point for energy-efficient cluster

design is to pick a cluster that is as large as possible, as there is no energy savings when using fewer

nodes, but there is an increase in query response time. However, for queries that are bottlenecked, as we

saw with TPC-H Q12’s network repartitioning, non-linear speedup means that a potential energy-efficient

design decision is to reduce the cluster size up to the point where the lower performance is acceptable4 .

Of course, one simple way to mitigate repartitioning bottlenecks is to devise energy-aware repartitioning or

replication strategies. An analysis and comparison to such strategies is beyond the scope of this study, but

an interesting target of future work.
4 Cluster systems often have implicit or explicit minimum performance targets for many workloads. We recognize

that determining when such limits are acceptable is a broad and emerging research topic.
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4.3.2 HadoopDB

HadoopDB is an open-source, shared-nothing parallel DBMS that uses Hadoop to coordinate inde-

pendent nodes, with each node running Ingres/VectorWise [7, 92]. We used Hadoop ver. 0.19.2 and Ingres

VectorWise ver. 1.0.0-112. Setup scripts for HadoopDB and the TPC-H queries we ran were provided by

the authors of [7].
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Figure 4.4: HadoopDB TPC-H Q13 (scale 120) empirical parallel speedup results and its effect on energy
efficiency under various cluster sizes. “Cluster-H” details can be found in Table 4.1. The dotted line indicates
trading a proportional decrease in performance for a decrease in energy consumed such that the EDP (=
energy × delay) metric is constant.

We ran TPC-H with a scale factor of 120, and partitioned the 120GB dataset across each cluster

configuration that we tested. For each TPC-H query that we ran, we varied the number of cluster nodes

between 2 and 12 in increments of 2. In addition, we also used a cluster size of 1. We used cluster-H as

shown in Table 4.1. As with the Vertica setup (see Section 4.3.1) all results reported here are warm numbers.

However, depending on the TPC-H query run and the cluster size, some queries still required disk access.

The result we present below was such a case where cluster sizes smaller than 6 nodes, required disk access.
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Due to the early version of HadoopDB we used, we only had a limited number of queries that could

be run. Here, we present one query that shows two interesting results: (i) the best performing cluster is not

the highest energy-efficient (lowest energy consuming) design point; and (ii) there can exist local optima in

the energy consumption versus response time curves.

In Figure 4.4, we show the results for TPC-H Query 13 which is a join query between the ORDERS

and the CUSTOMER tables. Both the tables were partitioned on the CUSTKEY attributes, so this is a partition-

compatible join.

Figure 4.4 shows that eight nodes can achieve the same performance as 12 nodes, but reduces the

energy consumption by more than 30%. Furthermore, if we drop down to 6 nodes, we can save just under

50% of the energy consumption (relative to the 12N case) without losing more than 7% in performance. This

is perhaps the best operating point because at 4 nodes, we trade 44% in extra running time for over 50% in

energy savings. Since the performance plateaus after 6 nodes, this means that any further increase in cluster

size simply increases the amount of energy that is consumed when processing this query, but without any

other benefits. The performance plateau was caused by the Hadoop communication overhead. Following

the cluster size increase from 4 to 6 nodes, VectorWise never needed to access disk and query performance

was simply gated by the overhead of Hadoop. Cluster sizes smaller than 6 nodes were bottlenecked in part

by disk access and so we see proportional decreases in performance with cluster sizes from 4 to 1 node.

This result is different from those of Vertica (Figures 4.1(a) and 4.3(a) and (b)) because we see that

our HadoopDB result curve crosses the dotted EDP line. This means that for all the cluster configurations

between four and ten nodes, we proportionally save more energy than what we give up in performance,

compared to the full 12 node cluster. After four nodes, the remaining two nodes and single node results are

above the dotted line and the disproportionate performance decrease has caused an increase in EDP.

4.3.3 Discussion

From our results with Vertica, we have found that there are queries where the highest performing clus-

ter configuration is not the most energy efficient (TPC-H Q12, Figure 4.1(a)) due to a network bottleneck.

With a commercial DBMS, simpler queries that do not require any inter-node communication scale fairly
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linearly with increased cluster size. We saw this with Query 1 and Query 21 (Figures 4.3(a,b)). However,

with communication heavy queries such as Q12 (Figure 4.1(a)), increasing the cluster size simply adds extra

network overhead that dampens the performance increase and reduces our energy savings. Similarly, with

HadoopDB in Figure 4.4, we saw the poor scalability of a TPC-H query means that the best energy-efficient

cluster design point was not the one with the most allocated resources. Thus, we conclude that optimizing

for parallel DBMS performance does not always result in the lowest energy consumed per query and this is

the opposite conclusion from prior work which dealt with single server DBMS environments [171].

With our results, we hypothesize that queries with bottlenecks, such as the network or disk, cause

node underutilization and thus, the bottlenecks decrease the energy efficiency as the cluster size increases.

Since Vertica and HadoopDB are black-box systems, to further explore this hypothesis of performance

bottlenecks affecting affecting energy efficiency, we built a custom parallel query execution engine called

P-store. Using P-store we empirically and analytically studied various join operations that require varying

degrees of network repartitioning.

4.4 Energy Efficiency of a Parallel Data Processing Engine

From our empirical, off-the-shelf, parallel DBMS observations, we concluded that the scalability of

the system running a given query plays an important role in influencing the energy efficiency of the cluster

design points. Typically, poor scalability is a consequence of bottlenecks in the system. We now describe

some of these bottlenecks, and then present our custom parallel query execution engine P-store that allows

us to study these bottlenecks in more detail.

4.4.1 Bottlenecks

Since there can be a multitude of implementation-specific issues that can affect DBMS scalability,

in this work we are interested only in fundamental bottlenecks that are inherent to the core engine. Since

our focus is on analytic SQL queries, we examine core parallel database operators, such as scans, joins, and

exchanges. For these kinds of queries and operators we identify three categories of bottlenecks that can lead

to underutilized hardware components in a cluster environment.
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Hardware bottleneck (network and disk): Decision support queries often require repartitioning

during query execution. Replication of tables on different partition keys can alleviate the need for reparti-

tioning in some cases, but this option is limited to only small tables as it is often too expensive to replicate

large tables.

The repartitioning step is often gated by the speed of the network interconnect, causing the processor

and other resources of a node to idle while the node waits for data from the network. Additionally, an

increase in network traffic on the cluster switches causes interference and further delays in communication.

Future advances in networking technology are expected to be accompanied by advances in CPU capabilities,

making this performance gap a persistent problem [133].

The balance between the network and disk subsystems can be easily disturbed with varying predicate

selectivities which diminish the rate at which the storage subsystem can deliver qualified tuples to the net-

work. As a result, underutilized CPU cores waiting to process operators at the higher levels of a query plan

waste energy.

Algorithmic bottleneck (broadcast): For certain joins, the cheapest execution plan may be to broad-

cast a copy of the inner table (once all local predicates have been applied) to all the nodes so that the join is

performed without re-partitioning the (potentially larger) outer table. Such a broadcast generally takes the

same time to complete regardless of the number of participating nodes (e.g., for mGB of qualifying tuples

and say 16 nodes, each node needs to receive (15m/16)GB of the data, while for 32 nodes this changes by

a small amount to (31m/32)GB). As a result, scaling out to more nodes does not speed up this first phase

of a join and it reduces the cluster energy efficiency.

Data Skew: Although partitioning tools try to avoid data skew, even a small skew, can cause an

imbalance in the utilization of the cluster nodes, especially as the system scales. Thus, data skew can easily

create cluster and server imbalances even in highly tuned configurations. While we recognize data skew as

a bottleneck, we leave an investigation of this critical issue as a part of future work.
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4.4.2 P-store: A Custom-built Parallel Engine

P-store is built on top of a block-iterator, tuple-scan module and a storage engine [82], that has scan,

project, and select operators. To this engine, we added network exchange and hash join operators. Since

energy consumption is a function of average power and time, our goal was to make our engine perform

at levels comparable to commercial systems. Therefore, it was imperative that our exchange operator is

able to transfer over the network at rates near the limits of the physical hardware, and our operators never

materialize tuples while maximizing utilization through multi-threaded concurrency.

4.4.3 Experiments

The purpose of these P-store experiments is to stress our “work-horse” exchange operator when per-

forming partition-incompatible hash joins. By stressing the exchange operator, we wanted to see how the

hash join operation behaves at different points in the cluster design space with respect to performance and

energy consumption.

Our hash join query is between the LINEITEM and the ORDERS tables of TPC-H at a scale factor of 1000,

similar to the Vertica experiments (see Section 4.3.1). We used eight of the cluster-V nodes described in

Table 4.1. By measuring the CPU utilization, the average cluster power was found using our empirically

derived model from the cluster-V column of Table 4.1, Section 4.3.

To explore the bottleneck of partition-incompatible joins, we hash partitioned the LINEITEM and OR-

DERS tables on their L SHIPDATE and O CUSTKEY attributes respectively, and examined the join between these

two tables that is necessary for TPC-H Query 3. The LINEITEM table is projected to only the L ORDERKEY,

L EXTENDEDPRICE, L DISCOUNT, and L SHIPDATE columns, while the ORDERS table is projected to the O ORDERKEY,

O ORDERDATE, O SHIPPRIORITY, and O CUSTKEY columns. To simulate the benefit of a columnar storage man-

ager, for both tables, these four column projections (20B) were stored as tuples in memory for the scan

operator to read. We applied a 5% selectivity predicate on both the tables using a predicate on the O CUSTKEY

attribute for ORDERS and a predicate on the L SHIPDATE attribute for LINEITEM, as is similarly done in TPC-H

Query 3.
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(a) One query (b) Two concurrent queries (c) Four concurrent queries

Figure 4.5: A partition incompatible TPC-H Q3 dual shuffle (exchange) hash join between LINEITEM and
ORDERS (scale 1000) in P-store. Each subfigure (a-c) shows the energy consumption and performance ratios
relative to the 8 node cluster reference point. The dotted line indicates the points where the EDP metric is
constant.

To perform the partition-incompatible join in this TPC-H query (Query 3), the hash join operator

needs to build a hash table on the ORDERS table and then probe using the LINEITEM table. There are two

ways to do this: (i) repartition both tables on the ORDERKEY attribute – a dual shuffle, and (ii) broadcast the

qualifying ORDERS tuples to all nodes. With these two join methods, we show the effects of network and disk

bottlenecks as well as algorithmic bottlenecks that affect energy efficiency.

4.4.3.1 Dual Shuffle

By doing a repartitioning of both tables, our P-store results shows behavior that is similar to that of

Vertica running TPC-H Query 12 (Figure 4.1(a)). Using P-store, first the ORDERS table is repartitioned and

the hash table is built on this table on-the-fly (no disk materialization) as tuples arrive over the network.

After all the nodes have built their hash tables, the LINEITEM table is repartitioned and its tuples probe the

hash tables on-the-fly.

In Figures 4.5(a)–(c), we see that poor performance scalability due to network bottlenecks can allow

us to save energy by using fewer nodes. These figures show the comparison of relative energy consumption

to relative performance of the hash join with 1, 2, and 4 independent concurrent joins being performed re-

spectively on 4 to 8 node clusters. We increased the degree of concurrency to see how multiple simultaneous
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(a) One query (b) Two concurrent queries (c) Four concurrent queries

Figure 4.6: A partition incompatible TPC-H Q3 broadcast hash join between LINEITEM and ORDERS (scale
1000) in P-store. Each subfigure (a-c) shows the energy consumption and performance ratios relative to the
8 node cluster reference point. The dotted line indicates the points where the EDP metric is constant.

requests for the network resource affected the network bottleneck.

Our results show that 4 nodes (4N) always consumes less energy than 8 (8N). Also, as the concurrency

level increases, the degree of energy savings also increases (i.e., the results move closer to the dashed EDP

line). In Figure 4.5(a), halving the cluster size only results in a 38% decrease in performance and translates

to almost 20% savings in energy consumption. At a concurrency level of two (Figure 4.5 (b)), the 4-node

cluster has a 23% increase in energy savings over the 8-node cluster with a 35% penalty in performance.

With 4 concurrent hash joins running on the cluster (Figure 4.5 (c)), the 4-node cluster saves 24% of the

energy consumed by the 8-node cluster while losing 33% in performance.

The reason we see greater energy savings with more concurrent queries is because the CPU utilization

does not proportionally increase with the increasing concurrency level. This behavior is due to the network

being the bottleneck, and so the CPU stalls and idles as other hash joins also require the network resource.

To summarize, these results show that reducing the cluster size can save energy, but we pay for it with

a proportionally greater loss in performance – i.e., these data points lie above the dashed EDP line. As we

have mentioned previously, ideally we would prefer results that lie on or below this dotted curve. The next

section shows that for broadcast joins, the trade-off is much more attractive.
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4.4.3.2 Broadcast

The broadcast join method scans and filters the ORDERS table, and then sends the qualifying tuples to

all the other nodes. Therefore, the full ORDERS hash table is built by each node and the LINEITEM table does

not need to be repartitioned. To keep the full ORDERS hash table in memory, we increased the ORDERS table

selectivity from 5% to 1% but held the LINEITEM table selectivity at 5%.

The results for this experiment are shown in Figure 4.6(a)–(c). From these figures, we observe that the

data points now lie on the EDP line, indicating that we proportionally trade an X% decrease in performance

for an X% decrease in energy consumption compared to the 8 node case (8N). Similar to the dual shuffle

cases, here we also used various concurrency levels – 1, 2, and 4.

In Figure 4.6(a), with one join running, the performance only decreases by 32% when we halve the

cluster size from 8 to 4 nodes. With 2 and 4 concurrent joins, the performance decreases by around 30% in

Figures 4.6(b,c) when halving the cluster size. This drop in performance causes the 4 node cluster to always

save between 25% to 30% in energy consumption compared to the full 8 node cluster.

Compared to the dual shuffle join (see Figure 4.5), the broadcast join saves more energy when using 4

nodes rather than 8 nodes (data points lie closer to the EDP line in Figure 4.6). This means that the broadcast

join suffers a higher degree of non-linear scalability than the dual shuffle join. This is because broadcasting

the ORDERS table does not get faster with 8 nodes since every node must receive roughly the entire table

(7/8) over the network (see Section 4.4.1).

4.4.4 Discussion

Figure 4.7 summarizes our findings in this section. The energy consumption of the system, when

running a 2-way join under different query execution plans, can vary significantly under different cluster

configurations. Due to sub-linear performance speedup, when the join is not partition compatible (“shuffle

both tables” and “broadcast small table”), halving the cluster size does not result in doubling the response

time, and this is one reason why the energy consumption at the “Half Cluster” configuration is lower than

at “Full Cluster” point. Furthermore, we can see that when we use half of the cluster nodes instead of the
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Figure 4.7: Network and algorithmic bottlenecks cause non-linear scalability in the partition-incompatible
joins which mean smaller cluster designs consume less energy than larger designs. If the query is perfectly
partitioned with ideal scalability (Vertica TPC-H Q1, Figure 4.3(a)), changing the number of nodes only
affects performance and not energy consumption.

full cluster, the broadcast join method saves more energy and suffers less performance penalty than the dual

shuffle join. This is because, for the broadcast join approach, the hash join build phase does not get faster

with more nodes and so 4 nodes is much more efficient than 8 nodes. We can put this result in perspective

by comparing these results to the partitioned TPC-H Q1 result from Vertica, where the energy consumption

is flat regardless of the cluster size.

4.5 On Cluster Design

Our empirical results using two off-the-shelf DBMSs and a custom parallel query execution kernel

have shown that a number of key bottlenecks cause sub-linear speedup. These diminishing returns in per-

formance, when additional cluster nodes are added, are a key reason why the energy consumption typically

drops when we reduce the cluster size. Observing this reoccurring pattern of “smaller clusters can save

energy” suggests that the presence of performance bottlenecks is a key factor for energy efficiency.

However, we have thus far ignored the other factor for total system energy consumption: namely,

the power characteristics of a single node. As we demonstrate in this section, the hardware configuration

(and performance capability) of each individual node also plays a significant role in improving the energy

efficiency of parallel DBMSs, and needs to be considered for energy-efficient cluster design. By comparing

some representative hardware configurations, we found one of our “Wimpy” laptop configurations yielded
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System CPU (cores/threads) RAM Idle Power (W)
Workstation A i7 920 (4/8) 12GB 93W
Workstation B Xeon (4/4) 24GB 69W
Desktop Atom (2/4) 4GB 28W
Laptop A Core 2 Duo (2/2) 4GB 12W (screen off)
Laptop B i7 620m (2/4) 8GB 11W (screen off)

Table 4.2: Hardware configuration of different systems.

the lowest energy consumption in single node experiments. As such, we ask the question: Given what

we now know about performance bottlenecks and energy efficiency, what if we introduced these so-called

“Wimpy” nodes into a parallel database cluster?

In the remainder of this chapter, we explore how query parameters, performance bottlenecks, and clus-

ter design are the key factors that we should consider if we were to construct an energy-efficient cluster from

scratch. We first show that wimpy nodes consume less energy per query than “Beefy” nodes (Section 4.5.1).

Then, using P-store we ran parallel hash joins on heterogeneous cluster designs (Section 4.5.2), and used

these results to generate and validate a performance/energy consumption model (Sections 4.5.3). Finally,

using this model, we explore the effects of some important query and cluster parameters (Section 4.5.4) to

produce insights about the characteristics of the energy-efficient cluster design space (Section 4.5.5).

4.5.1 Energy Efficiency of Individual Nodes

In this section we demonstrate that non-server, low-power nodes consume significantly lower amounts

of energy to perform the same task as a traditional “Beefy” server nodes. For the rest of the results in this

study, we had physical access to the nodes/servers so we measured power directly from the outlet using a

WattsUp Pro meter. The meter provided a 1Hz sampling frequency with a measurement accuracy of +/-

1.5%. 5

We studied five systems with different power and performance characteristics, ranging from low-

power, ultra-mobile laptops to high-end workstations. Laptops are optimized for power consumption and
5 We observed that the server CPU utilization/power models from these measurements validate our iLO2-based

approach in Table 4.1.
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Figure 4.8: A hashjoin: 0.1M and 20M tuple (100B) tables.

are typically equipped with mobile CPUs and SSDs, whereas high-end workstations are optimized for per-

formance. The configuration and power consumption details are shown in Table 4.2.

To assess the energy efficiency of these systems, we used an in-memory database workload. This

workload executes a basic hash join operation, and is designed to stress modern CPUs (the hash join code

is cache-conscious and multi-threaded). Our hash join is between a 10MB table (100K cardinality, and 100

byte tuples) and a 2GB table (20M cardinality, and 100 byte tuples).

Figure 4.8 plots the energy consumed versus the hash join response time for the different configura-

tions. From this figure, we observe that the Laptop B system consumes the lowest energy for processing this

in-memory hash join. As expected, the high-end workstations exhibit the best performance (lowest response

time). However, the workstations are not the best when we consider the energy consumption. The energy

consumption of Laptop B is 800 Joules while the energy consumption of Workstation A is near 1300 Joules,

even though it takes significantly longer to perform the in-memory join on the laptop. As this experiment

suggests, low-power systems can reduce the average power that they draw more than they reduce perfor-

mance, thereby reducing the energy consumption of running a database query. Since “Laptop B” consumed

the least energy, we use it to represent a “Wimpy” server node when considering architectural designs of

heterogeneous clusters.

Combining these results with the scalability and bottleneck observations (from Section 4.4.2), next

we explore energy-efficient cluster design points, starting with experimental evidence of potential design

opportunities.
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4.5.2 Heterogeneous Clusters Design

We prototyped two different four node clusters and measured the energy efficiency for dual shuffle

hash joins (see Section 4.4.3), using P-store. Each cluster node has a 1Gbs network card and is connected

through a 10/100/1000 SMCGS5 switch. Node power was measured using the WattsUp power meters as

described in Section 4.5.1. The cluster specifications are as follows.

Beefy Cluster: This cluster has four HP ProLiant SE326M1R2 servers with dual low-power quad-

core Nehalem-class Xeon L5630 processors. Each node also has 32GB of memory and dual Crucial C300

256GB SSDs (only one was used for data storage). During our experiments, the average node power was

154W.

2 Beefy/2 Wimpy: This cluster has two “beefy” nodes from the Beefy cluster above, and two Laptop

Bs (from Section 4.5.1), with i7 620m CPUs, 8GB of memory, and a Crucial C300 256GB SSD. During our

experiments, the average laptop power was 37W.

Before we continue with the experimental results, there are two important notes to make. First, P-

store does not support out-of-memory joins (2-pass joins), and therefore we either run in-memory joins

across all the nodes (homogeneous execution), or we only perform the join on the nodes that have enough

memory while the other nodes simply scan and filter data (heterogeneous execution). Since energy is a

function of time and average power, in-memory join processing dramatically reduces the response time (as

well as maintains high CPU utilization) and hence provides a substantial decrease in energy consumption

per query. Second, our network has a peak capacity of 1Gbps, and therefore is typically the bottleneck for

non-selective (where a high percentage of input tuples satisfy the selection predicates) queries. While a

faster network could be used, as we discussed in Section 4.4.1, the network-CPU performance gap is likely

to persist into the near future.

Using P-store, we ran the same hash join necessary for TPC-H Q3 between the LINEITEM and the

ORDERS tables (as was done in the experiment described in Section 4.4.3), but with a scale factor of 400.

The working sets (after projection) for the LINEITEM and the ORDERS tables are 48GB and 12GB respectively.

We warmed our memory cache with as much of the working set as possible. The hash join is partition-
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Figure 4.9: P-store dual-shuffle hash join between LINEITEM (L) and ORDERS (O) tables at various selectivities
(e.g., O10 means 10% selectivity on the ORDERS table). Empirical hash join energy efficiency of the all Beefy
(AB) versus the 2 Beefy/2 Wimpy clusters (BW).

incompatible on both the tables just as in Section 4.4.3 (i.e., dual shuffle is needed). We varied the selectivity

on the LINEITEM table to 1%, 10%, 50%, and 100%. The ORDERS table had a selectivity of 1% and 10%. This

gave us 8 different hash join workloads.

The Beefy cluster can run all of the 8 hash join workloads by first repartitioning ORDERS on the join

key O ORDERKEY, and building the hash table on each node as tuples arrive over the network. The LINEITEM

table is then repartitioned on the L ORDERKEY attribute, and each node probes their hash table on-the-fly as

tuples arrive over the network. The beefy nodes have enough memory to cache the working set and build

the in-memory hash table for the ORDERS table for both the 1% and 10% ORDERS selectivity values.

The hash join parameters cause the need for the 2 Beefy/2 Wimpy cluster to alternate between homo-



90

geneous and heterogeneous execution. The wimpy nodes only have 8GB of memory, and hence can only

cache the 3GB ORDERS table partition and some of the 12GB LINEITEM table partition. Thus, for the 2 Beefy/2

Wimpy cluster, a 1% selectivity on ORDERS allows the hash table to fit in the laptop memory, and we can

execute the join in the same way as the Beefy cluster – homogeneous execution. However, if the selectivity

on ORDERS is low (i.e., the predicate matches ≥ 10% of the input tuples), then we can only leverage the

wimpy nodes to scan and filter their partitions, and have them send all the qualifying data to the beefy nodes

where the actual hash tables are built – heterogeneous execution. Similarly, the wimpy nodes scan and filter

the LINEITEM (probe) tuples and repartition the data to the beefy nodes.

Therefore, in our study, we consider two “wimpy” aspects of our mobile nodes: (1) their lower power

and performance due to low-end CPUs, and (2) their lower memory capacity which constrains the execution

strategies for evaluating a query.

Small Hash Tables – Homogeneous Execution

Homogeneous parallel execution of a hash join requires a highly selective predicate that produces a

small ORDERS hash table that can be stored in memory on all the nodes. We measured the response time

(seconds) and the energy consumed (Joules) of both our cluster designs when running the hash join where

the selectivity of the predicate on the ORDERS table was 1%. Figure 4.9 (a) shows the comparison of the

all Beefy (AB) cluster to the 2 Beefy/2 Wimpy (BW) cluster when we vary the LINEITEM table selectivity

(L1,L10,L50,L100) for a 1% selectivity on the ORDERS table (O1). We notice that for the 1% and 10%

LINEITEM selectivity cases (the circle and square markers respectively), the AB cluster consumed less energy

than the BW cluster. However, for the 50% LINEITEM selectivity case (triangle), the BW cluster saves 43%

of the energy consumed over the AB cluster. When the LINEITEM table has no predicate (diamond), the BW

cluster saves 56% of the energy consumed by the AB cluster.

Here, we illustrate one of the bottlenecks we discussed above in Section 4.4: namely the network/disk.

With 100% LINEITEM selectivity, the bottleneck is network bandwidth: the bottleneck response time of the

AB cluster is 155s, while the response time of the BW cluster is 168s. With 1% LINEITEM selectivity, we are

bound by the scan/filter limits of the wimpy, mobile nodes: the AB cluster finishes executing this join in 8s

while the BW cluster takes 50s.
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Large Hash Tables – Heterogeneous Execution

As mentioned above, in the cases where the hash tables are larger than the available memory in

the wimpy, mobile nodes, the wimpy nodes of the mixed node cluster simply scan and filter the data for

the beefy nodes. Figure 4.9 (b) shows the comparison of the AB cluster to the BW cluster in terms of

energy efficiency, similar to Figure 4.9 (a). Like our previous result for the 1% ORDERS selectivity case, the

BW cluster consumes less energy than the AB cluster at a low LINEITEM selectivity (50% and 100%). The

BW cluster consumes 7% and 13% less energy than the AB cluster at 50% and 100% LINEITEM selectivity

respectively.

Thus, we see that in both situations, a heterogeneous cluster can offer improved energy efficiency at

reduced performance. To further explore the full spectrum of available cluster and workload parameters that

are important for cluster design, we built a model of P-store’s performance and energy consumption. Our

model is validated against these results in Figure 4.9. This model enables us to freely explore the cluster and

query parameters that are important for cluster design.

4.5.3 Modeling P-store and Bottlenecks

Our model of P-store’s performance and energy consumption behavior is aimed at understanding the

nature of query parameters and scalability bottlenecks affecting performance and system energy consump-

tion. The model predicts the performance and energy consumption of various different ways to execute a

hash join. The input parameters that we consider are listed in Table 4.3.

From Table 4.3, note that our model makes a few simplifying assumptions. First, the disk configu-

ration for both the wimpy nodes and the beefy nodes are the same and have the same bandwidth. Second,

the same uniformity assumption has been made about the network capability of both node types. These as-

sumptions matched our hardware setup, but we can easily extend our model to account for separate wimpy

and beefy I/O bandwidths.

First, let us look at when the wimpy nodes can build hash tables because they have enough memory

to hold the hash tables (i.e., we do not have to run a 2-pass hash join). This is the case when H is true (see

Table 4.3).
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Tbld Build phase time (s) Tprb Probe phase time (s)
Ebld Build phase energy (J) Eprb Probe phase energy (J)
NB # Beefy nodes NW # Wimpy nodes
MB Beefy memory size (MB) MW Wimpy memory size (MB)
I Disk bandwidth (MB/s) LNetwork bandwidth (MB/s)

BldHash join build table size (MB) PrbHash join probe table size (MB)
Sbld Build table predicate selectivity Sprb Probe table predicate selectivity

RWbld Rate at which a Wimpy node builds its hash table (MB/s)
RBbld Rate at which a Beefy node builds its hash table (MB/s)
UWbld Wimpy node CPU bandwidth during the build phase
UBbld Beefy node CPU bandwidth during the build phase
RWprb Rate at which the Wimpy node probes its hash table (MB/s)
RBprb Rate at which the Beefy node probes its hash table (MB/s)
UWprb Wimpy node CPU bandwidth during the probe phase
UBprb Beefy node CPU bandwidth during the probe phase

CB = 5037 Maximum CPU bandwidth of a Beefy node (MB/s)
CW = 1129 Maximum CPU bandwidth of a Wimpy node (MB/s)
GB = 0.25 Beefy CPU utilization constants for P-store
GW = 0.13 Wimpy CPU utilization constants for P-store

fB(c) = 130.03× (100c)0.2369 (c=CPU util.) Beefy node power model
fW (c) = 10.994× (100c)0.2875 (c=CPU util.) Wimpy node power model

H = MW ≥ (Bld ∗Bldsel)/(NB +NW ) Wimpy can build the hash table

Table 4.3: List of Model Variables

Homogeneous Execution: In this case, all the nodes execute the same operator tree. We can divide the hash

join into the build phase and the probe phase. During the build phase, we are either bound by (1) the effects

of the disk bandwidth and the selectivity on the build table ; or (2) the network bandwidth:

RBbld = RWbld =


ISbld if ISbld < L

(NB +NW )L

(NB +NW − 1)
otherwise

These two variables RBbld and RWbld give us the rates at which the build phase is proceeding (in

MB/s). We also need to model the build phase CPU utilization to determine the power drawn by each node

type. This is done by determining the amount of data that the beefy CPU and the wimpy CPU is processing

per second, UBbld and UWbld, and then dividing each of these values by the maximum measured rates for the

CPU, CB and CW respectively. Finally, we need to add CPU constants that are inherent to P-store, which

are EB and EW for the beefy and wimpy nodes respectively. This CPU utilization is the input for our server
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power functions, fB and fW , for the beefy and wimpy nodes respectively (see Table 4.3).

UBbld = UWbld =


I if ISbld < L

(NB +NW )L

(NB +NW − 1)
÷ Sbld otherwise

Therefore, we can now calculate the build phase response time and the build phase cluster energy

consumption.

Tbld =
Bld× Sbld

(NBRBbld) + (NWRWbld)

Ebld = Tbld × (NBfB(GB +
UBbld

CB
) +NW fW (GW +

UWbld

CW
))

Since this is homogeneous execution, the probe phase can be modeled in the same way as the build

phase but now using the probe table variables.

RBprb = RWprb =


ISprb if ISprb < L

(NB +NW )L

(NB +NW − 1)
otherwise

And similarly, the CPU bandwidth during the probe phase is:

UBprb = UWprb =


I if ISprb < L

(NB +NW )L

(NB +NW − 1)
÷ Sprb otherwise

Like the build phase, we can now calculate the probe phase response time and the probe phase cluster

energy consumption.

Tprb =
Prb× Sprb

(NBRBprb) + (NWRWprb)

Eprb = Tprb × (NBfB(GB +
UBprb

CB
) +NW fW (GW +

UWprb

CW
))

With these two phases modeled, the total response time is simply Tbld + Tprb, and the total energy

consumed is Ebld + Eprb.

Heterogeneous Execution: When the wimpy nodes can not store the hash join hash table in memory (H

is false), P-store uses the wimpy nodes as scan and filter nodes and only the beefy nodes build the hash

tables. Our model accounts for this by calculating the rates at which predicate-passing tuples are delivered

to the beefy nodes. In the same spirit as the above model for the homogeneous execution, the key factors
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Figure 4.10: Performance and Energy model validation for the 2 Beefy/2 Wimpy case with 1% ORDERS

selectivity and varying LINEITEM selectivity against observed data from Figure 4.9(a)

are whether or not we are disk bound or network bound. However, since a smaller set of beefy nodes need

to receive the data from the entire cluster, in addition to out-bound network limitations from nodes sending

data, there is an ingestion network limitation at the beefy nodes, which becomes a performance bottleneck

first. That is, the beefy nodes that are building the hash tables can only receive data at the network’s capacity

even though there may be many wimpy nodes trying to send data to them at a higher rate. This back-pressure

slows the rate at which all the nodes will scan and filter their locally stored data. Consequently, this reduces

the CPU utilization and so the server power is reduced as well. For instance, if we are beefy-node, network-

ingestion bound during the probe phase ((NB + NW − 1)ISprb > L), then the maximum rate at which

the wimpy nodes can send qualifying tuples outbound is (L/(NB +NW − 1)) which means the maximum

wimpy-node, disk-scan rate is (L/(NB +NW − 1)÷ Sprb).

Model Validation

Next, we present validation of our P-store model using the real observed data of the 2 Beefy/2 Wimpy

cluster in Section 4.5.2. Since the results in Section 4.5.2 were from warm-cache (some of the table data

resides in memory and disk I/O may be necessary) hash joins, we changed the input parameters of our
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Figure 4.11: Performance and Energy model validation for the 2 Beefy/2 Wimpy case with 10% ORDERS

selectivity and varying LINEITEM selectivity against observed data from Figure 4.9(b)

model to account for such behavior. For example, we changed the scan rate of the build phase to that of the

maximum CPU bandwidth CW and CB . In this way, the time it takes to finish the build phase is equal to the

time it takes the CPU to process the build table at maximum speed plus the time to send the filter qualifying

tuples over the network.

For our model, we used the following hardware parameter settings: MB = 31000, MW = 7000, NB =

NW = 2, I = 270, L = 95. Since our experiments used a different beefy node (based on 2 L5630 Xeon CPUs)

than the cluster-V nodes, the fB function for node power is given by 79.006× (100∗u)0.2451 and CB = 4034.

Our validation results of our model against the 2 Beefy/2 Wimpy cluster results from Section 4.5.2

are shown in Figures 4.10 and 4.11. In Figure 4.10(a) and (b), we validate the response time and energy

consumption results of our model against the 1% ORDERS table selectivity joins presented in Figure 4.9(a).

The execution plans for the 1% ORDERS selectivity were homogeneous across all the nodes. In Figure 4.10,

our model provided relative response time behavior and relative energy consumption behavior to the 100%

LINEITEM selectivity result within 5% error compared to the observed data. Similarly, in Figure 4.11(a) and

(b), we validated the relative response time and energy consumption results from our model for the 10%
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Figure 4.12: Modeled P-store dual-shuffle hash join performance and energy efficiency of an 8 node cluster
made of various Beefy and Wimpy nodes. (a) Parallel execution is homogeneous: the Wimpy and Beefy
nodes can build in-memory hash tables. (b) Parallel execution is heterogeneous: Wimpy nodes scan and
filter their local data before shuffling it to the Beefy nodes for further processing. A constant EDP relative
to the all Beefy cluster is shown by the dotted line.

ORDERS selectivity joins from Figure 4.9(b). Here the error rate was within 10% compared to the observed

data. The execution plans here were heterogeneous, with the wimpy nodes only scanning and filtering data

for the beefy nodes.

With our model validated, we now explore a wider range of cluster designs beyond four nodes while

also varying the query parameters, such as predicate selectivity. Our results reveal interesting opportunities

for energy-efficient cluster design.

4.5.4 Exploring Query and Cluster Parameters

In this section, we explore what happens to query performance and energy consumption as we change

the cluster design (the ratio of beefy to wimpy nodes) and query characteristics (the selectivity of build and

probe tables), while executing the hash join query on P-store. This hash join is between a 700GB TPC-H

ORDERS table and 2.8TB TPC-H LINEITEM table. We join these tables on their join attribute ORDERKEY. For
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our model, we used the following hardware parameter settings: MB = 47000, MW = 7000, I = 1200, L = 100.

The memory settings correspond to those of our cluster-V nodes (Table 4.1, Section 4.3) and Laptop B

(Table 4.2). We model the IO subsystem of our nodes as if they each had four of the Crucial 256GB SSDs

that we used in Section 4.5.2, as well as the 1Gbps network interconnect of that experiment. We kept the

remaining CPU parameters the same as those listed in Table 4.3.

We have already presented one of these results at the beginning of this chapter. In Figure 4.1(b), we

showed that increasing the ratio of wimpy to beefy nodes results in more energy-efficient configurations

compared to the homogeneous cluster design consisting of only beefy nodes. In that figure, we used the

model that we described in Section 4.5.3 to compare the energy consumption vs. performance trade-off for

the hash join between the TPC-H ORDERS table and the LINEITEM table at 10% and 1% selectivity respectively.

In Figure 4.12(a), we show that the best cluster design point, when executing a hash join between an

ORDERS table with 1% selectivity and a LINEITEM table with 10% selectivity, is to use all wimpy nodes. In

this case, since a 1% selectivity on the hash join build table means that each node only needs at least 875MB

of memory to build in-memory hash tables, the parallel execution across all nodes is homogeneous. Since

we have modeled the wimpy and the beefy nodes to have the same IO and network capabilities, we should

not expect any performance degradation as we replace beefy nodes with wimpy nodes (i.e., the network and

disk bottlenecks mask the performance limitations of the wimpy nodes). This is shown in Figure 4.12(a) as

the performance ratio remains 1.0 throughout all the configurations. Consequently, since performance does

not degrade, we see that the energy consumed by the hash join drops by almost 90% because a wimpy node

power footprint is almost 10% of the beefy node power footprint. Due to similar results to Figure 4.12(a),

we omit the figure for 1% ORDERS and 1% LINEITEM selectivity.

In Figure 4.12(b), the best cluster configuration for a hash join when the ORDERS table has the same

10% selectivity as in Figure 4.1(b) and the LINEITEM table also has 10% selectivity is to use all beefy nodes.

The wimpy nodes do not have the 8.8GB of main memory that is needed to build the in-memory hash

table, so we model them to scan and filter data for the beefy nodes; i.e., we have a heterogeneous parallel

execution. We varied the cluster design from the all beefy to 2 beefy and 6 wimpy cases, after which, the

aggregate beefy memory cannot store the in-memory hash table. Here the results stand in stark contrast to
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the results shown in Figure 4.12(a), because there is not a significant energy savings when we use wimpy

nodes in the cluster. The reason is because with a 10% selectivity predicate on the tables, the server’s

IO subsystem has enough bandwidth to saturate the network interconnect, and the network becomes the

bottleneck. Specifically, as we decrease the number of beefy nodes – they are responsible for building and

probing the hash tables – each beefy node becomes more network bottlenecked ingesting data from all the

other nodes in the cluster. Consequently, we see that the performance degrades severely, while the energy

consumption does not drop below 95% of the 8B,0W cluster reference point.
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Figure 4.13: Modeled P-store dual-shuffle hash join performance and energy efficiency of an 8 node cluster
made of Beefy and Wimpy nodes. The join is between the TPC-H ORDERS table (10% sel.) and LINEITEM

table (2-10% sel.). Parallel execution is heterogeneous across cluster nodes. A constant EDP relative to the
all Beefy cluster is shown by the straight dotted line.

This last result is interesting because we saw that for another heterogeneous execution plan in Fig-

ure 4.1(b), a 1% LINEITEM selectivity, saw significant wins in trading performance for energy savings. Natu-

rally, we wanted to understand why we saw these different results when we only change the selectivities of

the predicate on the LINEITEM table.

In Figure 4.13, we show that as we increase the selectivities of the predicate on the LINEITEM table

from 10% to 2% (in 2% increments), given a 10% selectivity predicate on the ORDERS table, we begin to

trade less performance for greater energy savings. Each curve represents a different LINEITEM selectivity, and
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as the curve moves to the right, each dot indicates more Wimpy nodes in the 8 node cluster. Again, we do

not use fewer than 2 beefy nodes because 1 beefy node cannot build the entire hash table in memory. The

dashed line indicates the constant EDP metric.

We notice that as we gradually decrease the number of LINEITEM tuples passing the selection filter (i.e.,

increase the LINEITEM table selectivity from 10% to 2%), the results start to trend downward below the EDP

line. More interestingly, we notice that the results start to trend downward in a way such that the knee in the

curves moves lower towards the cluster designs with more wimpy nodes (right ends of the result curves). To

the right of the knee, the heterogeneous parallel plans saturate the beefy node network ingestion during the

probe phase. To the left of the knee, the nodes delivering data to the beefy nodes are sending data as fast as

their IO subsystem (and table selectivity) can sustain. As the amount of probe (LINEITEM) data passing the

selection filter decreases (the gradually lighter-shaded curves in Figure 4.13), the number of wimpy nodes

that are needed to saturate the inbound network port at the beefy nodes increases, so the knee moves to the

right end with more wimpy nodes.

4.5.5 Summary

In this section, we have shown that there is an interesting interplay between the most energy-efficient

cluster design (the ratio of wimpy to beefy nodes) and the query parameters such as predicate selectivity

(Figure 4.13) for a simple parallel hash join query. Furthermore, heterogeneous cluster designs can trade

proportionally less performance for greater energy savings (i.e., they lie below the EDP line) compared to a

homogeneous cluster design.

4.6 Cluster Design Principles

In this section we summarize guiding principles for building energy-efficient data processing clusters.

Figure 4.14 outlines the summary of our findings, which we discuss in this section.

First, consider a query that is being run on a parallel data processing system. Using initial hardware

calibration data and query optimizer information, consider the case when the query is deemed to be highly

scalable. That is, the energy/performance model for the query looks like Figure 4.14(a). (We have seen
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Figure 4.14: Query scalability characterizations and energy-efficient design points when the target query
performance is 40% of an eight Beefy node configuration, i.e., the target normalized performance is 0.6:
(a) A highly scalable parallel workload: Use all available nodes, since the highest performing design point
is also the most energy efficient. (b) A parallel workload with some scalability bottleneck (e.g., network
I/O): Use the fewest nodes such that performance limits are still met. (c) Using fewer nodes reduces energy
consumption on bottlenecked hash join but adding Wimpy nodes to supplement Beefy nodes can provide a
more energy-efficient design point. The dashed EDP curve provides a reference for equal performance vs
energy trade-offs.

empirical results like this, in Figures 4.3(a) and (b).) For such queries, the best cluster design point is to use

the most resources (nodes) to finish the query as soon as possible. So, in Figure 4.14(a), we find that the

largest cluster is the best design point.

However, if the query is not scalable (potentially due to bottlenecks), then the highest performing

cluster design may not be the most energy-efficient design. (The results shown in Figures 4.1(a), 4.5,

and 4.6 are examples of this case.) For such queries, reducing the cluster size decreases the query energy

consumption, although at the cost of performance. In such situations, one should reduce the performance

to meet any required target (e.g., performance targets specified in SLAs in cloud environments). Then, the

system can reduce the server resource allocation accordingly. Thus, as we show in Figure 4.14(b), if the

acceptable performance loss is 40%, then using 4 nodes is the best cluster design point for this query.

Finally, these previous design principles assume a homogeneous cluster. For queries that are not
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scalable, a heterogeneous cluster may provide an interesting design point. As before, in this case, to pick

a good cluster design point, we start with an acceptable target performance. Then, heterogeneous cluster

configurations may provide a better cluster design point compared to the best homogeneous cluster configu-

ration. As an example, consider the P-store dual-shuffle hash join query in Figure 4.14(c), and an acceptable

performance loss of 40% relative to an eight “Beefy” node homogeneous cluster design (labeled as 8B in the

Figure). Here, the 5B configuration is the best homogeneous cluster design point. But if we substitute some

of the beefy nodes with lower-powered “Wimpy” nodes then with two beefy nodes and six wimpy nodes we

consume less energy than the 5B case and also have better query performance. Notice that the heterogeneous

design points are below the EDP curve, which means that in these designs one proportionally saved more

energy than the proportional performance loss (compared to the 8B case). Thus, for non-scalable queries, a

heterogeneous cluster configuration may provide a better design point, both from the energy efficiency and

performance perspective, compared to homogeneous cluster designs.

4.7 Summary

In this chapter, we have studied the trade-offs between the performance and the energy consumption

characteristics of analytical queries, for various cluster designs. We have found that the query scalability

properties have a key impact in determining the interaction between the query performance and its energy

consumption characteristics. We have summarized our findings (in Section 4.6) as initial guiding principles

for building energy-efficient data processing clusters.

There are a number of directions for future work, including expanding this work to consider entire

workloads, exploring heterogeneous execution plans to take advantage of heterogeneous clusters, examining

the impact of data skew, and investigating the impact of dynamically varying multi-user workloads.



Chapter 5

Energy-aware Parallel Data Processing II – Managing MapReduce Clusters

If we consider that commodity server prices are consistently falling, then it is estimated that this year,

the three year cost of electricity per server will exceed the initial cost of the server itself [34]. Trends show

that processor performance doubles (in number of cores) every 18 months while the performance per Watt

only doubles every two years [23]. Thus, it should be no surprise that an early EPA study estimates that

servers will make up 3% of the total energy consumption in the U.S. in 2011 [4].

One reason contributing to the high server energy costs is that server nodes in cluster environments

are typically only 20-30% utilized, and energy efficiency in this range is under 50% [21]. This suggests that

42% of the total monthly operating cost stemming from power [80] can be reduced if we increase energy

efficiency of the cluster nodes during low utilization periods.

5.1 Technical Contributions

This chapter discusses how to improve the energy efficiency of MapReduce (MR) clusters to exploit

low utilization periods. Our methods can easily be generalized to other cluster management strategies,

such as for Dryad [93], but to keep the discussion focused and better connected to prior work, we cast the

discussion within the MapReduce framework.

Recently, the Covering Set (CS) method was proposed for cluster energy management [112]. The CS

strategy exploits the replication that is provided by a distributed file systems (DFS), which keeps multiple

copies of each data block spread across nodes in the cluster. The CS strategy designates some nodes in the

system as special nodes, called the CS nodes, and keeps at least one copy of each unique data block on these
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nodes. Thus, by altering the data placement policy of the underlying DFS, during periods of low utilization,

some or all of the non-CS nodes can now be powered down to save energy. For example, if 33% of the nodes

are CS nodes, then at 33% utilization only the CS nodes are online. CS is general and allows the CS nodes

to be an arbitrary fraction of the total nodes, and also allows for part of the non-CS nodes to stay online.

With CS, the workloads take longer to run when the cluster is partially powered down, as fewer nodes

are available to run the workload. Other downsides to CS include significant over-provisioning of space on

the CS nodes as well as requiring code modifications in the underlying DFS software (see Section 5.4.5).

In this work, we propose an alternative cluster energy management strategy, called the All-In Strategy

(AIS). In AIS, rather than increasing the response time of a workload as in the CS strategy, we run the

workload (or a batch of workloads) on all the nodes in the cluster. Then, when we are in a low utilization

period and the cluster is idle, the cluster is transitioned to a low power state. Thus, in AIS, rather than

selectively powering down the nodes as in CS, the cluster essentially wakes up, runs as fast as it can, and then

powers down again. (This is similar to the race-to-idle energy-efficiency argument [49].) One advantage

of AIS is that there is a very predictable degradation in the workload response time. This degradation is

based on the time it takes for the hardware and the OS to power up and down nodes from deep power saving

modes, and efforts such as [120] are pushing to reduce this cost dramatically.

In fact, both AIS and CS can be thought of as two ends in a range of solutions for selectively powering

down/up MR nodes to deal with low utilization periods. In this work, we present a framework for this general

mechanism, and explore the effect of such a mechanism on the workload response time and overall cluster

energy consumption.

Using our framework we expose two key parameters that contribute to the effectiveness of the MR

energy management solutions. These parameters are: a) The response time degradation of a workload when

running with fewer resources, and b) The (relative) time it takes to transition servers to and from deep power

saving modes, compared to the time it takes to run the workload.

Our experimental results show that in many cases, AIS results in lower energy consumption than CS.

For example, running TeraSort on a relatively small 77GB dataset on a 24 node cluster at 33% utilization

is always 11% more energy efficient with AIS than with CS, and 60% more efficient than an unmanaged
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cluster. Perhaps more importantly, CS also incurs a 3.6X increase in response time while AIS suffers only a

12% response time degradation. With larger complex workloads, we show these energy gains of AIS over

CS improve rapidly, and factors of 2X improvement in energy or more over CS are easily possible.

5.2 Energy Management Framework

This section describes a framework for cluster energy management. This framework targets tech-

niques that turn off nodes to reduce the energy consumption when the overall system utilization drops (and

vice versa). The framework considers the impact of workload characteristics, hardware characteristics, and

performance targets (e.g., response time goals) to bring out the interactions between these factors and the

cluster energy consumption.

We present a mathematical model for the energy consumption of a MapReduce cluster during a speci-

fied time window υ, when running a workload ω using a cluster with hardware characteristics η. For simplic-

ity, the workload characteristics (ω) and hardware characteristics (η) are considered as abstract meta-models

in our model. More detailed models for capturing these can be plugged into our model. The workload

characteristics model describes the job characteristics, such as an expected resource consumption, perfor-

mance goals, computational complexity, etc. The hardware characteristics describes aspects such as the

average power consumption of the hardware when running the workload, time and energy required to power

up/down nodes, etc.

When a job arrives, the cluster is in some state, which potentially includes having some nodes already

in a powered down mode. The energy management technique may choose to power up or down some nodes

(based on the energy management policy and workload characteristics) to execute this workload. After the

workload is done, if there is still idle time left in the window υ, it may power down more nodes. To allow

for iterative application of our model, the end state of the cluster in terms of the nodes that are online, is the

same as the starting state. (Extensions to relax this assumption are straight-forward.)

Thus, using the variables in Table 5.1, the total energy consumption, denoted as E(ω, υ, η), is:

E(ω, υ, η) = (PtrTtr) + (Pnw + P n̄w)Tw + (Pmidle + P m̄idle)Tidle (5.1)
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N total # nodes in the cluster Ttr total transitioning time in υ
n # online nodes running the job Tw workload runtime
n̄ N -n, # offline nodes Ptr average transitioning

during job processing power
m # online nodes P

[n,n̄]
w on/off-line

in the idle period workload power
m̄N -m, # offline nodes Tidle idle time

during the idle period P
[n,n̄]
idle on/off-line idle power

Table 5.1: List of Variables in our Framework

The time components for E(ω, υ, η) must sum to υ, so:

υ = Ttr + Tw + Tidle (5.2)

Finally, the workload characteristics may require that the job be run within some time limit, τ . The cluster

energy management problem can then be cast as:

min(E(ω, υ, η)) | Tw ≤ τ (5.3)

Based on this model, we can see that there are several approaches to reduce the cluster energy con-

sumption. From Equation 5.1, we see that one can reduce the energy consumption by reducing the idle

energy consumption, (Pmidle + P m̄idle)Tidle, by powering down part of the cluster. But powering down part

of the cluster implies that the job has fewer nodes/resources to run, which potentially impacts the execution

time of the workload (Tw). From Equation 5.1 this means that the energy cost to run the workload could rise

as Tw increases. The rate of increase in the workload energy consumption with fewer nodes will depend on

the workload characteristics, and primarily the computational complexity of the workload.

From Equation 5.1, we also observe that the time to transition nodes between powered up and down

states (Ttr) can have a significant impact on the energy consumption, especially when the workload energy

component in Equation 5.1 is small; i.e., when the workload execution time is small, schemes that require

powering up and down often will consume significant energy in transitions.

Finally, from Equation 5.1, we can see that reducing the power drawn by online idle nodes Pmidle can

have a big impact on energy management schemes.
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5.3 Energy Management Strategies

In this section, we use the framework developed in Section 5.2 to consider two cluster energy man-

agement strategies. These two strategies are: a) Covering Set (CS) – a recently proposed data placement

and power down strategy to reduce the energy consumption of MapReduce clusters, and b) All-In Strategy

(AIS) – a technique that we propose.

First, we present an overview of CS and AIS (Section 5.3.1), followed by various extensions to CS

that are needed to make it a practical solution (Section 5.3.2), followed by a discussion of the AIS strategy

(Section 5.3.3). We compare both techniques in Section 5.4.

5.3.1 Overview of CS and AIS

The CS strategy powers down nodes to reduce the idle energy consumption in Equation 5.1. In an

ideal case, CS knows the workload perfectly ahead of time, and can power down just the right number

of nodes at the start of the workload execution to reduce idle energy consumption to zero. However, as

discussed in Section 5.2, such powering down of nodes can increase the response time of the workload,

which in turn can increase the energy consumed during the workload execution. Thus, CS can only power

down nodes such that it still adheres to performance constraints (Equation 5.3). CS also changes the data

placement policy of the DFS so that one copy of the data is always online. The original CS work does

not describe a strategy for powering down nodes. In Section 5.3.2 we discuss various node power down

strategies for CS.

The AIS strategy is to trade idle energy consumption for transitioning energy consumption in Equa-

tion 5.1. It takes an extreme view and toggles the entire cluster between “all-nodes-on” and “all-nodes-off”

modes. It uses all the nodes in the system to run the workload as fast as it can (i.e., minimizes Tw Equa-

tion 5.1), and then at the end of the workload execution, powers down all the nodes to reduce the idle energy

cost. The price AIS pays is a high transitioning energy cost. The scale of this increase in transitioning cost

is determined by the power (Ptr) and length of time (Ttr) of the cluster transition. While this transitioning

power (Ptr) may be similar to the power when the cluster is fully on and running a workload, Ttr is solely
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defined by the capabilities of the hardware and the operating system.

5.3.2 Covering Set (CS)

The Covering Set (CS) strategy, proposed recently by Leverich and Kozyrakis [112] aims to reduce

the energy consumption of clusters by changing the data placement policy in a DFS. The main idea is that in

a DFS, such as GFS [50, 65] and HDFS [33], every data block is replicated three times. The cluster energy

consumption can be reduced if the server powers down some nodes. But, powering down some nodes can

make some data unavailable. To avoid this case, CS changes the data placement policy so that one copy

of every data block is kept on a set of nodes. These nodes constitute the Covering Set nodes and are never

powered down. To reduce energy consumption, non-CS nodes can be powered down. The CS nodes can

be any arbitrary fraction of the total nodes in the system. For example, the CS nodes could be 25% of the

total nodes in the system, which implies that up to 75% of the nodes could be powered down when running

a workload.

The CS method proposed in [112] does not include any strategy to determine which nodes to power

down when the overall system utilization drops. To use CS practically, one needs such a method. A CS

power down strategy’s main goal is to be simple and help maintain predictable response time degradation.

Also, to use CS in practice one also needs a power up method, which is the reverse of the power down

method, and omitted in the interest of space. Below, we discuss and compare a number of power-down

strategies.

Random Power Down

Consider powering down a cluster of N nodes where a dataset is triply replicated and a MapReduce

workload is run. Suppose utilization drops and the system responds by powering down the cluster one node

at a time. (Extension to power down by more than one node in each step is straight-forward.) In this case,

the work at each remaining online node goes up at the rate of N/(N − i), in an N node system for i nodes

that are powered down. The actual response time will also go up at this rate, if the computational complexity

of the workload is linear.

However, randomly selecting non-CS nodes for powering down can result in suboptimal performance,
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Figure 5.1: An example of load imbalance with a bad power down order on a MapReduce cluster using a CS
data placement. A Grep workload was run on a 24 node cluster with a CS of 8 nodes. Ideally as i nodes are
powered down in an N node cluster, the amount of work at each node increases by a factor of N/(N − i).

as explained below. To begin this discussion, consider a distributed Grep workload on a 24 node Hadoop

cluster. (More details about the system setup and workload can be found in Section 5.4.1.) In this case, the

system has three racks and each rack had 8 nodes. The CS set was set to the nodes in the third rack. (Similar

issues as those described below happen, if the CS nodes are spread across the racks.)

Now, consider selecting nodes at random for powering down from the two non-CS racks. Figure 5.1

shows the effect on response time for the Grep workload as nodes are powered down. Also plotted in this

figure is the theoretical ideal response time curve (N/(N − i)) for Grep. As can be seen from this figure,

there is a significant degradation in response time when the 9th node is powered down. The reason for this

degradation is as follows: first, recall that for each data block, HDFS keeps one replica on a node on the

same rack, and another replica on a node on another rack. Second, because of the HDFS replication policy,

a natural way to produce a CS node set is to allocate an entire rack to the CS nodes (in our 3 rack case).

Third, Hadoop tries to schedule Map and Reduce jobs so that they work on the data that is local (called “data

local” tasks), but the Hadoop scheduler will assign tasks to work on remote blocks if some nodes have no

additional unprocessed local blocks. These remote tasks incur additional overhead as they interfere with the

disk activity at the remote node (which is presumably running a data local task), and incurs additional delays

because of the network activity. Fourth, as non-CS nodes are powered down, the probability that nodes in the

CS rack have the only copy of the data increases. Finally, if by chance there is a disproportionate number of
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nodes in one non-CS rack that are turned off, then the chance that some node in the CS rack will end up with

a disproportionately larger number of single replica blocks increases. This node will then be the bottleneck

as some blocks on that node will probably have to be fetched remotely by other nodes for processing. In fact,

this is precisely what happens in Figure 5.1 when the 9th node is powered down and the fraction of non-data

local nodes increases rapidly over the previous case when the 8th node was turned off. Consequently, as can

be seen in Figure 5.1, the response time degrades rapidly when the 9th node is taken down. Thus, simple

random powering down has the drawback of resulting in surprising jumps in response time.

Load Balanced (LB) Power Down

The drawback of selecting a random node for powering down, can be addressed by keeping a precise

track of the load increase that will result from powering down a node. The DFS file system keeps metadata

about the placement of each block and replica, and this central metadata can be augmented to keep track of

the nodes that are being powered down.

Then, when the energy management module needs to power down a node, it looks at the metadata

and calculates the expected data local node load for each node. For instance, if nodes A, B, and C store the

same data block b, then the expected node load for all three nodes because of block b is 1/3. (In other words

there is a 3 in 1 chance for each node to be asked to process this block.). If node C is powered down, then

block b contributes a node load of 1/2 at each node A and node B. If A, B, and C store two blocks (instead

of one above), and C is powered down, then A and B have a node load 1 each.

The “load balanced” power down strategy is simple: In response to a request to select a node for

powering down, it iterates through each node, d, in the system and computes for each remaining node, u,

the expected node load on the node u if node d is powered down. A priority queue is maintained on the

maximum expected node load measure, and the next node to power down is the node that has the smallest

maximum expected node load increase.

This load balanced power down method has some drawbacks, as the computation of the load increase

can be expensive, especially for large clusters. Next, we present a simpler algorithm that also produces

balanced load, but requires less storage and computation.

Round – Robin Random (RRR) Power Down
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Figure 5.2: 77GB Grep workload response time on a 24 node cluster as i nodes are powered down. A
comparison of the effects of the RRR and Greedy power down strategy and the ideal O(N) degradation.

This scheme simply goes through the non-CS racks in a round robin fashion and selects a random

node (that is not powered down) in each rack as the next “victim”. Thus, in the case above, where we have

two non-CS racks this strategy will first select, at random, a node from the first non-CS rack for powering

down. In the next iteration, it will select a victim from the second non-CS rack, and in a subsequent iteration

it will return back to the original first non-CS rack for victim selection, and so on. The difference between

this strategy and a purely random strategy is that we do not allow any two physical racks to have their

number of powered down nodes to differ by more than one. In this way, we minimize the number of single

replica blocks that are created by each node power down.

This scheme is simple and requires minimal overhead to operate. We only need to keep track of the

round robin sequence of the racks, and which rack needs to be examined next.

Comparing the Power Down Schemes

Figure 5.2 shows the corresponding behavior of the load balanced and the round-robin random

schemes compared to the ideal behavior (as was shown in Figure 5.1). Figure 5.2 shows two important

points. First, the response time of both the Round-Robin Random (RRR) and the Load Balanced (LB)

schemes match the theoretical ideal case. Second, in this case both the RRR and LB methods have nearly

identical response time. The simplicity of the RRR method, implies that it is a better method for use with

the Covering Set technique.

We have analyzed these three schemes for a 24 node Terasort workload. Unlike Grep, the Terasort
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Figure 5.3: 77GB Terasort workload response time on a 24 node cluster as i nodes are powered down. A
comparison of the effects of the RRR and Greedy power down strategy and the idealO(NlnN) degradation.

workload has an O(NlnN) computational complexity. Figure 5.3 shows similar Terasort results as in

Figure 5.2. That is, RRR and LB provide similar response time degradation and very closely follow the

ideal O(NlnN).

As we have seen here, the computational complexity models are good for modeling CS response time

degradation. Further, we will need these response time models for modeling CS energy consumption. This

is discussed in Section 5.4.4.

We have developed and examined three power down strategies for CS, namely: Random, Load Bal-

anced, and Round-Robin Random. A random power down strategy for CS simply powers down the non-CS

nodes randomly. It does not take into account any other cluster configuration (such as physical rack topol-

ogy) besides the dichotomy of CS and non-CS, and is thus vulnerable to load imbalances on the remaining

online nodes. The Load Balanced strategy we examined tries to minimize the maximum expected node load

on each MR node in the cluster given a possible node power down. This method requires a good metric to

determine the maximum expected node load to avoid load imbalances. Finally, the Round-Robin Random

method, which we found to be both simple and balanced, iteratively powers down one random node per rack

as the non-CS nodes are powered down.

Since we found the Round-Robin Random method to be both effective and efficient, for the rest of

this chapter, CS discussion and results imply using this power down/up strategy with CS.
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5.3.3 All-In Strategy (AIS)

The CS technique described in the previous section (Section 5.3.2), has a few drawbacks. First, the

CS strategy requires modifying the DFS code to alter the data placement strategy. As a result, it is not a

broad generic solution and it is tied to the specific replication strategies used by the DFS. (It also makes it

harder to use in cases where a single system may have different data sets with varying replication factors.)

Second, CS does not explicitly consider the impact on response time. As we will see for workloads like

distributed Grep that have linear computation complexity, this is manageable, but for workloads that have

worse than linear complexity, this is problematic as running on fewer nodes can result in rapid response time

degradation, which may not be acceptable. This means that to use CS, one would need a detailed workload

run time estimation technique for all the cluster configurations that CS might transition to. Finally, CS

requires good workload prediction as the system has to determine how many nodes to power down, and for

how long. Compared to CS, AIS does not require modifying the data placement strategy or a detailed node

power down strategy, and can trivially calculate the workload response time degradation.

The strength of CS is that it maintains data availability (though not in the presence of updates/appends,

as in the general case such operations require that all the nodes in the system to be online). However, one

needs to make an important distinction between data availability because of node failures (which is why we

have replication), and data unavailability caused by powering down nodes. The latter can simply be reversed

by powering up the offline nodes. Thus, one can think of a relaxed, or “eventual data availability” in which

data becomes available eventually when the node with the copy of the data is powered up (from a low power

state).

We exploit this idea of eventual data availability and develop a new scheme for cluster energy manage-

ment that addresses the shortcomings of CS outlined above. This new strategy is called the All-In Strategy

(AIS). The AIS mechanism is simply to run the MapReduce job on all the nodes in the system and power

down the entire system when there is no work. (Here, we could have a mechanism to transition the en-

tire system which could include everything – the compute nodes, rack power supply, other power supplies,

routers, etc., to and from a low power state. Or, we could have a mechanism to transition selected parts
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“Down” means idle state (114W ) transitioning to offline state, “Up” is the reverse.

State Down Time(s) Down Cost(J) Up Time(s) Up Cost(J) State Cost(W)
Stopgrant 1 114 1 114 112
Hibernate 11 1300 100 12900 10

Off 27 3200 156 20000 10

Table 5.2: Costs for different types of offline states available on our MR nodes. Hibernate and Shutdown
draw 10W because the motherboard/NIC is still powered on (for IPMI).

of the entire system, e.g., only the compute nodes. The benefits are larger if more and more power hungry

components provide mechanisms for quick transitions to and from power savings mode. AIS provides one

more argument for building data centers out of fast transitioning hardware components.)

In cases where there is a consistent low utilization period, AIS would batch the MR jobs in a queue,

and periodically power up the entire system and run the entire batch of jobs on the cluster (and then power

down). For instance, for the default FIFO queue scheduler in Hadoop or the add-on Fair scheduler, AIS

could batch intermittently arriving jobs to then submit all the jobs in the batch simultaneously. This idea

mirrors the QED idea of energy efficient batching of database queries at a single node [103], and requires

techniques for making the decision of how long to batch the jobs. These decisions could be guided by the

delays that the job can tolerate (see Equation 5.3), and other workload characteristics. Workload prediction

models, such as [26], would be used to guide the energy management framework. We leave such complex

workload management as part of future work. (Note that CS would need such techniques too, so there is a

broader set of research agendas on developing the decision making algorithms for system transitions.)

A crucial aspect for AIS is the cost to transition between low power states (Ttr, in Equation 5.1,

Section 5.2) and the energy consumed in the idle state. There are a number of choices for these parameters

that are offered by modern hardware. Consider Table 5.2 where we present all the available power up and

down characteristics of one of our cluster nodes (details are presented in Section 5.4.1). In this table, it

is clear that the hibernate state is the ideal energy efficient state to use; it is faster than full shutdown and

consumes much less in its “off” state cost than the stopgrant state. Technology on the horizon, such as phase

change memory [130], and systems research, such as automatically transitioning hardware [120], will help
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reduce the transitioning costs further.

The All-In Strategy is quite simple to fit into our framework. The data placement module need not

alter the respective systems data partition placement rules since the cluster operates in an all-or-nothing

manner which is not affected by data unavailability. The runtime cluster node management simply keeps

the entire cluster powered up when data availability is needed and powers down the cluster otherwise.

5.4 Evaluation

In this section, we compare CS and AIS using actual end-to-end response time and high resolution

energy measurements taken on a Hadoop cluster. We used sort and scan jobs as was used in [112, 135].

This section largely focusing on single-user latency-sensitive environments. This type of environment can

be found using Hadoop-On-Demand by Yahoo! that partitions user specific virtual cluster partitions of

the physical cluster [52]. An evaluation of multi-user throughput-sensitive environments is found in Sec-

tion 5.4.3.

5.4.1 Experimental Background

For our evaluation we used a cluster with 24 nodes, each with a 2.4 GHz Intel Core 2 Duo processor

running 64-bit RHEL5 with Linux kernel 2.6.18, 4GB of memory, and two 250GB SATA-I hard disks. The

cluster nodes were connected with Cisco Catalyst 3750E-48TD switches with gigabit Ethernet ports for each

node and an internal switching fabric of 128Gbps. Switches were connected to 50 nodes and linked together

with Cisco StackWise Plus giving a 64Gbps ring between the switches.

Energy measurements were taken using the following setup: The cluster is composed of 3 racks of

8 nodes each, and each rack was plugged into an APC Switched Rack PDU. AC current was measured at

the APC PDU using Fluke i200s AC current clamps. Three Fluke clamps were connected to a National

Instruments USB-6009 Multifunction DAQ and collected using National Instruments LabView sampling at

1KHz. RMS current was calculated using a sliding window of 20 sample points (1 period) given an AC

frequency of 50Hz. The RMS voltage was measured at 116V. Our observed power factor was 0.96 and

we used this to calculate the real power from the apparent power (RMS current x RMS voltage). Finally,
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energy consumption was calculated by summing the time discretized real power values over the length of

the workload.

On our cluster we ran Hadoop version 0.20.0 and Java version 1.6.0. We used the standard 64MB

block size and set the sort buffer size to 768MB. The amount of memory given to the task tracker child

process was 1024MB. The sort spill percentage was set to 0.95. The data was triple replicated. Rack

awareness was enabled in Hadoop and re-replication due to under-replication was disabled. The master

node that hosts the Namenode and the Jobtracker was run on a separate server (but on the same network).

Finally, we ran one mapper and one reducer per node.

We used the distributed Grep and the Terasort workload. We chose these two workloads because

of their striking differences and also because other studies [112, 135] have relied on these workloads. The

distributed Grep workload is a map-only file scan job with variable selectivity and requires little additional

space on disk. For the Grep workload, we ran a three character query against the Teragen dataset as was

done in [135]. The Terasort workload stresses both map and reduce components of the MR framework. It

needs to read and write significant amounts of intermediate data and the size of the output is equal to the

size of input.

The dataset we used for these two workloads was a 77GB Terasort dataset generated using the default

Hadoop Teragen application. With this size, each node stores on average 150 blocks (with triple replication).

For CS, one entire rack was designated as the Covering Set. Thus, with CS we allowed powering down up

to 66% of the nodes in the entire clusters.

We also ran the workloads on a 96 node cluster with a 4X larger data set and measured the response

time (though not the power as we did not have enough instruments to accurately measure power for 96

nodes). The response time behavior on 96 nodes is similar to the 24 node case, and both matched the

analytical model (found in Section 5.4.4).

5.4.2 Workload-Only Evaluation

Now, consider a best-case scenario for both CS and AIS in which the MR cluster already exists in the

state that the strategy needs (see Section 5.2). In other words, for CS, the system has already powered down



116

CS Nodes Offline

0 2 4 6 8

1
0

1
2

1
4

1
6

G
re

p
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

M
J
)

0.0

0.5

1.0

1.5

G
re

p
 R

e
s
p
o
n
s
e
 T

im
e
 i
n
 S

e
c
o
n
d
s

0

100

200

300

400

500

600

700

800

900

CS Energy Consumption

AIS Energy Consumption

CS Response Time

AIS Response Time

CS Nodes Offline
0 2 4 6 8

1
0

1
2

1
4

1
6

T
e
ra

s
o
rt

 E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

M
J
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
e
ra

s
o
rt

 R
e
s
p
o
n
s
e
 T

im
e
 i
n
 S

e
c
o
n
d
s

0

500

1000

1500

2000

2500

3000

CS Energy Consumption

AIS Energy Consumption

CS Response Time

AIS Response Time

(a) Grep (b) Terasort

Figure 5.4: 77GB Grep and Terasort workload (no transitioning/idle) response time and energy consumption
on a 24 node cluster using CS and AIS.

the desired number of nodes. For AIS, the cluster is fully powered up. Since our framework expects the

cluster to be returned to the state in which it originated, the best-case scenario means that no transitioning

costs are needed by either method and there is no idle time (Equation 5.1 in Section 5.2). In other words,

we only measured the actual time and energy consumed when running the actual workload (we relax this

assumption in the next experiment).

Figures 5.4 (a) and (b) show our actual measured CS and AIS results for the Grep and Terasort

workloads respectively. In each figure, the workload energy consumption is plotted on the left y-axis and

the response time on the right y-axis.

CS is very dependent on the workload complexity when it comes to its response time degradation.

This response time degradation typically translates to increased energy consumption during workload evalu-

ation since the linear decrease in online nodes results in a non-linear increase in response time for non-linear
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jobs. We can see this result in the response time curves of Figures 5.4 (a) and (b). Grep in Figure 5.4 (a)

follows a response time degradation exactly proportional to M = N/(N − i) for an N node cluster with i

nodes powered down. Similarly, Terasort in Figure 5.4 (b) shows a response time degradation proportional

to MlnM consistent with sort complexity (see analysis in Section 5.4.4).

Our measured energy results show that CS steadily consumes more energy to run the same work-

load with fewer online nodes. Figure 5.4 (b) shows that this increase for Terasort is about 39% between

performance mode (all nodes being powered up) and when all the non-CS nodes are powered down. Since

in this scenario, AIS consumes the same amount of energy as performance mode, AIS is up to 39% more

energy efficient than CS for Terasort. For linear Grep, AIS is 17% more energy efficient than CS when all

the non-CS nodes are powered down (Figure 5.4 (a)). This is because CS’ offline nodes still draw 10W

(Table 6.5).

The main point is that AIS consumes less energy than CS in this experiment. Further, if the workload

is super-linear in complexity, CS degrades very poorly in both runtime and energy cost. While these are

best-case scenarios that assumes that both strategies do not make any transitions, the next section presents

similar results in a more detailed setting that includes both transition and idle costs.

5.4.3 Workloads with Idle Periods

Next we evaluate CS and AIS with full idle and transitioning costs factored in. We will present results

for both latency-sensitive and (briefly) throughput-sensitive workloads.

Latency-sensitive Workloads

Now let us consider a scenario in which CS and AIS need to transition nodes to minimize idle energy

costs (114W/node), which would happen when the cluster is underutilized. Consider a 1032 second window,

which is the time it takes for CS to run the Grep workload without idle cost, including powering down all

non-CS nodes (11s), execute the workload (921s with 8 online nodes), and then powering up 16 nodes to

return to performance mode (100s). If we can not power down 16 nodes (due to performance limitations as

discussed in Section 5.2), the workload will finish and the cluster will consume idle energy. In performance

mode, CS runs Grep in 318s and then it will have to idle 24 nodes for the rest of the period which consumes
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Figure 5.5: Cluster energy consumption (transitioning and idle) of Grep over a 1032s time window.

tremendous amounts of energy as shown in Figure 5.5 – see the bar corresponding to zero nodes powered

down. If CS powers down nodes prior to running Grep, Grep will take longer to return and the idle costs

diminish but transition costs increase (shown in Figure 5.5 where the black bars increase as more nodes are

powered down). When 16 nodes are offline, there is no idle energy cost.
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Figure 5.6: Cluster energy consumption (transitioning and idle) of Terasort over a 3197s time window.

Similarly, in Figure 5.6 we present the same analysis for Terasort but over a 3197 second window

where CS can run Terasort on 8 nodes (3086s) and perform all round-trip transitions (111s) to performance
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mode. Similarly, the energy consumption over the window decreases as we lengthen the workload running

time to fill 3197 seconds and erase all idle time cost.

In Figures 5.5 and 5.6, the energy consumption of AIS during the respective time windows includes

the cost to power up the 24 node cluster, run the workload, power it back down, and draw 10W per node

(see Table 6.5) while they are powered down for the rest of the time period. For Grep, AIS consumes less

energy during the 1032s window than CS most of the time until CS powers down 13 or more nodes. Since

AIS has the overhead of transitioning, this cost makes AIS less desirable for this short workload. However,

for the Terasort workload, we notice that AIS always consumes less energy during the 3197s window. Due

to the complexity of the workload, AIS’ overhead costs are less than the energy consumption increases of

CS. Consequently, AIS saves 10% in energy over CS even at CS’ more efficient operating state.

Consider an example of a scenario where the response time performance requirements (Equation 5.3)

cause CS to consume more energy than AIS because it cannot power down sufficient nodes to eliminate idle

cost. Let the tolerable level of Grep response time degradation be 50% (τ = 450s). Figure 5.5 shows that

during this underutilized period, CS will consume 33% more than AIS because CS can only power down 8

nodes and draws idle power.

This problem is even worse with a super-linear complexity job such as Terasort. If acceptable response

time τ = 1300s (in Equation 5.3) is 1.5X the performance mode response time, then CS can only power

down 7 nodes (less than for Grep). Then Figure 5.6 shows that CS consumes 80% more than AIS!

Thus, the response time degradation with CS can make it untenable in many operating environments,

even with moderately acceptable response time degradation.

Throughput-sensitive Workloads We have also evaluated AIS and CS on throughput-sensitive workloads,

and observed that AIS can save significantly more energy than CS given a fixed level of throughput degra-

dation. We ran a heterogeneous workload of Grep and Terasort jobs (similar to [112]) and used CS and

AIS to manage the cluster energy consumption. In our results we found that when AIS batches jobs, it

consumes 26% less energy than CS given a acceptable throughput degradation (3%). These results are not

surprising, and follow the same intuition from the evaluations in Section 5.4.3; CS results in rapid response

time degradation which impacts both the energy consumption and throughput.



120

For AIS, the method that we employ is the batching method described in Section 5.3.3. AIS keeps

the MR cluster powered down while jobs are batching [103,163]. When enough MR jobs are collected, AIS

powers up the cluster and submits all the jobs. The job collection, or batching delay, effectively degrades

throughput.

In contrast, CS runs the jobs as they arrive but can process them with some MR cluster nodes powered

down. However, as fewer nodes are available for the job, this also lowers throughput.

Our throughput workload mimics that of [112] whereby sort and scan jobs are injected into the MR

cluster. We use the same Terasort and Grep jobs of Section 5.4 whereby each job runs on a 77GB dataset.

We evaluate a heterogeneous job workload consisting of four sort and four scan jobs, randomly or-

dered and individually submitted to the 24 node cluster in 850 second intervals. Recall from Section 5.4.2,

that the Grep job can run in about 300 seconds and the Terasort job can run in 850 seconds.

Given this normal operating environment, the cluster throughput is essentially eight jobs in 6800

seconds with an energy cost of 20.5MJ. Now, suppose we have a tolerable throughput degradation of 3%

which means we can accept eight jobs in 7000 seconds.

Using CS, we can power down nodes, degrading throughput, and potentially saving energy. We found

that if CS powers down 3/24 nodes, then its throughput degrades to 6984 seconds. Given this throughput,

CS with 21 nodes powered up, consumes 18.8MJ of energy for this eight job workload.

Now using AIS, if we delay jobs such that we can then submit two jobs in a batch to the system at a

time, then our measured throughput for eight jobs is 6962 seconds (which includes all batching time). With

this throughput, AIS will power down all the nodes while batching jobs and power the entire cluster up to

execute the batch. The measured energy consumption for AIS is 13.9MJ (which includes all transitioning

costs). Therefore, for this heterogeneous job workload, AIS saves 26% of CS’ energy consumption when

both have equal throughput rates.

5.4.4 Effects of Workload and Hardware

In this section, we analytically model the effects of workload and hardware characteristics on CS and

AIS to fully explore the pros and cons of these methods in diverse workload and hardware settings.
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The response time of any AIS job is simply the performance mode (all nodes online) response time

plus transitioning time. Similarly the energy cost for AIS is simply the performance mode cost plus the

transitioning costs. For CS, we have shown that the workload complexity determines the response time

when nodes are powered down (Section 5.4.2). Energy modeling for CS similarly requires incorporation of

the workload complexity and also the transitioning costs.

Modeling Performance and Energy Consumption

Modeling AIS is simple. AIS only has two different operating modes: performance mode in which the

entire cluster is always powered up and energy savings mode in which the cluster is powered off until it needs

to be powered up to fulfill a job request, and then powered back down. Thus, the response time modeling

of the energy savings mode simply requires adding the times associated with each of these components.

Furthermore, energy consumption modeling can be similarly defined to be the sum of the performance

mode energy consumption, and the cost to power up and down the cluster nodes.

CS on the other hand, is more complex in its modeling of response time and energy consumption. We

have already presented results showing that the computational complexity of the workloads can be used to

accurately model the response time degradation of CS as more nodes are powered down (Section 5.3.2).

If we recall Equation 5.1 from Section 5.2, the workload energy consumption isEw = (Pnw +P n̄w)Tw,

which considers the power drawn by both the online and offline nodes during the actual workload execution.

The effect of CS powering down nodes is that the idle energy shrinks, and eventually reduces to zero. As

CS powers down more nodes, (Pnw) decreases while (P n̄w) increases. Using Equation 5.1, we can model the

energy consumption of the workload under CS when we substitute Tw with the workload complexity models

just described. Any transitioning and idle costs are straight-forward to include as we just add them to the

workload cost. For simplicity, we do not include them in our modeled analysis of CS.

Figure 5.7 shows a comparison of the observed and modeled energy consumption of the Grep and

Terasort workloads using the workload energy consumption (Pnw + P n̄w)Tw from Equation 5.1. For this

figure, we used the power data shown in Table 6.5, along with using O(N) and O(NlnN) complexities to

model the response times of Grep and Terasort respectively. The results shown in Figure 5.7 demonstrate

that the models are quite accurate in predicting the energy consumption of CS: an average error of 1% and
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Figure 5.7: Comparing the observed and modeled energy consumption of the Grep and Terasort workloads
for CS. The average error is 1% and 4% for the Grep and Terasort models respectively.

4% for Grep and Terasort jobs respectively.

Workload Characteristics and Hardware Capabilities Matter the Most

Given the results of Section 5.4.3, we have shown that the main factor that affects AIS is the transi-

tioning costs that it has to incur. But the question is how does this transitioning cost affect AIS’ potential

advantage over CS?

To explore this question, let us model the differences between CS and AIS when we have powered

down 50% of a 2000 node cluster. Furthermore, we increase the amount of data that needs to be processed

given constant transitioning parameters such as the node power up time. We assume that each node draws

150W when running a job (an average from our empirical results) and the cluster nodes have the hibernate

transitioning characteristics as in Table 6.5.

For simplicity, in the following analysis, for CS, we assume that the cluster is already powered down

appropriately, and do not add any transition costs for CS. However, for AIS, we include the full power up

and power down that is required. For both, we do not include any idle time cost.

Figure 5.8 shows the energy consumption and response time of CS and AIS for Terasort on this

2000 node cluster as we increase the amount of data to be sorted. As the results in Figure 5.8 show, the

relative rather than the absolute transition time is the important factor since as we increase the workload

length, AIS’ transitioning penalties will be overcome. Thus, the relative transitioning time is a significant
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Figure 5.8: Analytic comparison between CS and AIS response time and energy cost for Terasort. CS uses
50% of the 2000 node cluster. Hibernate parameters are found in Table 6.5. Average operating power is
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factor in determining the feasibility of AIS. When running a 1TB sort job with half the nodes in the cluster,

CS provides better energy efficiency and response time characteristics than AIS. However, at this point,

Ttr = 111s is about half of the performance mode response time (200s). Now as the data size increases, the

workload response time increases while the Ttr factor remains constant. As this happens, the advantage of

AIS becomes apparent – beyond a 2.8TB data set (1.4GB/node), AIS is both faster and more energy efficient

than CS.

The results above show that the absolute value of Ttr is not important, but rather the important mea-

sure is the ratio between Ttr and workload response time when run in the performance mode. Thus we call

this measure the relative Ttr.

Figures 5.9 and 5.10 compares the response time and energy consumption characteristics respectively,

of both methods for workloads with varying computational complexity, as we increase the proportion of the

cluster that is powered down by CS. In these figures, we show four different cases for AIS, with relative

Ttr values of 1%, 5%, 10%, and 20%. Since our observed transitioning power (Ptr in Equation 5.1) is

approximately equal to workload power (Pnw), the rel. Ttr also translates to the relative increase in AIS

energy consumption.

In these figures, we have presented the proportional increase in response time and energy consumption

for both CS and AIS over an “ideal” case in which the hardware is perfectly energy-proportional, for three
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Figure 5.10: An analysis on the effect of workload complexity and relative Ttr on CS and AIS workload
energy consumption.

different classes of jobs with linear, sort, and quadratic computation costs.

From Figure 5.9, we observe that across all workloads, even with the largest 20% relative Ttr, AIS

generally has a better workload response time than CS. This is not surprising as AIS runs the workload in

performance mode, and its response time degradation is based only on the transitioning overhead. AIS has

worse response time than CS only when the relative Ttr is very large.

Looking at the energy consumption in Figure 5.10, we notice that if the relative Ttr is large (e.g.,

20%), then AIS will consume too much energy in transitioning, and will only be more effective with
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Relative Ttr O(N) O(NlnN) O(N2)

1% AIS AIS AIS
5% CS/AIS AIS AIS

10% CS CS/AIS AIS
20% CS CS AIS

Table 5.3: Summary of the two main factors that discriminate CS from AIS: Workload Complexity and
Relative Transitioning Cost. This summary is based on the workload energy consumption since the response
time performance of AIS is better than that for CS in the vast majority of cases.

large complex workloads, where the computational complexity of the workload is high (e.g., polynomial

or worse). AIS’ energy consumption drops rapidly as the relative Ttr decreases. For example, with a rela-

tive Ttr of 1%, AIS is the preferred strategy for all three workloads. In this environment, for a sort workload,

if the cluster is powered down by 66% by CS, then AIS saves more than 30% in energy consumption over

CS.

These results also shows that if the transitioning cost is high (relative Ttr ≥ 10%), then generally CS

provides better efficiency because the AIS energy cost of powering up the entire cluster overshadows any

inefficiencies from operating CS with a smaller commitment of resources.

Table 5.3 presents a two dimensional summary of the factors that affect the energy efficiency of AIS

and CS. These factors are the computational complexity of the workload and efficiency of node transitioning

(Ttr). Table 5.3 shows that AIS is favoured when the workload computational complexity is high. Further-

more, when AIS and CS provide about the same benefits (linear-rel. Ttr = 5% and sort-rel. Ttr = 10%),

AIS is preferred when the fraction of idle time is high and CS needs to power down a large proportion of

the nodes. Finally, when the Ttr factor is small, AIS is preferred even when the computational complexity

is linear. Of course, this summary is caveated with the assumption that the CS response time degradation is

acceptable. As shown in Section 5.4.3, if the CS response time is unacceptable, AIS is the preferred method.

5.4.5 Discussion

In this section, we discuss various implications on implementing and running AIS and CS. We also

discuss other cluster energy management methods that fit in our framework.
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Drawbacks of CS

There are three important drawbacks of CS which need to be considered when deploying CS.

Storage Over-provisioning – CS requires significant over-provisioning of storage for the Covering

Set nodes. Consider a large five terabyte dataset on 100 nodes. With DFS triple replication, the nodes must

collectively store 15TB of data. In addition, the output of Terasort takes another 15TB (assuming it is also

triple replicated). This means that in performance mode, each node must have 300GB of storage for this

workload. But when CS powers down all 66 non-Covering Set nodes, each Covering Set node must now

have 600GB of storage. Essentially, the online nodes must be over-provisioned in storage, consuming even

more energy. (This is why our real workload results ran relatively small Terasort jobs.)

Response Time Degradation – As discussed in Section 5.4.3, Figure 5.5 and 5.6 shows that CS can

only save energy when it commits exactly the right amount of resources such that all the idle time in a

given time window is erased (Equation 5.1). However, this requires that the workload is willing to tolerate

a potentially large response time penalty (constraint τ in Equation 5.3). If this response time penalty is

not acceptable and CS must commit more resources and incur more idle energy, Figure 5.5 and 5.6 shows

that AIS will consume less energy than CS for the majority of the cases. Section 5.4.3 shows that with an

acceptable 50% increase in response time, AIS can save up to 80% of CS’ consumption.

DFS modification – The last drawback of CS is that it requires modifying the data placement code

in the DFS. These changes can be complicated if one has to deal with creating new data when the cluster is

in power savings mode, and when the cluster has heterogeneous nodes.

Hybrid Approaches

The effectiveness of AIS for energy management improves as the relative Ttr value drops, and the

effectiveness of CS improves as the workload computational complexity decreases. As a result, each method

may have its sweet spot for a given hardware and workload characteristics. However, it is possible to

combine AIS and CS to build a hybrid solution.

For example, if CS runs with a combination of CS and some non-CS nodes up (e.g., to cap the

response time degradation), then after running the workload, the non-CS nodes could be powered down, or

all the nodes in the cluster could be powered down.
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5.5 Summary

In this chapter we have presented a general framework for designing and evaluating methods to reduce

the energy consumption of MR clusters. We have also investigated the class of techniques that power down

(and power up) MR nodes to save energy in periods of low utilization. Using this framework, we closely

examined two broad strategies for MR energy management – a recently proposed strategy called CS, and a

new strategy called AIS that we propose in this work. We also compared these two techniques within the

context of MR systems. Our results show that there are two crucial factors that affect the effectiveness of

these two methods (and generally any energy management method that fits in our framework). These factors

are the computational complexity of the workload, and the time taken to transition nodes to and from a low

power (deep hibernation) state to a high performance state. We evaluated both CS and AIS on an actual

cluster, and also developed an accurate and detailed analytical model for both methods. Our evaluation

shows that CS is more effective than AIS only when the computational complexity of the workload is low

(e.g., linear), and the time it takes for the hardware to transition a node to and from a low power state is a

relatively large fraction of the overall workload time (i.e., the workload execution time is small). In all other

cases, which tend to be the common cases for MR systems, the benefits of AIS over CS are significant –

both in terms of energy savings and response time performance.

The crux of the CS approach is to leverage data replication to allow us to selectivity use more or less

cluster resources. Given that we found potential load balancing problems when exploiting data replication.

In the next chapter we will study the relationship between energy management, data replication, and load

balancing in more detail.



Chapter 6

Energy-aware Parallel Data Processing III – Exploiting Data Replication

As we have seen in Chapter 5, clusters that are typically underutilized [21], can be made more energy

efficient by carefully exploiting data replication to power down or de-allocate cluster nodes. However, care

must be taken as it was shown that load imbalances may occur when we remove cluster nodes. These load

imbalances come about from naı̈ve power-down sequences and/or replication schemes that are ill-suited for

our purposes.

6.1 Motivating Example

To see this point, consider a system that uses the common replication strategy of mirroring partitioned

data. To make this example more concrete, suppose that there are four nodes using mirrored replication. In

addition, suppose that the data set is split into two partitions, P0 with mirror R0, and P1 with mirror R1.

Assume that node n0, n1, n2, and n3 store P0, P1,R0, andR1 respectively. Furthermore, assume that queries

can be sent to either the primary copy or the replica for load balancing. If the overall system utilization is at

or below 50% of the provisioned utilization, then nodes n2 and n3 could be turned off to save energy, while

nodes n0 and n1 would then operate at 100% utilization. This is an ideal scenario and may be sufficient for

certain systems. However, we wish to explore powering down nodes when utilization is between 50−100%

for a finer grained energy management scheme.

Now, consider another scenario in which the four nodes each initially see a load of 75%. The system

has the capacity to run this workload on only three processors. Furthermore, by exploiting replication, we

can certainly turn off one processor and still maintain access to all data.
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Unfortunately, if we turn off node n3, then nodes n0 and n2 will continue to operate at 75% utilization,

but now both node n1 and node n3’s original load will be directed at node n1, so the presented load there will

be 150%, and the system will likely fail to meet its performance requirement. Such large load imbalances

may be acceptable in certain environments, but the performance degradations are usually unacceptable (see

Sections 6.3.1 and 6.4.1 for more details).

Given this example, our goal is to investigate the interaction between replication and power down

schemes to provide the foundation for energy management approaches that gracefully adapt to overall sys-

tem utilization. This should be done in such a way as to maximize energy efficiency by powering down some

nodes while ensuring that the utilization of the remaining nodes does not exceed a targeted peak utilization.

The database and distributed systems communities have a rich history of designing various replication

schemes for reliability [3,14,28,32,90,134]. This raises the question of whether or not there is a replication

scheme that can be exploited to better meet our goals than the commonly used mirroring strategy adopted

in our example above. As we will demonstrate, the surprising answer is yes — one of the earliest proposed

parallel database data replication schemes, the “Chained Declustering” technique [90], when coupled with

careful choices of which nodes to power down, can be exploited to achieve the above goal.

6.2 Technical Contributions

In this chapter, we explore node power down sequences that leverage Chained Declustering to mit-

igate the load imbalances created by other replication and power down sequences. We present two node

power down techniques, called “Dissolving Chains” and “Blinking Chains”, that view the nodes in the clus-

ter as a “chain” and then specify which nodes are powered down as load drops (the power up sequence in

response to an increasing load follows a reverse strategy, as discussed in Section 6.5). In Dissolving Chains,

as system utilization decreases, it simply powers down more nodes (the chain dissolves). Blinking Chains

differs in its power down transition because it may first power up some nodes before powering down the

desired number of nodes (the chain blinks) in order to reduce load imbalances.

This is the first energy-efficiency study that explores this interaction between power down sequences

and replication strategies while controlling load imbalances.
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In addition, we also evaluate these techniques using an extensive experimental methodology, which

includes using an actual commercial DBMS, and show that: (1) given an input parameter, namely, the

percentage load imbalance the power management scheme is allowed to introduce, our method guarantees

that it will not introduce any additional load imbalances beyond that percentage. This percentage refers to

the tolerable load imbalance that the system is allowed to take. As we will see, our methods produce low

imbalances (none at some points), and this measure can be used by the system to determine if a certain power

down transition is acceptable. (2) Our methods have the potential to produce significant energy savings (of

40% or more) over a wide variety of system loads while maintaining data availability and a well-balanced

system; and (3) our methods provide a trade off between mitigating load imbalance and ease of transitioning

between operating states.

6.3 Background and Problem Specification

Before we proceed, we define a few terms that we use throughout this chapter. We use the term load

on a node to refer to the work that is being carried out on a node. In a system with a number of concurrent

queries, each with the same processing cost, the load can simply mean the number of queries per node.

The term utilization of a server node refers to the resource consumption on the node. Typically

utilization of a system in cluster environments is measured simply as the CPU utilization [21, 62], which is

a simplistic measure as it ignores other resources such as memory, disk, and network, but often works well

in practice. The term overall system utilization refers to the average utilization across all the server nodes in

the system. Maximum node utilization refers to the maximum utilization across all the server nodes.

Often cluster systems are designed to handle a certain provisioned peak load. We will often refer to

the utilization using a value expressed as a percentage. Within this context, a utilization of 100% simply

refers to operating at an initial designated “peak load” (which could be lower than the system’s peak load at

which it is stable). Lower utilization values, e.g., 50%, imply a corresponding reduction in the load (and an

increase in server idle time).

The energy management schemes that we describe in this chapter, work by taking some nodes offline,

which refers to a node being powered down to save energy. Nodes that are available to run queries are
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online. An offline node becomes available when it is powered up, in which case it then comes online. (In

the more traditional case of replication for failure management, offline refers to the node being unavailable

due to some component failure.)

Finally, an operational state for the entire system is defined as:

Definition 6.3.1. The operating state of the entire system, s(m), is a state where m of the N total nodes in

the system are offline.

6.3.1 Server Load vs. Energy Consumed

In this section we discuss the interaction between the load on a server and the energy consumed by

the server. The main point here is that this relationship is not linear — even at zero load, a server consumes

an unfortunately high fraction of its fully loaded energy requirement, mirroring the observation in [21], but

for DBMSs.
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Figure 6.1: Energy Consumption and Response Time Profile

As an example, consider Figure 6.1, which shows the characteristics of a 1% clustered index query

workload running on a commercial DBMS. (Each point is actually an average over a thousand runs; more

details about this workload are presented in Section 6.6.2.) In this graph, the point W1 corresponds to a

server workload in which one instance of the query takes X ms to run followed by the server being idle for
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4X ms. One can view this workload as a series of time windows, each of size 5X ms, where X is the time

to run the query. For workload W1, only one query is run in each window.

Other points in this graph correspond to higher server utilizations, which we achieved by randomly

adding more queries in the time window (of length 5X ms), thereby reducing the idle component. Specifi-

cally, a point Wi corresponds to injecting i queries, with random arrival times, into each 5X ms time window.

Figure 6.1 shows for each workload the average execution time per query and the energy consumed by the

server to run the workload.

Now, consider the point W1 in Figure 6.1. In this case, the server consumes about 41.5 Joules and

provides a query response time of 102.5 ms. Most of this energy, specifically 74%, is consumed while the

server is idle. As we add more queries to the workload, i.e., go beyond W1, the idle time decreases and

a larger fraction of the energy consumed by the server is spent actually running the queries. At W5, since

each query takes X ms to run, we are running at some provisioned “peak” utilization of 100%. Notice how

performance rapidly degrades beyond W6. Operating at such points (W7 and beyond) merely to save power

may be unacceptable as this region likely represents an unstable operating range.

If efficiency is defined as the energy consumed by the server per query, of the five workloads W1 to

W5, W5 has the highest efficiency. Notice, however, the response time per query is slightly worse at W5

than at the other four points, since at the other points there is less contention for resources across different

queries.

Thus we have two possibly conflicting optimization goals. The first is the traditional one — we could

simply optimize for response time, which means running the system at point W1. However, typically in data

center environments, the performance constraint to meet is not “as fast as possible;” but rather, something

more like “no worse than t seconds per query for this workload.” When agreeing to such Service Level

Agreements (SLAs), data center service providers tend to be conservative and agree to performance that

they can generally guarantee under the heaviest provisioned load, rather than performance they can meet in

the best case. Consequently, the second optimization goal, and the one that we focus on in this work, is to

reduce the energy consumption while staying below a response time target.
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6.3.2 Problem Statement

We want an energy management scheme that starts with an operating state s(m) for a system with

maximum node utilization of u (u < M ). Here M refers to some maximum tolerable system utilization

(perhaps defined by an SLA). We want the system to move to a new operating state s(m′) with maximum

node utilization u′ such that u′ < M and m ≤ m′, and at least one copy of each data item is available on

the remaining servers that are still powered up.

Note that M is defined relative to the initial designated peak load (see discussion at the beginning of

Section 6.3). Consequently, M can be greater than 100%; e.g., if the maximum tolerable response time is

120ms in Figure 6.1, then M is 120% (at W6).

Notice that the problem statement also allows setting M to 100%, in which case no node operates

over the designated peak capacity.

In addition, in our problem formulation we require “data availability” – i.e., the power down sequence

does not deliberately make any data item unavailable on the live servers that are powered up. We make this

assumption since the time it takes to bring up a powered down server can be very high (e.g., booting up from

system-off or from hibernation – see Section 6.6.5), and any queries against data that is made unavailable by

a power down scheme will incur this latency. This high latency/delay may be unacceptable if the queries are

short (as opposed to longer data-processing tasks such as MapReduce jobs – see Chapter 5), and also makes

it harder to maintain the fault-tolerance property of replication in the presence of updates (See Section 6.5.3).

The schemes that we present differ in the “variance” in the load across the different nodes. In other

words, some schemes result in larger variation in the loads across the nodes (see Section 6.6.4, Figure 6.6).

While load variance (imbalances) are inevitable, and minor load imbalances do not create a problem, artifi-

cially creating major load imbalances can result in the system failing to meet its targeted performance (e.g.,

W7 and W8 in Figure 6.1). Accordingly, we require that the energy management techniques bound the load

imbalances (M ) that they introduce.

The parameter M can be set based on what the system administrator feels is a comfortable upper

bound for that system (e.g., W6 in Figure 6.1). Note such a bound is important as it provides a guarantee
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that the energy management method will not introduce unbounded load imbalances. We expect that there

might be other sources of imbalances that the system might face, such as flash crowds. In such situations,

the system can be pulled out of energy-savings mode. Now the situation is the same as what happens

today when systems are faced with sudden load changes. The system can then execute whatever method

it is currently using to deal with load fluctuations. It is an interesting direction of future work to see if

we can improve upon this scheme to more deeply integrate flash crowd load management and prediction

with energy management techniques that are proposed here, and/or to pick M automatically based on other

system operational settings.

Finally, for certain system states, the nodes can be “perfectly balanced” – which means that each

online node has the same node load. In Section 6.5.2, we discuss these perfectly balanced states.

6.4 Candidate Replication Strategies

In parallel and distributed data processing systems, replication allows continued access to data when

some nodes fail. Here we want to exploit replication for a related but different purpose: namely, allowing

continued data access not when nodes fail, but when they are deliberately powered down to save energy,

while controlling the resulting load imbalance.

When we look at the commonly used techniques: RAID [134], Mirrored Disk [28,32], and Interleaved

Declustering [3], we find that they all produce undesired load imbalances as nodes become inoperable or

do not allow us to turn off multiple nodes. For instance, Interleaved Declustering retains load balance when

one node fails but loses data availability if any additional nodes are lost.

RAID storage uses an array of disks controlled either by hardware or software to act as a single

unit. Different RAID levels define different storage properties such as parallel data access, data redundancy,

and data recoverability. However, RAID suffers from load imbalances when operating in failure mode. For

example, in RAID 1, if a disk fails, the redundant copy disk must now handle all the requests that were shared

across the two disks. Recent methods for a Power-Aware RAID [178] attempt to solve this problem with

distinct energy saving operating states. However, these methods require pre-determining all the operating

states and are generally not adaptable to changes in data size.
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Our goal is to leverage a replication scheme to safely and easily power down any number of nodes

for energy efficiency, and exploit the load balancing and failover properties of replication.

Note that we are powering down nodes to save energy, but the node has not failed. In other words, our

schemes don’t change the fault-tolerance property of replication (updates require special care as discussed

in Section 6.5.3).

6.4.1 Mirroring Replication

The basic principle used in mirroring [28, 32] is to make a second copy of the data and store it on

a different storage device. Mirroring can be implemented in a variety of different ways. One mechanism

is to have disk pairs (RAID 1), with one disk storing the primary copy and the other storing the mirrored

copy [32]. Access to the disks could have redundancy (e.g., there could be dual ports) so that if a controller

fails the disk can be accessed from a different port (but this adds hardware costs). Mirroring can also increase

parallelism by allowing queries to use either copy. When one disk fails, the mirrored copy takes over the

work of its pair. However, this technique doubles the load on the disk that is still up.

There are a variety of different ways of mirroring data. However, in most schemes, when some

disk fails, the load on the remaining copies goes up dramatically. For example, if we use a 2X replication

scheme, in which we have a primary copy and one additional replica, then when a disk with either of these

copies fails, all the load from the failed disk is transferred to the remaining disk. Thus, if we say that the

cluster system can only operate as fast as its bottleneck, when a node is taken offline, the system operates

at 2X load. In other words, if one decides to take one node offline in a mirrored scheme, from a load

perspective, one might as well take half of the system offline. This means mirroring essentially has only two

operating states, 100% online nodes or 50% online nodes. If a 2X increase in load is unacceptable (results

in a maximum node utilization beyond an acceptable threshold), then with this scheme, there is no energy

savings if the system load is between 50 and 100%. Our goal is to design schemes that will let us power

down an appropriate number of nodes at any utilization between 50− 100% without creating unacceptable

overloads, given a 2X replication scheme.

Fortunately, Chained Declustering [90] seems to have the properties that allow this exploration.
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Nodes: n0 n1 n2 n3 n4 n5 n6 n7

Primary: R0 R1 R2 R3 R4 R5 R6 R7

Backup: r1 r2 r3 r4 r5 r6 r7 r0

Load: 1 1 1 1 1 1 1 1

Table 6.1: An 8 node Chained Declustered ring without failure.

Chained Declustering can lose multiple nodes in the cluster and maintain data availability. For this rea-

son, in the rest of this chapter, we consider techniques built upon Chained Declustering.

6.4.2 Chained Declustering (CD)

Chained Declustering [90] is a replication scheme that stripes the partitions of a data set two times

across the nodes of the system, thereby doubling the amount of required disk space. The main hallmark

of this scheme is its tolerance to multiple faults along the chain, if those faults do not occur on adjacent

nodes. Furthermore, along with high availability, the arrangement of the replicas along the chain allows for

balanced workload distribution when some nodes are offline. If one thinks of all the nodes in the system

as being arranged in a ring or chain, then Chained Declustering (CD) places a partition and its replica in

adjacent nodes in the chain.

As an example of CD, consider a data set R, spread over 8 nodes in Table 6.1. Here the primary

copies of the data set are R0 ... R7. The corresponding replicas are shown as r0 ... r7. The nodes n0 ...

n7 are conceptually organized in a ring. Primary copy Ri is placed on node i and its replica ri is placed on

the “previous” node. During normal operation, if the access to all the partitions is uniform, then the queries

simply access the primary partitions while updates in CD go to both partitions.

Now consider what happens when a node is taken offline by our energy management methods. Ta-

ble 6.2 shows what happens when node n0 is offline. Since node n0 holds the partition R0, all queries

against this partition must now be serviced by node n7, which holds the only other copy of this partition.

But simply redirecting the queries against partition 0 to node n7 could double the load on node n7. CD
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Nodes: n0 n1 n2 n3 n4 n5 n6 n7

Primary: —R1(1)R2(6
7 )R3(5

7 )R4(4
7 )R5(3

7 )R6(2
7 )R7(1

7 )

Backup: — r2(1
7 ) r3(2

7 ) r4(3
7 ) r5(4

7 ) r6(5
7 ) r7(6

7 ) r0(1)

Load: 0 8
7

8
7

8
7

8
7

8
7

8
7

8
7

Table 6.2: An 8 node Chained Declustered ring with 1 failure.

solves this problem by redistributing the queries against partition 7 across both copies of that partition’s

data, namely R7 and r7. It does this for all the partitions, and ends up with a system in which each node

is serving the same number of queries (i.e., the system is balanced after the node failure.) As shown in

Table 6.2, for partition 7, 6/7th of the queries are directed to node n6 and 1/7th of the queries are directed

to node n7. The distribution of the queries for the other partitions are shown in brackets in Table 6.2. The

load on each node is balanced and is 8/7 times the load on the node when all nodes were online.

While Table 6.2 shows what happens when one node is offline, CD can also tolerate additional nodes

going offline. In fact, it can allow all failures in which two consecutive nodes are not both offline. One can

easily see why this is the case in Table 6.1 and 6.2. If adjacent nodes fail, an entire partition will be lost

since CD places backup partitions in adjacent nodes, which leads to the definition below.

Definition 6.4.1. A node in the Chained Declustering scheme is essential if removing it makes the data

stored in the Chained Declustering scheme unavailable.

In fact, CD can allow up toN/2 alternating nodes to go offline, whereN is the number of nodes in the

system. These N/2 offline nodes result in the uniform doubling of load across the remaining nodes in the

system (provided N mod 2 = 0). We exploit this property of CD to develop various energy management

schemes.

6.5 Exploiting Replication for Energy Management

We can now design schemes to exploit CD to manage the energy consumption of a cluster system

when the overall system utilization is less than the peak utilization (i.e., 100% utilization, using the termi-
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Algorithm 1 Dissolving Chain

INPUT: s(m), m′(m′ ≤ N/2 for an N node system)
Q⇐ Seg(s(m)) //Extract segments in the current state.
Q⇐ Sort(Q) //Sort in descending order of segment lengths.
curr ⇐ NumOfflineNodes(s(m))
while curr 6= m′ do
seg = Q.pop
if | seg |> 2 AND 1 < d(| seg |)/2e <| seg | then
Q.push(seg1...d(|seg|)/2e−1)
Q.push(segd(|seg|)/2e+1...|seg|)
segd(|seg|)/2e.turnOff //turn off this node
curr ⇐ curr + 1

end if
end while

nology described in Section 6.3). Recall that from the discussion in Section 6.3 we want to control load

imbalances such that we obey the constraint of the utilization parameter M .

While CD can tolerate a variety of configurations with nodes/servers being offline, as we show below,

some of these configurations lead to system load imbalances. The protocol that is used to take nodes offline

directly determines the uniformity and balance of the load on the remaining online nodes.

For the discussion below, we introduce a few additional terms: a ring refers to the logical ordered

arrangement of all the nodes in a CD scheme. When a node in a ring goes offline, the ring is broken and

produces a segment. Additional node failures partition segments into other segments. Each segment has two

end nodes.

Now, consider the following proposition:

Proposition 6.5.1. If the ring or a segment of a Chained Declustered set of nodes is broken because a node

goes offline, then the two new end nodes of the resulting segment(s) are essential.

The proof follows directly from the properties of CD and Definition 6.4.1.

From Proposition 6.5.1 it follows that to take nodes offline any scheme must select additional nodes

from the remaining online nodes that are not end points of the remaining segments.

Now we present two protocols for selecting which nodes to take offline. The Dissolving Chain scheme

walks along segments of the ring, taking nodes offline at the halfway point of the given segment. In contrast,
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Algorithm 2 Transition Controller

INPUT: N , s(m), m′, U , M
L⇐ maxlen(T,N,m′)
if m′ ≤ N/2 and U(L+ 1)/L ≤M then CALL DissolvingChain(s(m), m′)

the Blinking Chain scheme spaces offline nodes on the ring evenly to achieve better load balancing.

6.5.1 Dissolving Chain (DC)

The Dissolving Chain (DC) protocol sequentially withdraws nodes using Proposition 6.5.1 so that

data is always available. A simple generic algorithm to implement this scheme is shown in Algorithm 1.

The input parameters to this Algorithm are: the current state (s(m)), and the number of offline nodes (m′)

in the target state. At the end of running Algorithm 1, the system will be in the new state s(m′).

From the properties of CD, nodes in a longer segment of a CD ring have lower loads compared

to a node in a shorter segment. By choosing to power down the middle node in a segment, we are both

minimizing load imbalance as well as the load increase on the remaining nodes, as a result of the transition.

Continuing the example from Table 6.2, the second node that can be taken offline is node n4. The

resulting system is balanced (uniform node load) as shown in Table 6.3.

Now that we have taken two nodes offline, let us consider taking another node offline to reduce the

energy consumption in response to a lowering of the overall system utilization. Notice in Table 6.3 we have

two segments of length 3. To take the next node offline, we can pick one of these two segments and cut it

into two equal parts. However the load on the system now becomes imbalanced as illustrated in Table 6.4.

Essentially, DC can only reach a balanced state when the number of offline nodes is 2i and 2i divides N ,

Nodes: n0 n1 n2 n3 n4 n5 n6 n7

Primary: — R1(1) R2(2
3 ) R3(1

3 ) — R5(1) R6(2
3 ) R7(1

3 )

Backup: — r2(1
3 ) r3(2

3 ) r4(1) — r6(1
3 ) r7(2

3 ) r0(1)

Load: 0 4
3

4
3

4
3 0 4

3
4
3

4
3

Table 6.3: Dissolving Chains at s(2)
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Nodes: n0 n1 n2 n3 n4 n5 n6 n7

Primary: — R1(1) — R3(1) — R5(1) R6(2
3 ) R7(1

3 )

Backup: — r2(1) — r4(1) — r6(1
3 ) r7(2

3 ) r0(1)

Load: 0 2 0 2 0 4
3

4
3

4
3

Table 6.4: Dissolving Chains at s(3)

where N is the number of nodes in the system.

The DC algorithm can solve the problem defined in Section 6.3.2 if it is implemented within a wrapper

controller algorithm. This is because Algorithm 1 is not aware of the the maximum M utilization require-

ment. The controller algorithm is given in Algorithm 2. This algorithm takes as input: the size of the system

N , current operating state s(m) desired number of offline nodes m′, the current system utilization U , and

the utilization requirement M . Function maxlen calculates the maximum segment length that would be

produced using T () if this transition occurred. For DC, maxlen first puts value N − 1 into an empty queue.

It then pops the top value in the queue (y) and pushes d(y − 1)/2e and b(y − 1)/2c into the queue. This is

done m′ − 1 times and then the maximum value in the queue is returned. If the number of offline nodes is

valid and the maximum node utilization constraint (M ) is not violated, the controller calls the transitioning

algorithm.

A companion algorithm is also required to bring nodes online when utilization increases. In a simple

implementation, this companion algorithm simply reverses the transitions made by Algorithm 1.

6.5.2 Blinking Chain (BC)

The general intuition behind the Blinking Chain (BC) methods is to allow more general cuts than the

simple binary cuts used by DC to: a) to reduce the variation in the load across the nodes that are still up, and

b) produce states where the load across the nodes is “balanced” (see Definition 6.5.2).

For example, for a system where N = 40 nodes, for a DC system at s(9), there will be segments of

length 4, 2, 1 with 28 nodes at (5/4) load, 2 nodes at (3/2) load, and 1 node at double load. A better way to
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Algorithm 3 Blinking Chain

INPUT: N ,m′ (m′ ≤ N/2),root
curr ⇐ root; s⇐ 0
if m′ > 0 then curr.turnOff
curr ⇐ root.next; tgtlen⇐ d(N −m′)/m′e; ctr ⇐ 0
while curr 6= root do

if ctr 6= tgtlen and curr.isOff then curr.turnOn
if ctr = tgtlen and curr.isOn then curr.turnOff
ctr ⇐ (ctr + 1)%(tgtlen+ 1)
curr ⇐ curr.next; s⇐ s+ 1
if s = N mod m′ then tgtlen⇐ b(N −m′)/m′c

end while

cut the N = 40 ring results in 4 segments of length 4 and 5 segments of length 3. This results in minimal

load variation across the remaining online nodes (the benefits of this are shown in Section 6.6.4). We now

discuss how to create these segments.

Segments and Transitions

The general algorithm for transitions from a balanced state with m nodes offline to a target state with

m′ nodes offline is shown in Algorithm 3. The goal of this algorithm is to power down nodes such that the

remaining online segments have lengths as uniform as possible. In this algorithm, one node in the ring is

always deemed the root node. The algorithm iterates through every node in the ring starting from the root

and changes the state of the node if appropriate. Notice that this algorithm can be used to both transition

down (i.e., m < m′) or transition up (i.e., m > m′). After running this algorithm, the system moves to the

state s(m′).

In Algorithm 3, when m′|N (| is the “divides” operator), all the resulting segments will be of equal

length. However if N is not divisible by m′, (N mod m′) segments will have lengths dtgtlene and the

remaining m′ − (N mod m′) segments of length btgtlenc.

BC can also adhere to the maximum node utilization constraint M defined in Section 6.3.2 by using

a controller algorithm similar to Algorithm 2 except that a) we call Algorithm 3 (Blinking Chain) instead of

Dissolving Chain in the last line and b) maxlen calculates dtgtlene as described above.

Now, consider transitioning from a state with m nodes offline to m′ nodes offline. A method to

implement this transition is to bring all but the root node back online and then turn m′ − 1 of them off, but
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this results in a high transitioning cost as each transition requires making m + m′ − 2 node state changes

(i.e., changing the state of a node from offline to online, or vice versa). These state changes can consume

a significant amount of energy (see Section 6.6.5), and we would also like to minimize the energy spent in

making these transitions. An interesting property of BC is that when transitioning from state s(m) to s(m′),

there may be offline nodes in the s(m) configuration that can remain offline in the s(m′) configuration. By

not changing the status of these nodes, the transitions can be made more energy efficient, as discussed next.

Optimizing the Transitions

First consider finding states that provide the most “efficient” transitions, which implies making the

least number of node state changes in the transition. In BC, the most efficient transition between two states

s(m) and s(m′) is such that only |m − m′| nodes undergo transition. This efficient transition is defined

formally as:

Definition 6.5.1. The Optimal Blinking Chain Transition s(m) to s(m′) only requires |m−m′| nodes to

undergo transition.

This optimal transition can be implemented by using Algorithm 3. We now give Proposition 6.5.2

which highlights a key relationship between divisible states (s(m), s(m′) such that m|m′ or m′|m) and the

Optimal Blinking Chain Transition.

Proposition 6.5.2. s(m) to s(m′) is an optimal Blinking Chain transition iff (m|m′ OR m′|m)

Proof. First, if s(m) to s(m′) is an optimal transition, then only |m−m′| nodes have changed state. Given

any s(m), we know there are (N mod m) segments of length d(N − m)/me and [m − (N mod m)] of

length b(N −m)/mc. Also, we know that there are m total segments in s(m). Without loss of generality,

assume m′ > m, which means exactly x = (m′ − m) nodes have powered down. We can prove m|x

by contradiction. Assume that x is not a multiple of m, then segments in s(m) are not all cut the same

number of times. This means that the maximum difference between two segments in s(m′) cannot be

1, which is a contradiction of the above. Next, we need to prove that given m|m′, then the segments in

s(m) can be cut into the segments in s(m′) with m′ − m offline nodes. Since m|m′, then each segment
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in s(m) will receive c = (m′ − m)/m cuts. So the lengths of the segments in s(m′) will be (d(N −

m)/me − c)/(1 + c) = d(N − m′)/m′e and (b(N − m)/mc − c)/(1 + c) = b(N − m′)/m′c. Lastly,

xd(N −m′)/m′e+ yb(N −m′)/m′c = N −m′ and certainly (x = N mod m′) and (y = m′ − (N mod

m′)) hold.

Proposition 6.5.2 tells us that in a given operating state, s(m), for N CD nodes, we can transition to

another s(m′) with maximum efficiency if and only if m′ is a multiple or factor of m. While the Optimal

Blinking Chain Transition has interesting properties, it does not handle all possible state transitions. Specif-

ically, it does not cover transitions between any states s(m) and s(m′) when m and m′ do not divide each

other. For example, if N = 42, we cannot execute s(6) to s(15), since the optimal transition is not defined

in this case.

To handle transitions between any two arbitrary states, we need a General Blinking Chain Tran-

sition. This transition is implemented as a composition of two Optimal Blinking Chain Transitions: s(m)

to s(GCD(m,m′)) to s(m′), which maximizes the number of offline nodes that are untouched during the

transition.

Using our previous example, if N = 42 and we wish to transition from s(6) to s(15), then using

the General Blinking Chain Transition, we can save 4 node transitions by doing two optimal transitions:

one from s(6) to s(3) and the second from s(3) to s(15). Finally, we note that since the Optimal Blinking

Chain Transition can be implemented with Algorithm 3, the General Blinking Chain Transition can simply

be implemented using two iterations of Algorithm 3.

Notice that BC transitions are “optimal”, when only |m−m′| nodes transition. Recall this is always

the case for DC transitions. The implication of this property is discussed in Section 6.6.5.

Number of Balanced States

Let us now consider the special states s(m) where m|N . In these states, all the nodes have identical

loads and we deem this “balanced” as defined in Definition 6.5.2.

Definition 6.5.2. If all segments of a Chained Declustered ring are of equal length (m|N ) in a given oper-

ating state s(m), then we deem this a balanced operating state, s̄(m) and all nodes have the same load.
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We can calculate the total number of possible balanced operating states for a Chained Declustered

system of N nodes as follows: consider the system configured with N = pN1
1 pN2

2 ...p
Nj

j where pi is the ith

prime; by simple combinatorics, the total number of unique factors of N is Π1≤i≤j(Ni + 1), which is also

the number of balanced states for this system since s̄(0) replaces factor N .

6.5.3 Updates

Updates while operating in energy saving modes can be handled (without sacrificing the fault-tolerance

properties of replication) as follows: if an update needs to be applied to a partition replicate that is offline,

then the “next left node” can store the updates applied to a partition that has a replicate powered down.

For example, consider the node segment “A–B–C–D” in a CD ring with C has been powered down.

In this case, node B can store the updates that have been applied to node D, and node A can store the updates

that have been applied to node B. Updates for node A go to node B as usual. When node C comes back

online, the update logs stored on A and B will be applied to the partitions on node C. Note that the original

fault tolerance property of replication is maintained for CD even when we are operating in energy efficient

modes, as the system always keeps two copies of each update.

Section 6.6.6 presents results on the cost of log replay with respect to the amount of data updated and

node power up costs.

6.6 Evaluation

In this section we present results evaluating the effectiveness of our energy management methods.

At a high level our methodology was the following: we took an actual server and ran two prototypical

workloads on the server. We then took actual measurements for both energy and response time on this

server, as we varied the load on the server (i.e., changed the server utilization). We then produced a model

for a single node in a system. This model was then plugged into a larger model for the entire distributed

system. Using this method, we were able to explore a range of system configurations.

In all results presented below, we consider a system with 1000 nodes (i.e., N = 1000).
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6.6.1 Experimental Setup

Our system under test (SUT) consisted of an ASUS P5Q3 Deluxe WIFI-AP motherboard with an

Intel Core2Duo E8500, 2GB Kingston DDR3 memory, an ASUS GeForce 8400GS 256M graphics card,

and a Western Digital Caviar SE16 320G SATA disk. The power supply unit was a Corsair VX450W

PSU. System energy draw was measured using a Yokogawa WT210 unit as suggested by the SPEC power

benchmarks [159]. The WT210 measurements were collected by a separate system through the RS232

interface and the provided Yokogawa software.

We used both a DBMS index query workload and a table scan workload (described below). The

DBMS workload was run on a commercial DBMS. Our database consisted of the Wisconsin Benchmark

(WB) tables [54]. Client applications accessing the database were written in Java 1.6 using the JDBC

connection drivers for the commercial DBMS.

All empirical results were the average of the middle three results of five runs. The offline mode used

was the hibernation (ACPI S4) state. Alternative offline modes are discussed in Section 6.6.5.

6.6.2 Workload

We model two different types of workloads. The first workload uses WB Query 3. This query is a 1%

selection query using a clustered index. The target table for this query is a table with 20M tuples (approx.

4GB table size). The actual workload consists of 1000 such queries with randomly selected ranges. This

workload is used to model simple lookup queries. Our second workload is a file scan on a WB table (of

varying sizes) that has no indices. This workload mimics queries that require scanning tables in a DSS

environment. These workloads are described in more detail below.

Index Queries Workload

To simulate varying node underutilization with the indexed range query, we defined various workloads

for the indexed query by varying idle times (this is the same setup as described in Section 6.3.1). First, we

ran this query and measured the query runtime. Lets call this X seconds. Then, we defined a 20% utilization

workload as one in which the query runs for X seconds followed by an idle time of 4X seconds. In this
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setup, the server is presented with a series of these 5X time windows. An actual run consists of 1000 such

windows, with random arrival time for the query in each window. We average the results over each run.

Workloads with higher utilization are generated by injecting additional queries in this 5X window. For

example a workload with 40% utilization has two queries in each 5X window, and a workload with 100%

utilization has 5 queries in each 5X window.

To determine the value of X above, we ran 10000 random 1% selection queries and measured the

average response time at 102.5 ms, with a standard deviation of 0.46 ms.

Database Scan Workload

We modeled utilization of the system running scan workloads slightly differently to mimic a scenario

in which a single scan runs across all the nodes in the system. In this case, when nodes are taken offline, the

remaining online nodes have to scan larger portions of the data. In this model, let the time it takes a node to

scan a 20M tuple WB table be 56.49 seconds. This node is operating at 100% utilization, scanning as much

as possible. For 75% utilization, we ask the node to scan a 15M tuple table every 56.49s. Thus, over time,

it is doing 75% of the work that it would do in the 100% case. Similarly, for 50% utilization, we ask it to

scan a 10M tuple WB table every 56.49s. Energy consumption is measured for the entire 56.49s window.

With increased utilization, the increase in response time increases (nearly) linearly. All scans are “cold” and

there is no caching between successive scans.

6.6.3 Modeling Energy and Response Time

In this section we present the measured energy consumption and response time results for each work-

load. We then use these results to develop a model for the behavior of a node in the system. All models

were picked by trying a number of different linear and polynomial regression models, and picking the one

with the lowest coefficient of determination, R2. All presented models had R2 > 0.94.

Indexed Query Workload

The response time and energy measurement results for the index workload are presented in Figure 6.1

(in Section 6.3.1). Figure 6.2 plots this data with utilization on the x-axis, system energy consumption (for

a 5X window) on the primary y-axis, and the query response time in milliseconds on the secondary y-axis.
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Figure 6.2: Index query regression model

Figure 6.3: Database scan regression model

Figure 6.2 also show the derived regression models for the average energy consumed by our SUT and

the average query response time as a function of utilization. The energy consumption model is linear while

the response time model is quadratic.

Database Scan Workload

For the scan workload, increased utilization corresponds to increasing the length of time that an

instance runs (to mimic what would happen if we turned nodes offline for such workloads). The results for
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(b) Scan Queries, N=1000

Figure 6.4: Energy savings under varying system utilization.

this workload are presented in Figure 6.3. Again, the energy model is linear, but for scan the response time

model is logarithmic. The average response time curve is sublinear as the pre-fetching used by the DBMS

decreases the per-record response time as we increase the amount of data that is read. While the energy

consumption curves in Figures 6.2 and 6.3 are both linear, as utilization increases, energy consumption

grows faster with the CPU-bound index workload.

6.6.4 Effect of Decreasing Utilization

Using the models described in the previous section, we now apply the workload models to a N =

1000 system configuration under varied system utilization.

We then analyze the workload energy consumption of the overall system as the overall system uti-

lization decreases from 100%. In addition to comparing differences between our methods, we also compare

against the Unmanaged system, where all nodes are always online regardless of the overall system utiliza-

tion.

These results are shown in Figures 6.4 (a) and (b). In these figures, we vary the system utilization

from 100% to 50% as shown on the x-axis (going from 100% on the left to 50% on the right). So going

left to right, corresponds to decreasing the overall system utilization from the fully loaded (100%) system.
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Figure 6.5: (a),(b) Maximum node utilization as we iteratively take nodes offline. (c) Ability of Dissolving
Chains to power down half of the nodes.

For each point in these figures, we apply our empirically derived models from Section 6.6.3 to calculate the

energy consumption. Using this calculated energy consumption, we plotted, on the y-axis, the energy saved

by the entire system compared to the energy consumption at the 100% point.

We notice that an unmanaged cluster saves at most 10% in energy consumption (for the Index query

workload Figure 6.4 (a)) at 50% utilization. For the Scan workload (Figure 6.4 (b)), the unmanaged cluster

only saves 3% of energy at 50% utilization! However, using DC and BC, we can save 48% and 50% of the

energy consumption at 50% utilization respectively. Notice, because of DC’s inability to power down 500

nodes for N = 1000, its savings is slightly lower than BC.

Another striking observation from Figure 6.4 is that the curves for both BC and DC have big swings/spikes.

These spikes can be seen for both methods clearly in Figure 6.4 (b). This behavior is because both methods
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introduce load imbalances at certain operating states. Notice that the swings for BC are more gradual com-

pared to DC – this is because BC maintains optimal load balance on the online nodes at any given operating

state, which makes its energy swings are more subtle compared to DC.

Let us explore these swings in greater detail. Consider Figures 6.5 (a) and (b), where we power down

m nodes when the system utilization is (1000−m)/1000 for a 1000 node system. As the system utilization

drops, consider taking nodes offline one by one (incrementing m by 1), up to a maximum of 500 nodes,

using both DC and BC methods. Note that not all states will be balanced.

Figures 6.5 (a) and (b) show the maximum node utilization for both methods, i.e., the maximum

relative increase (compared to m = 0) that any system node will see. Note the maximum node utilization

is a crude way to determine the imbalance of the system. (This type of analysis can be used to avoid load

spikes seen in Figure 6.1.) Comparing these two figures, we see that BC is more graceful in its worst-case

node utilization in imbalanced states (where maximum node utilization is greater than 100%) compared to

DC.

In addition, from Sections 6.5.1 and 6.5.2 we know that BC has 16 balanced states (see Section 6.5.2)

for N = 1000 while DC only has 4. (These correspond to a 100% maximum node utilization in Figures 6.5

(a) and (b).) Furthermore, even when both methods are imbalanced, BC has a better worst-case behavior

than DC, as is evidenced by the lower height (node utilization) of the operating points in Figures 6.5 (a) and

(b). For example, with respect to our problem statement in Section 6.3.2, if M = 120%, then BC has 67

states where the maximum node utilization violates this constraint while DC has 209 states. This is simply

a count of all possible operating states with a maximum nodes utilization greater than M .

Lastly, we notice from in Figure 6.5 (a) that DC cannot reach s̄(500) for N = 1000. This is because

as it systematically traverses the ring, cutting segments in half, it may create irreducible segments of length

2. Thus, it cannot reach the optimal number of offline nodes. This effect can be seen in Figure 6.4, where

near 50% utilization, DC is slightly lower in energy savings than BC.

An analysis of this phenomenon over varying system sizes (N ) is shown in Figure 6.5 (c). Here we

show how close DC can come to powering downN/2 nodes for 1 ≤ N ≤ 1000. What we notice is that there

are dramatic swings, but more importantly, we notice that DC can transition to s̄(N/2) only when N = 2i.
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Figure 6.6: Comparing imbalanced operating points using the Index Query workload. The vertical lines in
represent the range between the minimum and the maximum response times and the horizontal bar is the
median response time.

Ultimately, the reason this occurs is because DC heuristically takes nodes down and will never self-correct

by bringing them back online as utilization monotonically decreases. The upside to this heuristic is a low

(constant) transitioning energy cost that is discussed in Section 6.6.5.

For a detailed look at further effects of BC optimal load balancing to DC heuristic balancing, we

zoom in on a smaller set of operating states. We use the models of Figures 6.2 and 6.3 and compare how

energy consumption and response time are affected by these imbalanced states. Figure 6.6 examines the

imbalanced operating points for the range of 150 to 250 offline nodes, in 5 node increments, while executing

the Index query workload (Figure 6.2). (The results for the scan query workloads are similar and omitted

here.) Figures 6.6 (a) and (b) compare the variance in node response time between the operating states for

DC and BC, respectively. The response time variance is clearly far smaller with BC.

To summarize, BC transitioning results in more balanced node loads than DC. With its lower maxi-

mum node utilizations, BC offers greater opportunities to power down nodes and stay within the threshold

M in our problem statement (see Section 6.3.2).
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“Down” means going from the idle online state (75.2W ) to an

offline state, and “Up” is the reverse. The ASUS offline state is

a proprietary idle state provided by the motherboard software.

Down Down Up Up State

time (s) cost (J) time (s) cost (J) cost (W)

ASUS 0.8 83.5 0.7 68.4 72.3

Standby 12.1 1033.2 14.3 1299.8 11.6

Hibernate 12.2 1107.6 37.3 3531.6 0

Shutdown/Off 8.7 700.2 177.6 9655.9 0

Table 6.5: Costs for different types of offline states.

6.6.5 Effect of Transitioning Costs

So far we have not included any energy or latency costs associated with making transitions from one

state to the next. There are a number of possible offline “power states” for a node. For our test system

(SUT), Table 6.5 shows the different offline and online transitions, along with the time it takes to make the

transition and the energy consumed in making the transition. To put the energy costs into perspective, our

SUT has an idle power consumption of 75.2W . While the “ASUS” state has the fastest transitioning time,

it consumes 95% of the idle cost, making it of limited use. The standby mode is more efficient, consuming

11.6W while keeping keeping memory and system state online. The hibernate state has no sustained cost

in the offline mode, and provides faster transitions than turning the machine off. Here we use hibernation

as our power down mechanism (note that machines can be powered up/down using IPMI which is fairly

ubiquitous on modern servers).

From Section 6.6.4, we know that BC is optimal in balancing the load across the nodes, but the

cost of this optimality is a complex transitioning mechanism (see Section 6.5.2). In contrast, DC always

powers up/down the minimal number of nodes required to reach the target operating state. (As discussed

in Section 6.6.4, not all BC operating states are available to DC. To facilitate direct comparison, here we

compare operating states that are accessible to both DC and BC). From the perspectives of energy consumed
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Table 6.6: Example transitioning sequence, energy costs, and τ

Util BC DC τ Util BC DC τ

(%) (kJ) (kJ) (secs) (%) (kJ) (kJ) (secs)

100 to 90 111 111 0 50 to 60 1,745 353 DNE

90 to 80 111 111 0 60 to 70 1,281 353 168.9

80 to 70 575 111 84.4 70 to 80 817 353 141.6

70 to 60 1,039 111 DNE 80 to 90 353 353 0

60 to 50 1,503 111 321.9 90 to 100 353 353 0

during the actual transitions, DC is clearly more efficient. Now we answer the question: How much worse

is the transition cost of BC?

Let Os(N, y, z, t) be the energy cost of running a workload on an N node system with y offline

nodes at z% utilization for t seconds using scheme s (e.g., OD and OB for Dissolving and Blinking Chains

respectively).

∆O(N, a, b, z, t) = OD(N, a, z, t)−OB(N, b, z, t) (6.1)

∀y, z, t : OB(N, y, z, t) ≤ OD(N, y, z, t) (6.2)

Given Equation 6.1 and Equation 6.2 (the load balancing of DC is lower bounded by BC), ∆O(N, y, y, z, t) ≥

0. Given this, if a ≤ b, the function ∆O(N, a, b, z, t) grows monotonically as t increases.

∆O(N, y, y, z, τ) > γ (6.3)

Equation 6.3 introduces the notion of τ , which is the length of time that the two systems, one using DC

and the other using BC, must operate for for the BC system to overcome its extra (with respect to DC)

transitioning cost penalty (γ) with its efficient load balancing (energy efficiency).

For example, given N = 1000 and the Index Query workload, if we want to transition s(200) to

s(300), BC pays γ = 464kJ in extra transitioning cost over DC. If we have two systems where both DC
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and BC making this transition, then the BC system must stay at s(300) for at least τ = 36.4sec to overcome

this penalty, otherwise DC is a more cost (energy) effective solution.

In Table 6.6, we provide two example transitioning sequences for two 1000 node systems: one using

the DC scheme and the other using the BC scheme. We show a transitioning sequence (in columns 1-4)

where the utilization starts at 100% and falls by 10% increments until 50%. We also show a transitioning

sequence (in columns 5-8) where utilization increases from 50 − 100% in 10% increments. In both these

scenarios, we assume that there is no time spent for the change in utilization, the decision to transition, and

the actual power down sequences. That is, if there is a change in utilization, the decision to transition and

the execution of the transition occur instantly.

The rows show the transitioning energy cost and the time it takes (τ ) for a more balanced BC derived

operating state to overcome its heavy transitioning cost. We notice a number of key points. First, there are

a number of transitions where τ = 0 such as transitioning from 100% to 90% (i.e. s(1000) to s(900)). In

this case, both Blinking and Dissolving Chains perform optimal |m−m′| node transitions and so the node

transition costs are the same. Second, if both Blinking and Dissolving Chains result in states with identical

load imbalance, then Blinking Chains can never overcome its disadvantage in transition cost and τ does not

exist (DNE). This is seen in transitions 50% to 60% utilization and 60% to 70%.

6.6.6 Update Costs

The idea of transitioning costs is extended when we consider the costs of updates. Recall from

Section 6.5.3 that when both replicas are online the updates are applied to both replicas, but if one of the

replica is offline, then the update is applied to the online copy and a log of the update is stored in the “left”

node. This log is then applied when the node with the (stale) replica is powered up (in a single update

transaction). In this section, we provide an analysis of the energy cost of powering up a cluster and applying

the update logs that have accumulated over varying amounts of time.

Consider a 1000 node cluster powered down to 75% and 50%. Let us assume 3 different update

rates of 1, 10, 100 updates per second and different periods of time 10, 30, and 60 minutes during which

the updates are accumulating. So the powered down nodes have been down for this time and updates are
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Figure 6.7: Energy cost of powering up nodes and updating the data partitions, given different rates of
incoming updates and duration for which the nodes were powered down.

accumulating, while a second log of the updates is stored on the next left node for fault tolerance (see

Section 6.5.3). Further, let us assume that updates are uniformly distributed across the file and thus the

nodes in the cluster. This means that the total number of updates that must be replayed is amortized over the

number of nodes that are brought up. (We have run different variants of this setup by varying the # nodes,

start and end states, update rates, and down time, and the results are similar to the ones presented here.)

Using our 20 million tuple Wisconsin Benchmark table with a non-clustered index, our SUT can

update individual tuples at 933 updates per second at a cost of 0.08 Joules/update. In Figures 6.7(a) and

(b), we show the energy cost of powering up 250 nodes and 500 nodes with the varying update rates and

accumulation lengths. The cost in energy is primarily dominated by the energy spent in bringing nodes out

of hibernation. We notice that in both cases, updates cause at most a 2% increase in the transitioning energy.

Finally, the time spent bringing nodes online is also largely dominated by the time spent powering up

from hibernation. In the case of Figure 6.7(a) where 6000 queries per minute accumulates for 60 minutes,

the entire update process takes 38.79 seconds, of which only 1.5 seconds is the actual time to run the update

transaction while the remaining 37.29 seconds is used to bring the node out of hibernation (Table 6.5).
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Figure 6.8: Comparison of energy management methods

6.6.7 Discussion

Now we discuss some of the practical implications of our work. In a setting where load balance is

not as important, as we discussed in Section 6.4.1, simple mirroring can be used. The power down scheme

is simple (turn off one of the two replicate nodes, causing a 2X load increase on the remaining node) and it

affords the 100% and 50% online balanced states. However, in cases where the huge 2X load imbalances

must be avoided (in most cases involving SLAs), we suggest the Dissolving Chain (DC) and the Blinking

Chain (BC) methods.

The differences between DC and BC are summarized in Figure 6.8. If avoiding load imbalances and

the variation in loads across the nodes is important, then BC offers excellent load balancing in energy saving

states. However, BC requires significant state transitioning overhead that would be amplified when system

utilization is highly variable. Thus, if one knows the system utilization will be highly variable, DC offers

low transitioning cost but incurs slight but predictable load imbalances and offers fewer state transitions.

Finally, notice that since both schemes leverage Chained Declustering, the usage of one over the other

is not exclusive; if utilization fluctuates, we can switch to DC, and if there is little fluctuation, we can switch

to BC.

6.7 Summary

In this chapter we have presented energy management methods that can be used in distributed data

processing environments to reduce energy consumption. We leverage the properties of replication schemes

and design techniques that can take nodes offline to conserve energy when the system utilization is low. Our
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results show that by simply choosing an appropriate replication scheme and power down strategy, significant

energy savings (35% or more in some cases) can be gained over unmanaged systems without extra hardware

or data migration. Further, our methods trade off load balancing against energy efficient state transitioning,

allowing the user to choose a suitable strategy.



Chapter 7

Energy-aware Database Management Systems

As we have discussed in previous chapters, with the rising energy costs and energy-inefficient server

deployments, it is clear that there is a need for DBMSs to consider energy efficiency as a first-class opera-

tional goal. In fact, driven by requests from its customers, the Transaction Processing Performance Council

(TPC) has moved in this direction, and all TPC benchmarks now have a component for reporting the energy

consumed when running the benchmarks [167]. While the first version of this benchmark has resulted in a

compromise that makes this energy reporting optional, the organization clearly expects that “Competitive de-

mands will encourage test sponsors to include energy metrics as soon as possible.” Consequently, database

and hardware vendors that wish to report TPC energy metrics will have a keen interest in minimizing their

“power/performance” results. While the previous work discussed in this dissertation as largely focused on

distributed parallel data processing, here we will focus on single-server DBMS systems that are likely to be

the first to report energy benchmarks.

Trading performance for lower energy consumption can take place because a DBMS server may have

opportunities to execute the query slower, if the additional delay is acceptable. For example, this situation

may occur if the Service Level Agreement (SLA) permits the additional response time penalty. Since typical

SLAs are written to meet peak or near peak demand, SLAs often have some slack in the frequent low

utilization periods, which could be exploited by the DBMS.
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7.1 Motivating Illustrative Experiments

There are opportunities to carefully increase the energy efficiency in a traditional DBMS environment

with acceptable performance loss. As we showed in Figure 1.3, Chapter 1, there are a variety of potential

hardware power/performance mechanisms we can exploit to trade performance for lower energy consump-

tion. Here we will present an example of how DBMSs will have to re-consider how to optimize database

query plans if energy is to become a first-class optimization goal.

In this chapter, we focus on exploiting upcoming memory technology that will expose power/perf-

ormance mechanisms to software [19, 48, 121, 164]. We know memory draws 18% of a commercial DBMS

server’s power [140]. If we extrapolate this percentage as DBMS servers migrate to SSD storage technology,

this proportion should increase to 28%. Also, as a consequence of trends toward in-memory data storage,

this proportion will grow. In such large-memory systems, ‘hot’ power-down (parking) of physical memory

DIMMs may save upwards of 40% of system energy consumption [19, 164]. It has been shown that the

power of a 4GB DIMM of memory can be reduced from an average of 5.5W to 0.5W [48].
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in SQL Server
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Consider Figure 7.1, where we plot the actual energy consumed (for the entire server) and perfor-

mance of a commercial DBMS server running a TPC-H join. For this result, we ran a join between the

PART (8GB) and PARTSUPP (37GB) tables of the TPC-H benchmark at scale factor 300. (Clustered indices

are built on the join key PARTKEY.) The server has dual Intel Nehalem L5630 processors (hyper-threading

turned off) with 32GB DDR3 memory and 8 Crucial 256GB SSDs for data storage. The commercial DBMS

was SQL Server 2008 R2. For this experiment, we reduced the amount of memory available to SQL Server

from 32GB to 4GB. When we reduced the amount of memory available to SQL Server, we calculated the

amount of energy savings we should expect if we “parked” the unused memory using the results from [48].

In addition to hardware manipulation, we also changed the hash join algorithms used to perform the join –

hash join, nested loops join, and sort merge. The results are averaged over three cold runs1 .

Here there are a couple of interesting things to note from these results. First, both hash join and nested

loops join have nearly identical performance when given the full 32GB of system memory, but significantly

different energy consumption characteristics. Nexted loops join is consumes 9% less energy than hash join

due to lower CPU and memory stress when running the algorithm. Unfortunately, in this case, hash join

is chosen by the optimizer. Thus, there is an immediate opportunity to save query energy by considering

the algorithms’ energy efficiency. Secondly, if we look at the sort merge algorithm’s results, they barely

change in performance as we reduce the amount of memory given to SQL Server (simulating if we had used

memory “parking”). Since the two tables are sorted on the join key using the clustered index, the sort merge

algorithm theoretically only needs one page of memory for each table during the merge step. If the user is

willing to tolerate a 30% drop in join performance, we are then able to consider the sort merge algorithm

and all of its data points shown in Figure 7.1. So, if we were to park all the memory down to 4GB available

to SQL Server (orange circle), we could save 13% in system energy consumption by switching from hash

join (full memory – black triangle), to 4GB sort merge. This energy reduction was due to changing the

algorithm and exploiting potential hardware power/performance mechanisms.

With this motivating example, we argue that the traditional DBMS needs to change in two ways
1 Due to the implementation of SQL Server, full parallel CPU utilization was not observed when using 8 cores to scan 8 clustered

index files across 8 SSDs
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if we are to make it energy aware: (1) the DBMS needs to have control of modern and future hardware

power/performance mechanisms so it can trade performance for lower energy consumption; and (2) the

DBMS needs to be able to model query performance for SLA performance limits as well as query energy

consumption so that the query optimizer can account for both performance and energy consumption.

7.2 Technical Contributions

This chapter proposes a new way of thinking about processing and optimizing database queries. In

our framework, we assume that queries have some response time goal, potentially driven by an SLA. The

query optimization problem now becomes: Find and execute the most energy-efficient plan that meets the

SLA. This crucial aspect of our work that distinguishes it from related work [171, 181] is our focus on the

slack available in performance between the optimal performance and the SLA goal, and leveraging this slack

to reduce the energy consumption (and thereby overall operating cost).

To enable this framework, we propose extending existing query optimizers with an energy consump-

tion model, in addition to the traditional response time model. With these two models, the enhanced

query optimizer can now generate what we call an Energy Response Time Profile (ERP). The ERP is a

structure that details the energy and response time cost of executing each query plan at every possible

power/performance setting under consideration. The ERP of a query can then be used to select the appro-

priate “energy-enhanced” strategy to execute the query. Figure 7.1 is an example of an ERP.

It should be noted that the framework proposed in this chapter is not limited to single node database

environments, as it can be applied to optimizers for parallel DBMSs as well. Such parallel DBMSs also have

system settings that include cluster configuration as well as server configuration. In a sense, the framework

described here can encompass and drive all of the techniques described in Chapters 4, 5, and 6.

7.3 Framework

In this section we present a general query processing framework that uses both energy and response

time as the optimization criteria. The questions we tackle are: (1) How to redefine the job of the query

optimizer in light of its additional responsibility to optimize for energy consumption? (2) Given this new
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role, how do we design a query optimizer? We discuss answers to these questions below.
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Figure 7.2: Energy Response Time Profile (ERP) for an equijoin query on two 50M tuple (5GB) Wiscon-
sin Benchmark relations, on the attribute four, and a 0.01% selection on both relations. The energy and
response time values are scaled relative to the stock settings (HJ, S) that is currently used by DBMSs.

7.3.1 New Role of the Query Optimizer

The traditional query optimizer is primarily concerned with maximizing the query performance. The

optimizer’s new goal now is to find query plans that have acceptable performance, but consume as little

energy as possible. As shown in Figure 7.2, we want the query optimizer to return an energy-enhanced

query plan that is to the left of the SLA-dictated performance requirement, and as low as possible along the

y-axis. (We note that performance SLAs are often not rigid and violating SLAs could be compensated by

other mechanisms – e.g., some financial compensation. There are potential business decisions to be made

about when violating SLAs are okay, but these considerations are beyond the scope of this study.)

The main task here is to generate ERP plots like that shown in Figure 7.2 (and Figure 7.1). In

Figure 7.2 we show an another ERP for a single equijoin query on two Wisconsin Benchmark relations [54].

The plot shows the system energy consumption and response time measurements for executing the query

using two different query plans – hash join (HJ) and sort-merge join (MJ) at two different system settings

(labeled ‘S’, ‘M’), on SQL Server. System setting ‘S’ corresponds to the “stock” (high power/performance)

system settings. System setting ‘M’ is the power/performance setting that can save energy by reducing the
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memory capacity as we simulated in Figure 7.1. (Details about the experimental setup and systems setting

for this experiment is presented in more detail in Section 7.5.) The energy measurement is the actual energy

that is drawn by the entire server box – i.e., we measure the energy drawn from the wall socket by the

entire system. In this figure, we have plotted all the other data points proportionally relative to (HJ, S),

for both the energy consumption (on the y-axis), and the response time (on the x-axis). A response time

SLA is represented by a dashed vertical line. To generate these plots, the query optimizer needs to quickly

and accurately estimate both the response time and the energy consumption for each query plan. Query

optimizers today are fairly good at predicting the response time, but doing so while accounting for varying

hardware configuration is a new challenge. Of course, this challenge of predicting the energy consumption

of a given query plan for a specific system setting also requires that the query optimizer understands the

power/performance settings that the hardware offers.

7.3.2 System Settings, Optimization, and ERP

The “energy-enhanced” query optimizer must be provided with a set of system operating settings,

where each system operating state is a combination of different individual hardware component operating

settings. The optimizer then uses an energy prediction model along with its current response time model to

produce an ERP for that query, like the example shown in Figure 7.2.

Given a query Q with a set of possible plans P = {P1, ..., Pn} that is to be executed on a machine

with system operating settings H = {H1, ...,Hm}, the ERP contains one point for every plan for every

system operating setting (and hence an ERP has n × m points). Note that heuristics could be developed

to prune the logical plans P so that only a small subset of the n plans are explored for specific queries –

e.g., plans for where the ‘stock’ setting does not meet the performance requirement may be assumed to not

meet the requirement in all other system settings. (An interesting direction for future work is to explore this

option.)

Several methods can be envisioned to predict the energy cost of a query plan. One simple method is

to assume some constant power drawn by the system for any specific query such that Energy α Response

Time. But, we have found in our analysis that such simple models are not very accurate. Note that an
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Figure 7.3: An overview of the framework that optimizes for both energy and response time. The energy
cost estimator is described in more detail in Figure 7.4.

accurate energy estimation model is essential so that the optimizer does not make a wrong choice – such as

choosing query plan HJ and system setting M in Figure 7.2, which incurs penalties in response time that lie

beyond the SLA and does not save enough energy to make this choice attractive.

To enable this new query optimizing framework, we develop an accurate analytical model to estimate

the energy consumption cost for evaluating a query plan. We discuss this model in Section 7.4.

7.3.3 Our Framework

Figure 7.3 gives an overview of our framework. The query is supplied as input to the query plan

generator in SQL Server, which is then requested to list all the promising query plans that the optimizer has

identified. These query plans along with the information about available system settings is provided as input

to the Energy Cost Estimator, which generates the ERP using an analytical model for predicting the energy

consumption (see Section 7.4). The generated ERP is then used by the combined energy-enhanced query

optimizer to choose the most energy-efficient plan that meets SLA constraints. Then, a command to switch

to the chosen system operating state is sent to the hardware, followed by sending the optimal query plan to

the execution engine.
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Figure 7.4: An overview of the energy cost model. The operator model estimates the query parameters
required by the hardware abstraction model for each query plan from the database statistics available. The
hardware abstraction model uses the query parameters estimated and the system parameters learnt to accu-
rately estimate the energy cost.

7.4 Energy Cost Model

In this section, we briefly describe an analytical model that estimates the energy cost of executing

a query at a particular power/ performance system setting. Our model abstracts away the energy cost of a

query in terms of system parameters that can be learnt through a “training” procedure, and query parameters

(CPU instructions, memory fetches, etc.) that can be estimated from available database statistics.

Model Overview

We want to develop a simple, portable, practical, and accurate method to estimate the energy cost

of a query plan. Unfortunately, prior techniques used to estimate energy consumption fail to satisfy one or

more of these goals. For example, a circuit-level model of hardware components [1, 78, 177] can accurately

predict the energy consumption, but these models also have a high computational overhead which make

them impractical for query optimization. On the other hand, a higher level model that treats the entire

system as a black box, though simple and portable, is not very accurate.

In our approach, we use an analytical model that offers a balance between these two extremes. In our

models, the power drawn by different hardware components are abstracted into learn-able system parameters

that are combined with a simple operator model. Figure 7.4 gives an overview of the energy cost model that

we have designed.
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The operator model takes as input the query plan and uses the database statistics to estimate the query

parameters that is required by the hardware abstraction model to estimate the energy cost. The hardware

abstraction model that we describe below required estimations of four query parameters from the operator

model: the number of CPU instructions, the number of memory accesses, the number of disk read and write

requests anticipated during query execution. Our operator model provided estimates for these four query

parameters for three basic operations: selection, projection, and joins. The hardware abstraction model

then uses these four query parameters and the response time model (since response time is dependent on

system settings) to estimate the energy cost of evaluating a query using a particular query plan at a particular

power/performance system setting, essentially computing the ERP.

While we have considered various hardware abstraction models, we will only describe the model that

we found to be the most accurate. Equation 7.1 shows the model for average system power during a query

as defined by three types of variables:

(1) time (T )

(2) query parameters for queryQ: CPU instructions - IQ, disk page reads -RQ, disk page writes -WQ,

and memory page accesses - MQ

(3) train-able system parameters: CPU - Ccpu, disk read - CR, disk write - CW , memory access - Cmm,

remaining system - Cother). These parameters quantify the component power properties.

The intuition behind this power model is to sum of the average CPU power (Ccpu ∗
IQ
T ), read power

(CR ∗
RQ

T ), write power (CW ∗
WQ

T ), memory power (Cmm ∗
MQ

T ), and remaining system power (Cother)

during the duration of the query.

Pav = Ccpu ∗
IQ
T

+ CR ∗
RQ
T

+ CW ∗
WQ

T
+ Cmm ∗

MQ

T
+ Cother (7.1)

Using the work of [118, 155], we can model these query parameters to provide accurate component

power draw.

The key features of our energy cost model are:
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• Simplicity: The models require no additional database statistics other than those used in traditional query

optimizers for response time cost estimation. Also, minimal overhead is incurred by the query optimizer

in calculating the most energy efficient power/performance operating setting and query plan. The compu-

tational complexity is O(|H| ∗ |P |) where H is the set of valid power/performance system settings and P

is the set of query plans for the query.

• Portability: The model makes few assumptions about the underlying hardware or the database engine

internals and can be ported across many DBMSs and machines.

• Practical: Detailed system simulators like DRAMSim [177] and Sim-Panalyzer [1] model hardware com-

ponents at the circuit level to estimate power consumption. This process though accurate is computation-

ally very expensive, and is hence not practical for use in a query optimizer. In our model we abstract the

power drawn by different components into learn-able system parameters.

• Accuracy: In our tests, our models have an average error rate of around 3% and a peak error rate of 8%.

7.5 Evaluation and Discussion

In this section we will present results demonstrating the potential benefit of our optimization frame-

work on a SQL Server using end-to-end measurements.

7.5.1 System Under Test

The system that we use in this analysis has the following main components: ASUS P5Q3 Deluxe Wifi-

AP motherboard (which has inbuilt mechanisms for component-level power measurements), Intel Core2

Duo E8500, 4x1GB Kingston DDR3 main memory, ASUS GeForce 8400GS 256M, and a 32G Intel X25-E

SSD. The power supply unit (PSU) is Corsair VX450W. System power draw was measured by a Yokogawa

WT210 unit (as suggested by SPEC and TPC energy benchmarks) connected to a client measuring system.

Energy consumption was measured by tapping into the line that supplied power to the entire box, so our

measurements and results below are real end-to-end gains. The operating system used was Microsoft Win-

dows Server 2008, and we used SQL Server 2008 R2. Note that we use an SSD-based IO system as many
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Query Predicate Size of R, S
A R.unique2 < 0.1*||R|| AND

R.unique1 = S.unique2 1GB, 1GB
B R.unique2 = S.unique2 5GB, 5GB

Table 7.1: Both queries have the template (SELECT * FROM R, S WHERE <predicate>). These queries
are used for the ERP plotted in Figure 7.5. All relations are modified (100 byte tuples) Wisconsin Benchmark
relations.

studies have shown that SSD-based configurations are more energy efficient [171] and also provide a better

total cost of ownership because of their higher performance-per-$ [5].

7.5.2 End-to-End Results: ERP Effectiveness

We now present end-to-end results using the techniques that we have proposed in this chapter. We use

the two system settings described in the beginning of this chaper; namely, (1) S – the default stock settings

of our system, and (2) M – a reduced memory setting where the memory is reduced from 4GB to 2GB.

Here we present results with the two queries shown in Table 7.1. Both queries are join queries on two

modified Wisconsin Benchmark [54] tables, where the tuple length has been reduced to 100 bytes. Query A

is a 10% selectivity join on two small 1GB tables while Query B is a full join on the sorted keys of two 5GB

tables.

First, let us examine the scenario when switching to a lower power/performance state has little ef-

fect on the response time. With only 2GB of memory, we expect that a query whose peak main memory

requirement is less than 2GB will take approximately the same amount of time to execute, and hence will

provide significant energy savings. Figure 7.5 (a) shows the ERP of query A in Table 7.1. As we can see,

retaining the same hash join plan but using system setting ‘M’ reduces the energy consumption by 18% but

increases the query response time by only 1%. In comparison, changing the join algorithm to sort-merge

incurs significantly higher response time penalties.

Query B in Table 7.1, is an equijoin on two tables that are clustered on the join attribute ‘unique2’.

The two 5GB tables are relatively large compared to the amount of available main memory, but since the

tables are already sorted on the join attribute the inputs do not need to be sorted before joining using a
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Figure 7.5: ERPs of two equijoin query classes: (a) Low memory requirement (b) Low memory and I/O
heavy. Two join algorithms are used: hash join (HJ) and sort-merge join (MJ); along with ‘stock’ (S) and
low memory (M).

merge join operation. Query B is I/O-intensive, requires minimal computation, and has a low peak memory

requirement. For this query, as shown in Figure 7.5 (b), using the sort-merge join along with reducing the

memory requirement produces a win of 12% energy savings for less than 1% performance penalty. The

response times for the hash join plans are far greater than sort-merge for Query A, and are therefore left out

of Figure 7.5 (b).

7.5.3 Summary

Our preliminary results described above shows that significant (>10% for the queries above) energy

savings can be attained by careful optimization of both query plans and system settings in SQL Server based

on end-to-end measurements. We now summarize key takeaways messages from our study.

Energy-Aware Query Optimization: Current DBMS query optimizers can be made energy aware

using our modular optimization framework. By introducing a Hardware Abstraction Model (Figure 7.4) in

addition to the traditional Operator Model, we are able to create Energy Response Time Profiles – ERPs

(Figure 7.2). The Hardware Abstraction Model is a train-able model for estimating both the query response

time and the query energy consumption. ERPs allow us to maximize the query’s energy efficiency while

adhering to performance SLAs.
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SLA-Driven Resource Allocation: The main concept behind the ERP is that by analyzing the re-

lationship between different query plans and different hardware power/ performance settings, we can trade

decreased query performance for increased energy efficiency in the presence of slack in SLAs. In some

cases, this trade-off is disproportionate, and in some cases, this trade-off can be highly favorable for energy

efficiency. By plotting the SLA performance limit on the ERP, we can easily discover the most energy-

efficient combination of query execution plan and hardware system settings while still adhering to the SLA

limit. Figures 7.5 (a,b) show preliminary results where only two plans with two system settings can provide

very interesting execution options.

Exploring New Hardware Mechanisms: Traditionally, CPU has been the first target of studies in

server energy management [103]. In these results, we have shown that emerging hardware mechanisms such

as memory DIMM parking [19, 164] can provide significant energy savings for DBMSs. Other hardware

parts such as the networking components [8,77] are also becoming energy-aware, which will further increase

the number of system settings that comprise the ERP in cluster database environments. As was mentioned

above, in distributed parallel DBMS settings, other parameters such as cluster size and cluster heterogeneity

(Chapters 3 6may also impact the sizd of the ERP space that must be considered.

Complex Queries and Concurrent Queries: The preliminary results presented here point to inter-

esting opportunities for energy savings with simple queries, and it would be interesting to extend this study

to more complex queries, and query workloads (e.g., concurrent queries).

7.6 Summary

This chapter presents a new framework for energy-aware query processing. The framework augments

query plans produced by traditional query optimizers with an energy consumption prediction to produce an

Energy Response Time Profile (ERP) for a query. These ERPs can then be used by the DBMS in various

interesting ways, including finding the most energy-efficient query plan that meets certain performance

constraints (dictated by SLAs). To enable the framework, a DBMS needs an energy consumption model for

queries, and we have developed a simple, portable, practical, and accurate model for an important subset of

database operations and algorithms. We have used our framework to augment a commercial DBMS using
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actual energy measurements, and demonstrated that significant energy savings are possible in some cases.



Chapter 8

Related Work

This chapter will discuss data-processing related work specific to the work presented in the prior

chapters of this dissertation. We will also discuss other trending research for increasing the efficiency of

data centers hosting cloud services. Since data centers typically contain the largest clusters and draw the

most power, significant research from many fields have begun to tackle this issue.

8.1 Data Processing, Data Centers, and Cost

The modern data center can hold tens of thousands of servers and costs hundreds of millions of dollars

in investment and continual upkeep [75, 80]. The amortized cost breakdown of a modern data center (40K-

50K servers) points to servers, power draw, and power-related infrastructure costs making up between 80-

88% of the monthly total cost of ownership (TCO) [75,80,81]. Traditionally, operational staffing costs have

made up the leading costs in enterprise; however, in the data center environment, the staff to server ratio is

1:100, making human costs small compared to the remaining cost components [75]. Server costs still make

up around 45-50% of the amortized monthly TCO. Unfortunately, servers are typically over-provisioned due

to a number of reasons like uneven application fit, uncertain demand, risk management, and virtualization

inefficiencies [40, 75]. For cloud services such as Database-as-a-Service, managing infrastructure is an

active area of research.
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8.2 Management of Database-as-a-Service Infrastructure

DBMSs have traditionally been engineered for a single-tenant “on-premises” environment. However,

emerging trends indicate that DBMS workloads are moving towards the cloud. In recent literature [9, 143],

several systems for providing databases in the cloud have been proposed and discussed.

In [25], issues such as performance, scalability, security, availability and maintenance must be re-

considered in a multi-tenant cloud environment. The costs of providing these services to customers must

be kept low so that the DaaS provider can keep their prices low [64]. With our goal of cost management,

in such an environment, maximizing server utilization via tenant consolidation helps us minimize wasted

resources [35, 38, 146].

As discussed in Chapter 2, Section 2.3.1, there are several methods to consolidate multiple tenants on

a single server [16,17,24,42,47,146,179]. In particular, methods based on the use of Virtual Machines (VMs)

have been studied in [6]. However, the performance overhead caused by VMs (paging [87], contention [122],

OS redundancy [47]) may be too expensive for the more data-intensive workloads that we consider. Thus, a

number of frameworks for building native multi-tenant applications have also been proposed [18, 36, 152].

Being able to accurately and effectively determine the necessary server provisioning for cloud ser-

vices, we must model the system’s performance under a realistic multi-tenant cloud workload. To this

end, recent work has focused on formulating and evaluating performance benchmarks in a cloud environ-

ment [46, 98, 156]. Complicating factors such as unpredictable load spikes [29], interference between ten-

ants [55, 100] have also been analyzed. Load balancing may require tenant migration [57] or alternatively,

reassignment of a tenant’s “master” replica. Other work has studied how to benchmark production sys-

tems and train performance and resource utilization models without breaking performance SLOs [20, 30].

In [180], the authors present a middleware architecture to optimize CPU and memory utilization in a cluster

while allocating resources fairly.

Costs generally increase with the quality of services (guarantees) provided by the provider [40]. SLAs

for cloud-based services are usually formulated in terms of uptime/availability guarantees [12] and require

extra hardware for failover. Other work in this field has considered allowing tenants to choose between SLAs
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that guarantee different levels of consistency [99] and guaranteeing response times in in-memory column

databases [151].

8.3 Data Center Energy Efficiency

The problem of increasing energy consumption in large-scale data processing environments neces-

sary for public and private clouds, has received considerable attention over since the beginning of this

decade. Intense interest can be found especially in the context of data center (DC) construction and opera-

tion. The increasing attention is driven, in part, by the minimization of the total cost of ownership (TCO) for

DCs [81,132, 141]. But, additional reasons include the inevitable architectural [58] and operational [31,96]

power limits and constraints of computing and potential legislative requirements to work within energy

budgets [27].

It has been observed that data centers have huge (energy) inefficiencies in the electrical distribution

and mechanical components. Various best practices have been proposed, and rapidly adopted over the past

few years, that dramatically reduce these energy losses. Examples of these methods include reducing the

number of power conversions, bringing in higher voltage closer to the rack, using more efficient power

supply parts such as high-efficiency and/or rotary UPSs, raising data center temperatures, shorter control of

airflow (e.g., avoiding pumping cool air from a cooling source that is far way from the target), using cooling

tower rather than A/C, using lower-end equipment, etc. [73, 76, 79, 80, 113, 128, 136]. All these efforts have

resulted in dramatic improvements in the energy efficiency of data centers. For example, consider the Power

Usage Efficiency (PUE) metric [74,117], which is simply defined as the ratio of the total power going into a

DC over the total power delivered to the actual IT equipment. Just a few years ago, it was estimated that the

PUE of 85% of DCs was greater than 3.0 [95]. In other words for every Watt of power that was delivered to

an actual computing unit, 2 additional Watts were expended by the electrical and mechanical systems that

supported the computing infrastructure.

Other studies have indicated rosier pictures of efficiency with DCs having average PUEs of 2.0 [76,

170]. Further, the EPA has predicted that by 2011, state-of-the-art DCs should have PUE’s of 1.4 [4]. This

estimate may be overly pessimistic as certain well designed DCs have already reported PUEs of 1.2 [68,124].
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But where are the bottlenecks in DC efficiency? The sources of distribution efficiency losses in DCs

is typically the uninterruptible power supply (UPS), 88-94% efficient in the best case [69,166]. Further, long

low-voltage (110V/220V)lines to the racks typically can lose another 1-3% of power. Ultimately though,

cooling this unending collection of computing equipment rounds out the balance of the inefficiency. Efficient

distribution of cool air over long distances between the Computer Room Air Conditioner (CRAC) and the

equipment is an open problem [86, 126]. This includes keeping the air cool, preventing warm and cool air

mixing, and maximizing the CRAC efficiency itself [2, 15, 56].

Thus, most of the gains in DC energy efficiency (measured by PUE) will come from advances in

the IT infrastructure energy efficiency [72, 116]. Some of these advancements, such as shipping container-

based DCs, may have already arrived [70, 125] while others may be an increased focus on DC level power

management and provisioning [38,40,63] or networking efficiencies [10]. However, PUE only accounts for

the efficiency of getting the energy to the equipment, not the efficiency within the equipment. Efficiency

within the equipment can be quantified by the server PUE (SPUE). This is defined as the ratio of total server

input power to the amount of useful power; that is, the power directly involved in computation. Current

computing technology has SPUE ratios of 1.6-1.8 while state-of-the-art SPUE should be under 1.2 [45]. So

combining even state-of-the-art PUEs and best case SPUEs would yield in about 70% of energy delivered

to a DC to be actually used for computation [22]. Therefore, while we can count on the infrastructure to

be increasingly more efficient, part of the burden will fall on the SPUE side of DC energy efficiency. Our

efforts looked to bring down the SPUE through power-aware engineering of software systems.

One concept that would ultimately yield in ideal SPUEs would be energy proportional computing.

That is, an X% utilized server should consume X% of the power it would when it is at 100% utilization

(peak power). One of the hurdles to this is the problem that idle machines typically consume an significant

amount (50%) of its peak power [21]. Poor energy proportionality is caused by all the major components

of the server. In the past, the CPU has been the biggest culprit, but with CPU manufacturers optimizing

CPU utilization and power consumption, this component is now the most energy proportional of the sys-

tem [22]. However, the remaining components such as memory, disks, and networking have much poorer

energy/utilization proportionality. In many ways, this problem must be solved at the component level such
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as disk power consumption [37, 150, 161]; however, software systems must also be aware of hardware ca-

pabilities or adapt its usage of hardware to also achieve energy proportional computing. One example is

the Tickless kernel project which aims to change the way OS kernels operate at idle [157]. The systems

community has since begun to develop energy based metrics of efficiency that place power optimization as

a first-order goal [148, 160].

Another important factor in computing energy efficiency is the issue of dealing with failures [153,

154]. This problem is largely solved with replication of services on multiple hardware systems. However,

replicating services on servers increases the energy consumption of the DC, especially under low utilization

periods. Recent studies have looked at powering down systems in low utilization environments to reduce idle

energy consumption and increase efficiency [120,138,142]. However, these have been studies on clusters of

nodes running web based services where computation migration to another replicated server feasible. If we

begin to consider data intensive services where nodes are storing and processing large amounts of data (such

as a database service), powering down nodes will lead to data unavailability. Leveraging data replication is

one way to sidestep this problem (Chapter 6).

8.4 “Wimpy” Nodes and Modern Low-Power Hardware

Recent studies on the energy consumption of large clusters [4, 21, 62] have shone a light on exist-

ing [23, 126, 142, 144] and future problems faced by data center operators. The database community has

begun to seriously consider the energy costs of database management systems [84, 123, 140, 147]. It was

shown that over the past decade, published TPC-C results used systems that have increased their power

needs six-fold [140], and studies began revealing the true energy consumption costs of running database

workloads [123]. Hardware advances, such as low-power non-volatile Phase-Change Memory [130] and

traditional solid state/flash memory may be able to decrease the large proportion of a DBMS systems power

by eliminating the traditional rotating disk drive in storage subsystems.

While these studies have examined the energy consumption profiles of single nodes running a database,

another direction is to treat a cluster as a holistic entity for energy optimization. This cluster-level approach

to energy management offers many different directions for research.
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Both the systems and database communities have produced a number of studies on reducing the en-

ergy consumption of data processing clusters [13, 80, 83, 111, 145, 172, 174] by stepping out of the box and

considering novel hardware configurations for cluster nodes. Some of these have focused on rethinking

cluster node architecture and using new low-power, low-cost hardware [13, 145, 172, 174]. In work from

CMU [13,172,174], low-power, “Wimpy” nodes were used for key-value, “get-put” workloads. In comple-

mentary work from MSR [145], wimpy nodes were used for clusters that served web workloads. Similarly,

both of these studies looked at workloads that were generally partitionable and thus required little cross-node

communication.

Custom energy-efficient hardware has also been presented, which targets the needs of data center

operators [80,120,162]. In [80,162], new designs are proposed for server hardware that increase the energy

efficiency and decrease the amount of idle power drawn. In [120], a new system is proposed that allows

a server to dramatically improve its sleep and wake-up transitioning time. This would allow underutilized

systems to reduce their base-line power dramatically while minimizing any impacts on performance.

Alternatively, servers can be augmented with custom, low-power circuitry, like Field-Programmable

Gate Arrays [91, 127]. In this way, as opposed to heterogeneous clusters where we supplement traditional,

high-performance servers with low-power, low-performance nodes (Chapter 4), we move the “wimpy” com-

puting directly into the traditional server itself (or into its components).

8.5 Energy Efficiency in Databases

Early database research studies speculated that the database software has an important role to play

in improving the energy efficiency, and argued for the redesign of several key components such as the

query optimizer, the workload manager, the scheduler and the physical database design [71, 84]. Many of

these suggestions assumed that, like cars, computer systems have different optimal performance and energy

efficiency points. However, only preliminary experimental data was provided to support these claims.

Subsequent efforts have studied how alternate database designs and configurations can improve the

energy efficiency of a DBMS [102, 171, 181].

Meza et al. [123], have studied the energy efficiency of a scaleup enterprise decision support system,
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and showed that the most energy-efficient configuration was not always the fastest depending on the degree

of declustering across disks.

Xu et al. modified the query optimizer to incorporate the energy costs of query execution plans [181].

Through a real implementation inside PostgreSQL they were able to demonstrate 11% to 22% power sav-

ings in TPC workloads. However, their study did not consider the baseline system power costs, thereby

potentially over-estimating the improvements in energy efficiency.

Tsirogiannis et al. [171] explored the energy efficiency of a typical scale-out database server by vary-

ing numerous hardware, software, and database parameters. They found that because of the high start-up

power draw of traditional servers, the most energy efficient configuration was also always the fastest. This

study, however, did not consider multi-node database configurations or low-power hardware.

Neither of these two prior works [171, 181] target energy efficiency along with SLA constraints. Our

work shows that when considering SLAs, energy optimal and performance optimal are not always the same

operating points.

Besides our methods to optimize the efficiency of a DBMS, other local-level techniques have been

explored. Other work that directly target DBMS energy efficiency include energy efficient execution en-

gines [88]. While that work increases the energy efficiency of the DBMS, making changes to the execution

engine is a complex and platform specific task that is not portable.

The problem of modifying query optimizers to optimize for energy has largely been ignored by the

database community. Alonso et al. [11] discuss a simple energy model which can be used to find the most

energy efficient query plan to execute the query. However, their methods (studied over a decade ago) do not

consider fluctuating power draw from the system and such an assumption incurs high error.

In Chapter 7, we discussed how the DBMS should be able to directly control any exposed power/performance

mechanisms provided by modern energy-aware components. There have been a number of related research

studies in other communities that have considered the effectiveness and impact of these mechanisms. Most

of these efforts focus on achieving energy savings by switching memory modules [19,48,51,60,164] and/or

CPU [61, 115] into lower power states during periods of low workload.
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8.6 Power-proportional, Energy-efficient Clusters

As mentioned above, one of the biggest reasons that data center clusters are energy inefficient is

because the clusters are not power proportional [22]. To alleviate this, one approach is to increase the

utilization levels of the cluster nodes by reducing the cluster size. Studies into shutting down online web

servers were discussed in [138, 142]. “Dynamic right-sizing of clusters” has also been recently studied

in mail-serving cluster environments [114]. Other related methods [137, 139] for powering down storage

disks, either rely on learning request skew, specialized hardware, and/or data migration to increase cluster

utilization. These two studies also did not consider what load imbalances may occur when disks are power

down. Weddle et al. [178] described a RAID-based system to turn off disks to save power when utilization is

low. Their system requires pre-setting well-defined “gears”, one for each operating point for the system with

some disks offline. This scheme can produce up to k-replicas of some data items for k-different operating

points. If gears are not setup, then the system requires on-the-fly replication as disks are taken offline, which

increases the costs of taking disks offline.

In Chapter 5, we discussed the approach proposed by Leverich et al. [112] in which they reduce the

size of the MapReduce cluster to increase its energy efficiency. Chen et al. [39], considered heterogeneous

usage of MapReduce servers through a software workload manager. In addition, some of the authors in that

work also recently presented a study on MapReduce operating variables that affect energy efficiency [41].

In [66], the authors present a way to schedule MapReduce jobs so that they take advantage of renewable

energy sources such as solar power.

Increasing utilization can be done by consolidation using a virtual machine (VM) solution [44, 144,

165,176]. However, using VMs when running data intensive services, is challenging for a number of reasons

such as performance penalties from VM overhead [47, 87, 122], homogeneous performance from heteroge-

neous hardware [129], and costs of VM migration and over-provisioning [57]. Weddle et al. [178] described

a RAID-based system to turn off disks to save energy.

As we have shown in Chapter 5, sometimes, reducing the cluster size has an adverse effect on the

energy efficiency of running a data processing task. In these cases, the most efficient course of action
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is to “race to idle”, or, finish the task as fast as possible and let the system transition to a lower energy

state [120]. Other related research has also come to this conclusion in certain scenarios [49]. In that work,

they found that in a single-system environment, they were unable to increase energy efficiency without losing

performance. This dissertation has shown that if either of these assumptions is taken away, single-system

environment and/or maximal performance retention, we have many opportunities to make our systems more

energy efficient.



Chapter 9

Conclusions and Future Work

This dissertation has explored how the growing energy consumption and hardware costs of data pro-

cessing systems in cloud clusters can be managed. The work presented has focused on four broad areas

defined by two different dimensions: hardware costs versus energy costs, and studying distributed clus-

ter environments versus looking within a single server. The broad challenge has been to balance potential

trade-offs of performance for lower costs in a controllable, predictable, and significant manner.

9.1 Key Contributions

The thesis of this work is that we can re-architect our hardware and software systems so that we can

decrease and control our hardware and energy costs by trading-off excess data processing performance. This

dissertation has demonstrated this through the following major contributions.

9.1.1 A Framework for Managing Costs in the Cloud with Performance Goals

Chapter 2 presented a hardware-cost optimization framework for provisioning servers and scheduling

Database-as-a-Service users in the cloud while adhering to the users’ performance objectives. The frame-

work requires a server characterization function that describes the scheduling capacity of the server under

different user performance objective combinations. We described an empirical methodology to formulate

this server characterizing function. By determining the characterizing functions for a number of different

candidate servers, we then perform a non-linear programming optimization to determine the number of

servers of each type to provision as well as how to schedule users onto them. With this optimization frame-
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work, it is possible to manage the server provisioning costs while maintaining cloud user performance – the

key thesis of this dissertation.

9.1.2 The Impact of Scalability on Cost and Energy Efficiency

Chapters 3 and 4 discuss potential pitfalls in using low-power, low-performance server hardware

when attempting to reduce hardware costs. The classic problem of non-linear scalability when running

complex data analytics tasks cause a diminishing return in performance as we increase the number of nodes

in a cluster. This is particularly a problem when using so-called “wimpy” nodes in non-scalable situations

as they require larger numbers to store and process data at the same performance levels of smaller clusters

made of high-performance servers. The work in Chapter 3 showed that care must be taken in using wimpy

clusters because evidence was shown that they may end up being costlier than expected.

However, in Chapter 4, we examined the impact of wimpy nodes by supplementing traditional high-

power servers in a distributed parallel environment. By providing commercial system empirical evidence

and building/modeling our own custom kernel engine, we found scenarios where wimpy nodes are able

to increase the energy efficiency of the entire system when they replace some of the “beefy” nodes. By

strategically assigning suitable data processing tasks to wimpy, low-power nodes, in certain cases, they are

able to help trade proportionally less performance for more energy savings.

9.1.3 Cluster Energy Management, Data Replication, and Load Balancing

Chapters 5 and 6 deal with energy-saving approaches that leverage data replication to allow a system

to power down some of its cluster nodes without losing data availability. Since clusters in large data pro-

cessing environments are typically underutilized (and thus energy inefficient), it is intuitive that reducing

the number of nodes should increase node utilization and thus increase energy efficiency. In data-intensive

environments, powering down nodes may lead to data being unavailable unless the data is replicated. Here,

the take-away is that powering down cluster nodes may not always be the most energy-efficient approach

and, even when it is, naı̈vely exploiting data replication to increase energy efficiency can result in unwanted

load imbalances in the cluster.
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In Chapter 5, we study how the MapReduce framework, which leverages a distributed file system

that typically replicates its data partitions, may or may not benefit from powering down cluster nodes.

Specifically, we find that two important factors impact whether or not we should reduce the number of

cluster nodes or simply “race to idle” and use as many nodes as possible. The first is hardware capability,

specifically, the speed at which the cluster nodes can transition from offline, sleep modes to an online state.

If this transitioning time is fast, relative to the job lengths, then we showed that it is more energy efficient to

batch up jobs with the entire cluster offline, and power it up to “race to idle”. The second is the complexity

of the job being performed. We showed that for higher complexity workloads, reducing the cluster size can

super-linearly increase the response time and thus energy savings are diminished.

In Chapter 6, we showed that if we choose a suitable data replication strategy, such as Chained

Declustering, then we can formulate ways to power down the cluster nodes in a way that load across the

cluster remains fairly balanced. In this chapter, as well as Chapter 5, it is shown that naı̈ve power-down

strategies can cause severe load imbalances. We discuss two power-down approaches that trade optimal

load balance against simplicity and speed of transitioning between different cluster states (different number

of nodes powered down).

9.1.4 A Framework for Energy-aware Data Processing

Finally, in Chapter 7, a general optimization framework is presented which augments the traditional

performance-based database query optimizer (or distributed parallel query optimizer) so that it is energy-

aware. The concept of the Energy-Response Time Profile (ERP) is presented and we argue that it is a neces-

sary abstraction for an energy-aware DBMS (or parallel data processing system). An ERP allows an energy-

aware optimizer to trade performance for lower energy consumption by exploiting energy-aware hardware

mechanisms, cluster manipulations, or lower-performance/lower-power database operators. Additionally,

we argue and show that an energy-aware optimizer needs to understand the concept of a performance SLA

(or acceptable level of performance) so that it knows what energy-saving trade-offs are acceptable. At a

broad level, this framework encompasses all of the work presented from Chapters 3-6 as the framework

determines when and how we should employ energy-saving measures.
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9.2 Future Work

Managing the costs of providing Databases-as-a-Service (DaaS) is of utmost importance as this is

key to keeping service prices low, which is a dominating reason for customers to use cloud-based services.

The work in Chapter 2 discusses server provisioning in cloud, DaaS environments but we worked under a

simplifying assumption of non-replicated customer databases. In this way, future work that expands on the

work in Chapter 2 will need to relax this assumption to consider real-world environments that are typically

replicated three times or more. As such, the work in Chapters 5 and 6 that deal with data replication and

load balancing tie in closely with this direction of future work. Replicating customer databases in the cloud

will increase the costs to the DaaS provider; however, data replication across the cluster may also provide

an interesting means to provide performance SLAs since the user load can now be served from more than

one server source.

Specifically, work will first be needed to better understand the characteristics of deployed DaaS clus-

ters (e.g., SQL Azure) to characterize the operational efficiency of the existing system. A theoretical model

of operational efficiency will be needed and used to measure any potential gap between the existing opera-

tional scenario and a theoretical ideal. Once we have identified the potential “gap”, we can plan to systemat-

ically explore methods for hardware provisioning, cluster configuration, workload scheduling, dynamic load

balancing, and the interaction of the above with replication schemes. The overall goal is to examine the en-

tire life cycle of a data center deployed for database services. This starts from initial hardware provisioning,

day-to-day operational methods, and hardware aging (whereby new hardware is introduced to selectively

replace aging hardware) to produce an end-to-end solution that optimizes the cloud deployment cost, while

meeting the objectives specified in customer-facing Service Level Agreements.
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