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Thesis Abstract 

 Recent availability and specificity of biological assessments coupled with a fast 
development in computational power and statistical methods have allowed for the efficient 
assessment of population health data.  Aided by these advancements, perspectives are 
shifting from hypotheses based on gross physiology to those that are based on 
biochemistry and molecular biology.  Accordingly, our understanding of adipose tissue is 
shifting from that of an inert organ for fat storage to that of a highly dynamic and interactive 
organ responsive to and promotor of many alterations in hormonal, metabolic, immune 
and neurological function.  Further, we are just beginning to understand the role of diet in 
stimulating adipose accumulation and consequent disruption in inflammatory balance.  
Old notions about fat-induced arterial clogs are being replaced by the molecular 
understanding of complex biochemical events involving glycation products, oxidative 
stress, insulin dysfunction, de novo lipogenesis, adipose remodeling and adipokine 
release.  However, many current studies linking nutrient metabolism, obesity and 
inflammation continue to perpetuate old hypotheses based on associations that did not 
account for confounding effects and do not match the evidence emerging from carefully 
designed experiments in biochemistry and molecular biology.  Resolving complex 
relationships among the large number of variables that have been made available to 
epidemiology research requires the implementation of modern statistical methods that 
account for simultaneous, multidirectional, interactive and mediatory effects. We applied 
modern statistical methods to the analyses of epidemiological data from the Midlife in the 
United States (MIDUS) and National Health and Nutrition Examination Survey (NHANES 
– which year?) in order to assess the impact of body adiposity on two common markers 
of chronic inflammation, Interleukin-6 (IL-6) and C-Reactive Protein (CRP), and the extent 
to which adiposity mediates the effect of carbohydrates and lipids on inflammation at the 
dietary and metabolic levels.  Our analyses indicate that body adiposity is a major 
contributor to baseline inflammation.   BMI and specific measures of body composition 
explained a large portion of the variance in both IL-6 and CRP.  Visceral fat also influenced 
IL-6 to a greater extent than non-visceral fat.  While the opposite was true for CRP, the 
difference in effect was smaller.  Visceral fat was the main mediator of the effect of BMI 
on IL-6 while non-visceral fat was the main mediator of the effect of BMI on CRP.  BMI 
also influenced the heritability of both IL-6 and CRP.  The additive genetic effects acting 
on IL-6 were all attributable to the heritable influences of BMI.  The additive genetic effect 
acting on CRP was split between the influences of BMI and other factors.  While IL-6 
mediated some of the effects of BMI on CRP, IL-6 did not influenced the heritability of 
CRP.  BMI also exerted greater effect on inflammation than other markers of metabolic 
function, including total cholesterol.  It also mediated a large proportion of the effect of 
diet on inflammation, specifically, the effect of dietary carbohydrates.  Accordingly, dietary 
carbohydrates, especially sugar and fiber, exerted the largest dietary effects on both body 
adiposity and CRP.  Dietary lipids made small contributions to either BMI or CRP.  
Specifically, saturated fat did not influence BMI or CRP; dietary cholesterol also did not 
influence BMI, and only influenced CRP before accounting for metabolic factors.  
Similarly, carbohydrate, not lipid, metabolism was found at the origin of the metabolic 
models linking nutrient metabolism to body adiposity and inflammation.  The strongest 
effects linked glucoregulation to body adiposity to inflammation.  These effects are not 
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usually observed in epidemiological studies, especially those that have used simplified 
statistical methods and which did not account for the full data variance, confounding 
factors and simultaneous effects.  Unlike similar studies, the results from our population 
analyses support or are consistent with the conclusions obtained in controlled 
experimental studies that carefully examined the biochemistry and molecular biology 
linking diet, nutrient metabolism, adipose accumulation and inflammatory physiology. 
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Thesis Introduction 

 

 While the role of adipose tissues in inflammatory physiology is becoming better 

appreciated, the extent of its influence is still under investigation.  Concurrently, there still 

is much debate over the effects of diet and metabolism on obesity and inflammatory 

health.  Many controversies exist over the effect of excess caloric intake, dietary 

carbohydrate and lipid balance, as well as the significance of blood cholesterol and fat 

accumulation in mediateing the effects of diet on health.  In particular, there is ample 

disagreement on the order of effects that link diet, glucodysregulation, dyslipidemia, 

obesity and inflammation.  Further, there are major discrepancies between the 

conclusions derived from human correlational studies and those derived from 

biochemistry and molecular biology.  We applied modern statistical methods, including 

general linear modeling, structural equation modeling, and bootstrapping mediation 

methods, to analyse epidemiological data and assess the directionality of effects 

according to the physiological premises that have been set by controlled experimental 

studies.  The studies comprising this thesis sought to narrow the gap that separates 

epidemiological and experimental biology.  Specificlaly, we sought to assess the extent to 

which body adiposity affects the physiological levels of common markers of inflammation 

and their heritabilities, and the extent to which body adiposity mediates the effect of 

carbohydrates versus lipids on such markers, both at the dietary and metabolic levels.   

 This project is comprised of four studies, presented in two parts.  In the first part of 

this project, I sought to assess the impact of body adiposity on inflammation.  To this end, 

I investigated how various measures of body adiposity predict two biomarkers of systemic 
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inflammation, Interleukin-6 (IL-6) and C-Reactive protein (CRP), and the extent to which 

the heritabilities of these biomarkers are influenced by Body Mass Index (BMI).  The first 

two studies of this dissertation address the first goal.  In the first study, I applied general 

linear modeling and bootstrapped mediation methods to determine how various measures 

of body adiposity predict inflammatory status using a subsample of MIDUS participants 

from whom Dual-Energy X-Ray Absorptiometry (DXA) data was obtained. I examined the 

extent to which BMI reflects on total fat mass, visceral and non-visceral fat. I also 

examined how specific measures of body composition differentially contribute to systemic 

levels of IL-6 and CRP.  Finally, I examined how the effects of BMI on systemic IL-6 and 

CRP are differentially mediated by those fat depots.  In a second study, I used a special 

application of structural equation modeling for the estimation of the inter-trait heritability 

in order to determine the extent to which the heritabilities of these inflammatory markers 

were influenced by BMI.  For these analyses, I used a co-twin subsample of MIDUS 

participants, that included monozygotic and dizygotic twins. Specifically, I estimated the 

shared heritability between BMI and baseline levels of IL-6 and CRP, as well as the co-

heritability between IL-6 and CRP.  In addition, I tested whether the intra-class correlation 

in IL-6 between unrelated controls matched on BMI, age and gender is similar to that of 

monozygotic co-twins.   

 In the second part of the project, I sought to assess the mediative role of body 

adiposity on inflammation with a focus on carbohydrate and lipid metabolism. To this end, 

I investigated how lipids and carbohydrates affect BMI and inflammatory status, at the 

dietary and nutrient metabolism level. The following two studies of this dissertation 

address this goal.  In the third study, I applied general linear modeling and bootstrapping 
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mediation methods to determine the effect of dietary lipids and carbohydrates on body 

adiposity and inflammation, and the extent to which body adiposity mediates the effect of 

diet on inflammation, using dietary survey and biomarker data from combined NHANES 

cohorts.  I examined how dietary carbohydrates and lipids influence BMI, including 

macronutrient interactions, non-linear relationships and confounding factors.  Likewise, I 

examined the extent to which dietary lipids and carbohydrates influence systemic CRP, 

and whether such effects are mediated by BMI and other markers of metabolic status.  I 

also used this model to compare the effect of BMI on CRP to that of other markers of 

metabolic status.  In addition, I specifically estimated the proportion of the effect of 

carbohydrates and lipids on CRP that are mediated through BMI.  In the fourth and last 

study, I applied structural equation modeling to assess the effect pathways underlying the 

complex relationships between carbohydrate and lipid metabolism, adiposity and 

inflammation, using the MIDUS participant data.  This was accomplished by designing, 

testing and revising multiple mathematical models and using Bayesian statistics to select 

the models that best fit the data. This method allowed for testing of the order and 

directionality of effects.  This model allowed me to examine the pathways linking nutrient 

metabolism to various markers of inflammation, thereby determining the metabolic 

pathways mediated by body adiposity.  Finally, we tested the veracity and clinical 

relevance of this model in two metabolically distinct populations: diabetics and users of 

statin medications. 
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Inflammation 

 Immune function involves the defense of the body against disease, which typically 

entails guarding against infection.  However, the immune system is also involved in the 

interface with commensal microorganism (Goto & Kiyono, 2012), in anti-oncogenic 

processes (De Visser, Eichten, & Coussens, 2006), wound healing (Park & Barbul, 2004) 

and adipose remodeling (Suganami & Ogawa, 2010).  It also interacts with brain and 

metabolic systems to orchestrate complex physiological shifts, affecting feeding behavior 

(Dantzer, 2001) and energy balance (Demas, 2004).  Hence, proper physiological 

function and health rely on the meticulous control of pro- and antiinflammatory balance.  

When high proinflammatory activity is chronically activated or sustained, damage and 

disease often ensue (Pawelec, Goldeck, & Derhovanessian, 2014). While chronic 

inflammation and related diseases are often attributed to genetics, gene association 

studies have failed to predict baseline levels of proinflammatory agents (Balistreri, 

Colonna-Romano, Lio, Candore, & Caruso, 2009; de Maat et al., 2004; Grimaldi et al., 

2007; Lee, Bae, Choi, Ji, & Song, 2012).  Reports often convey relative effects and omit 

or de-emphasize the small absolute effects.  On the other hand, the effect of 

anthropomorphic and life-style variables, such as obesity, diet, physical activity and 

stress, are well documented and explain a significant portion of the individual difference 

in inflammatory physiology (Debnath, Agrawal, Agrawal, & Dubey, 2016; Fleshner, 2013; 

Huang, Zourdos, Jo, & Ormsbee, 2013).  Chronic inflammation is associated with almost 

all diseases of the Western civilization, and plays significant role in the progression of 
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neurological and cardiovascular disease (Libby, 2006; Perry, 2004).  Inflammation can be 

measured by many different biomarkers of immune function or activation.   

 Two markers are commonly used to describe individual differences in inflammatory 

status in the population: Interleukin-6 (IL-6) and C-Reactive Protein (CRP).  The 

pleiotropic cytokine, IL-6, is produced by many cells and tissues, including adipocytes, 

and plays a major role in normal physiology and in orchestrating inflammatory responses 

(Castell et al., 1989).  It has been widely employed in research on population health and 

aging because circulating levels of IL-6 tend to rise in old age, with obesity, and following 

stressful life events  (Fried, Bunkin, & Greenberg, 1998; Friedman et al., 2005; Kiecolt-

Glaser et al., 2003).  C-Reactive Protein is an acute phase reactant produced by 

hepatocytes, endothelial cells and adipocytes (Anty et al., 2006; Calabro, Chang, 

Willerson, & Yeh, 2005). High levels of CRP have been associated with many 

inflammatory conditions, including infection, smoking and cardiovascular disease  (Gupta 

et al., 2012; Saijo et al., 2004).  Hence, its use has been adopted in research and in 

clinical practice as an independent marker of liver and vascular disease.  CRP production 

in the liver and adipose tissue is also readily stimulated by IL-6 (Anty et al., 2006; Calabro 

et al., 2005; Heinrich, Castell, & Andus, 1990; Volanakis, 2001).  Therefore, this project 

focused on these two biomarkers of inflammation as a measure of inflammatory status. 

 

Metabolic syndrome and obesity 

 According to American Medical Association, the average middle-aged American 

adult is overweight and shows signs of metabolic syndrome (Ford, Giles, & Dietz, 2014).  

In addition, the incidences of obesity and metabolic syndrome are increasing at alarming 
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rates (Flegal et al., 2009; Mokdad et al., 2003). Metabolic syndrome describes a set of 

symptoms that characterize system-wide dysfunction in the regulation of nutrient 

metabolism, energy balance and adipose accumulation.  These conditions include 

hyperglycemia, hypertriglyceridemia, hypercholesterolemia, hypertension and obesity.  

The main complications of metabolic syndrome are type 2 diabetes mellitus and 

cardiovascular disease.  Worse yet, once considered a disease of aging, type 2 diabetes 

and metabolic syndrome now affect all age groups, including young adolescents 

(Krolewski et al., 1987; Liese et al., 2006; Pinhas-Hamiel & Zeitler, 2005; Sardinha et al., 

2016).   A number of biomarkers have been used to assess metabolic status and to 

diagnose metabolic syndrome.  They include fasting glucose and insulin, Hemoglobin A1c 

(HA1c), triglycerides, blood cholesterol measures, blood pressure and obesity.  Fasting 

glucose is a typical measure of glycemic control, which involves balance between two 

pancreatic hormones: glucagon and insulin.  Glucagon stimulates gluconeogenesis, a 

process by which glucose is produced by the liver.  Insulin stimulates lipogenesis and the 

uptake of circulating glucose by various tissues, including fat stores.  Together, they keep 

blood glucose within a narrow physiological range.  However, with frequent glucose 

consumption, as is typical in the American diet, and subsequent chronic insulin release, 

many tissues develop insulin resistance, giving rise to conditions such as diabetes 

mellitus.  Hence, hyperglycemia is a common symptom of diabetes.  High glucose in 

circulation has also been shown to induce glycation products, including glycated 

hemoglobin (Makita et al., 1992).  If not cleared, these damaged products may become 

further glycated by further glucose exposure, giving rise to Advanced Glycation End-

Products (AGEs), which are highly proinflammatory and add to the inflammatory burden 
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associated with metabolic syndrome and cardiovascular disease (Fu et al., 1994; Turk, 

Mesić, & Benko, 1998; Yan, Ramasamy, Naka, & Schmidt, 2003).  Because glycated 

hemoglobin (HA1c) levels, i.e., the percentage of hemoglobin molecules that are 

glycosylated, reflects long-term prevailing blood glucose concentration during the life of 

red blood cells, it serves as a biomarker for glucose regulation and diabetes in research 

and medical practice.  Fasting glucose, insulin and HA1c are often used together in 

medical practice to assess glucoregulatory status.   

 Triglycerides are produced by the liver and adipose tissue in the process of de novo 

lipogenesis as a function of high carbohydrate intake (Hofmann & Tschöp, 2009).  

Because liver and muscles have limited glycogen stores, excess glucose is converted to 

triglycerides, then oxidized or stored as fat.  Because the body cannot store fructose, it is 

immediately converted to triglycerides for storage or oxidation.  Hypertriglyceridemia 

reflects sustained high blood triglycerides and is often associated with diabetes.   

 Cholesterol is synthesized in the liver or obtained from diet.  There is evidence that, 

like de novo lipogenesis, cholesterol synthesis is stimulated by high glycemic 

carbohydrate intake (Hite, Berkowitz, & Berkowitz, 2011).  Cholesterol is a substrate for 

cellular components and hormones, and is carried by lipoproteins. Low- and high-density 

lipoprotein cholesterol (LDL and HDL or LDL-C and HDL-C) reflect the amount of 

cholesterol carried by LDL and HDL particles.  Total and HDL cholesterol are easily 

measured, and LDL typically calculated.  These three cholesterol measures are often 

used as clinical and research markers of lipid metabolism.  Hypercholesterolemia reflects 

high total blood cholesterol or high LDL cholesterol.   
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 While the human body readily converts excess carbohydrates to lipids, the capacity 

to convert lipids to carbohydrates does not exist in human physiology.  In the absence of 

dietary carbohydrates, amino acids serve as the substrate for gluconeogenesis, thereby 

satisfying physiological needs.   

 Hypertension is reflective of arterial stiffening, which is directly associated to the 

atherogenic physiology.  Blood pressure also fluctuates to meet nutrient and oxygen 

demand and is readily influences by physical activity and psychological stress.  Adipose 

accumulation presents increases in proinflammatory processes, exarcebating 

cardiosvascular inflammation and disrupting hormones and energy metabolism.  

Accordingly, chronic inflammatory conditions are often comorbid with obesity and 

metabolic dysfunction (Raman et al., 2013; Shrivastava, Singh, Raizada, & Singh, 2015; 

Willerson & Ridker, 2004).  Likewise, the above metabolic factors are all involved in 

inflammatory processes in some way.  Glucose-induced glycation and oxidative damage 

may trigger proinflammatory processes (Yan et al., 2003).  Insulin has been reported to 

exert acute anti-inflammatory effects.  Triglycerides-rich lipoproteins have been shown to 

trigger proinflammatory pathways and to contribute to directly to atherosclerosis  

(Rosenson, Davidson, Hirsh, Kathiresan, & Gaudet, 2014; Welty, 2013).  While blood 

cholesterol receives most of the attention in the literature on cardiovascular inflammation 

and atherosclerogenic progression, controversy persists regarding the validity or basis 

for this relationship (Ordovas, 2005; Weinberg, 2004).  High blood pressure may 

contribute to arterial lesions, though stiffened arteries are likely a side effect of 

atherosclerosis. Here, there is discussion on which factor, or factors, are the major 

contributors to inflammation, especially in the context of metabolic syndrome. 



9 

 Obesity and body adiposity is commonly measured as Body Mass Index (BMI; body 

weight in kilograms divided by height in meters square) in research and institutional 

reports because of the general availability of height and weight information and ease of 

calculation.  It is used as a proxy for body composition and even fat distribution.  Because 

visceral adiposity closely associated with metabolic syndrome, cardiovascular disease 

and other chronic inflammatory conditions, much of which is thought to be mediated by 

adipokine secretion (Fontana, Eagon, Trujillo, Scherer, & Klein, 2007; Saijo et al., 2004), 

we included a comparison of BMI to specific assessments of visceral and non-visceral fat 

masses.  Nonetheless, BMI is accepted as a direct reflection of fat weight gains in 

adulthood and is consistently associated with many diseases and disorders, especially 

those of inflammatory nature (Faith, Matz, & Jorge, 2002; Kredel et al., 2013; Lau, Dhillon, 

Yan, Szmitko, & Verma, 2005; Vazquez, Duval, Jacobs, & Silventoinen, 2007).   

  Adipose tissue is a major site of proinflammatory activity, and a significant source 

of proinflammatory signals (Calabro, Chang, Willerson, & Yeh, 2005; Coppack, 2001; 

Frühbeck, Gómez-Ambrosi, Muruzábal, & Burrell, 2001; Goode & Watson, 2012; Lau et 

al., 2005; Mohamed-Ali et al., 1997; Peyrin-Biroulet et al., 2012; Trayhurn & Beattie, 

2001).  Adipose tissues participate in acute phase response to infections and in immune 

regulation (Calabro et al., 2005).  Conversely, adipose tissue is dependent on 

macrophages for adipose remodeling, the process of adipose expansion involving high 

rates progenitor cell proliferation and adipocyte death (Cinti et al., 2005; Strissel et al., 

2007).  Systemic IL-6 is largely influenced by body adiposity (Crichton et al., 1996; Mehra 

et al., 2006; Mohamed-Ali et al., 1999; Pini et al., 2012).  Adipocytes, as well as the 

macrophages embedded in fat tissue, are known to be the major source, especially in the 
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non-stimulated state (Simon W. Coppack, 2007; Fried et al., 1998; Suganami & Ogawa, 

2010; Weisberg et al., 2003).  The adipokine leptin also stimulates the release of IL-6 

from leukocytes and macrophages (Agrawal, Gollapudi, Su, & Gupta, 2011; Behrendt et 

al., 2010; Kredel et al., 2013).  Although these biological pathways often interact in a 

bidirectional and reciprocal manner, there is considerable evidence to suggest that 

adiposity exerts a far greater influence on inflammatory physiology (Miller, 2003; Welsh 

et al., 2010).  Recent research has also shown that adipocytes produce large quantities 

of CRP and adipose tissue is a major source of systemic CRP levels (Anty et al., 2006; 

Calabro et al., 2005; Forouhi et al., 2001).  Moreover, high body adiposity can also 

increase production of CRP by the liver and other sites (Anty et al., 2006; Calabro, Chang, 

Willerson, & Yeh, 2005).  Accordingly, obesity may exacerbate proinflammatory 

processes and fuel inflammatory diseases across physiological systems.   At the same 

time, which factors exert the greatest influence on inflammatory biology is still a topic of 

much debate.  This project took advantage of these biomarkers to assess metabolic 

status and to examine the mechanisms driving obesity and inflammation, as well as to 

test the influence of BMI as a mediator of inflammatory status. 

 

Diet, metabolism, inflammation and disease 

  The metabolic deterioration in the American health was concomitant with a major 

shift in dietary patterns since the 1950s, based on governmental guidelines and incentives 

favoring a carbohydrate based diet over the consumption of dietary cholesterol and 

saturated fats (Aranceta & Pérez-Rodrigo, 2012; Flegal, Carroll, Kuczmarski, & Johnson, 

1998; Gifford, 2002; Layman, 2009; Teicholz, 2015).  The over-simplistic gross-anatomic 
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notion was that high dietary cholesterol and saturated fats intake would lead to high blood 

cholesterol and high blood lipids, which in turn would passively clog arteries (Jensen et 

al., 2014).  This hypothesis is known as the “Diet-Heart Hypothesis”.  However, we now 

appreciate the complexities of atherosclerogenesis and atherosclerotic plaque formation, 

which involve specific molecular events:  LDL-modification (Ahmed, 2005; Angelica & 

Fong, 2008; Itabe et al., 2011; Yoshida & Kisugi, 2010), vascular infiltration of LDLs 

(Nordestgaard & Tybjaerg-Hansen, 1992), reactive oxygen species (ROS) generation by 

mitochondria (Bonnefont-Rousselot, 2002; Figueroa-Romero, Sadidi & Feldman, 2008; 

Schleicher & Friess, 2007; Yu, & Bennett, 2014), the formation of foam cells (Huh, Pearce, 

Yesner, Schindler, & Silverstein, 1996), chronic inflammatory processes taking place at 

the vascular (Corti, Hutter, Badimon, & Fuster, 2004; Libby, 2006) and systemic levels 

(Shrivastava et al., 2015), as well as arterial calcification (Kalampogias et al., 2016; 

Zieman, Melenovsky, & Kass, 2005).   Yet, outdated hypotheses based on cholesterol-

clogged arteries persist (see Figure 1, Jensen et al., 2014).   

 With the advancement and greater availability of biomolecular methods of greater 

specificity, our modern understanding of the diet-obesity-inflammation relationships has 

shifted focus to excess sugar consumption.  The traditional “Diet-Heart Hypothesis” was 

first popularized by Ancel Keys’ Seven Country Study, presumably showing that nations 

with higher percent fat-calorie intake predicted greater number of deaths (Blackburn & 

Labarthe, 2012; Keys, Anderson, & Grande, 1965; Kritchevsky, 1998).  However, it was 

later shown that Keys picked six out of the original 22 nations in order to prove his 

hypothesis, as the inclusion of all 22 nations voided his conclusions (Yerushalmy & 

Hilleboe, 1957).  The six countries included were (in order of increasing death dates and 
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percent fat calories): Japan, Italy, England/Wales, Australia, Canada, and the USA.  The 

countries excluded from the analyses were Austria, Ceylon, Chile, Denmark, Finland, 

France, German, Ireland, Israel, Mexico, Netherlands, New Zealand, Norway, Portugal, 

Sweden and Switzerland.  Keys’ research eventually led to the funding of The 

Framingham Study, which is a large longitudinal study that has produced many major 

publications further supporting the Diet-Heart Hypothesis.  However, an unofficial release 

of internal research documentations by a Framingham Study statistician exposed early 

data which did not support the Diet-Heart Hypothesis and therefore was omitted from 

publication (Kannel & Gordon, 1970).  The studies showed that, in fact, caloric, fat or 

cholesterol intake did not predict higher blood cholesterol or disease.   

 Additional studies offered further support to the Diet-Heart Hypothesis, often based 

on bivariate associations and outdated statistical methods that simplified the data to allow 

for manual calculations (e.g., dichotomization of continuous variables into categorical 

factors).  Only very recently, statistical methods were developed that are able to parse 

the variance of effects to account for simultaneous, multidirectional, interactive and 

mediatory effects.  These methods require computer-intensive processing and are still in 

the process of adoption.  Accordingly, many studies linking diet, metabolism, obesity, 

inflammation and disease continue to rely on data simplification.  As a consequence, 

many of these analyses have led to concluions that do not match the evidence emerging 

from carefully designed experiments in biochemistry and molecular biology.   

 Results from various studies that previously supported the Diet-Heart Hypothesis 

have been brought to question and a few have been re-evaluated.  Recent re-analysis of 

the data from the Minnesota Coronary Experiment (a double blind randomized trial to test 
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the substitution of saturated fat by polyunsaturated fat) and meta-analyses showed no 

reductions in cardiovascular outcomes or death (Frantz et al., 1989; Ramsden et al., 

2016; Veerman, 2016).  Another re-evaluation was carried out for the Sydney Diet Heart 

Study based on omitted data, which when included, showed opposite effects in the 

substitution of saturated by polyunsaturated fats (Ramsden et al., 2013).   

  When high blood cholesterol is observed in cardiovascular disease, it may be 

product of glucodysregulation and hypertriglyceridemia, rather than the actual cause of 

disease.  Dietary cholesterol only modestly increases blood cholesterol (Ginsberg et al., 

1995; Griffin & Lichtenstein, 2013; Hopkins, 1992), cholesterol is dynamically controlled 

at various levels that may exhibit dysfunction (Dietschy et al., 1993; Lecerf & de Lorgeril, 

2011; Ono, 2012).  Cholesterol is either absorbed from the diet or produced in the liver by 

sugar ingestion (Jameel et al., 2014; Feingold & Moser, 1985; Schaefer et al., 2009).  

Dietary cholesterol is not only selectively absorbed, but also excreted by erythrocytes in 

the intestinal lumen (Lammert & Wang, 2005).  Excess systemic cholesterol is also 

reconverted to bile for excression, much of which is also lost in feces (Lewis & Rader, 

2005).  Hence, higher blood cholesterol may be reflective of abnormal cholesterol 

synthesis or clearance.  More likely, it is induced by carbohydrate-induced synthesis and 

hypertriglyceridemia induced impairment of hepatic reabsorption of lipoproteins, 

generating an accumulation of cholesterol-containing remnant particles (Skeggs & 

Morton, 2002).  Altogether, the current body of evidence seems to suggest that 

triglycerides and blood cholesterol are not the cause of atherosclerosis, but instead 

another by-product of carbohydrate metabolism.  Accordingly, recent studies point to 

carbohydrate metabolism as the root problem driving lipid metabolism dysfunction, 
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obesity and inflammation, contributing to the rapid increase in development of diabetes, 

metabolic syndrome, chronic diseases (Ballard et al., 2013; Boden, 2009; Bueno et al., 

2013; Douris et al., 2015; Hussain et al., 2012; Kirk et al., 2009; Volek et al., 2009).  

Notwithstanding, there is still much debate over whether excess carbohydrates or lipids 

drive metabolic syndrome, obesity and inflammation, at the dietary or nutrient metabolism 

level.  Hence, this a secondary goal of this project was to assess the contribution of 

carbohydrate and lipids to adipose accumulation and inflammation. 
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Figure 1. 2014 Nature Reviews Endocrinology article illustrating atherosclerosis as 

arteries clogged by cholesterol molecules. 
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Project hypotheses and significance 

 While the effect of body adiposity on inflammatory processes has been well 

characterized experimentally, there is question to the significance of its effect, especially 

in comparison to blood cholesterol.  There is also significant debate over the order of 

effects linking glucoregulation, dyslipidemia, obesity and inflammation.  Broadly, I 

hypothesized that body adiposity would exert major influence over both IL-6 and CRP, 

above and beyond diet and other metabolic factors, mediating a large proportion of the 

genetic, dietary and metabolic effects on CRP.  Secondarily, I hypothesized that 

carbohydrates, at the dietary and metabolic levels, have greater influence on adiposity 

and CRP than lipids.  In support of this thesis, more specific hypotheses follow for each 

study: 

 Study 1.1. There is still debate over the use of BMI as a measure of body adiposity, 

and especially whether it reflects specific fat depots.  And while it has been proposed that 

visceral fat exerts greater impact on health, the mechanisms by which visceral fat differs 

from non-visceral fat are not well characterized, especially in the obese.  I hypothesized 

that, in the context of the Western civilization, BMI would be a good proxy for total body 

fat, and an acceptable predictor of visceral and non-visceral fat depots, especially in the 

context of its inflammatory effects.  I further hypothesized that visceral body fat would 

exhibit the greatest influence over both IL-6 and CRP.  Similarly, I expected that visceral 

fat would best reflect the effect of BMI on both IL-6 and CRP. 

 Study 1.2. The extent of the impact of BMI on IL-6 and CRP is still ill-defined in the 

literature.  In addition, many studies attribute the heritability of IL-6 to its own genetic 

influences.  The extent of the heritable influence of BMI on both IL-6 and CRP is still ill-
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defined.  Based on the small genetic effects detected in the literature, I hypothesized, 

contrary to similar studies, that the additive genetic effect unique to IL-6 is small or 

insignificant.  Rather, that the additive genetic effect observed in the heritability of IL-6 is 

inflated by the influence of BMI.  According to the hypothesis that BMI exerts defining 

influence over baseline levels of IL-6, I expected matched controls to exhibit an intra-class 

correlation that is similar in magnitude to that of monozygotic co-twins.  I also 

hypothesized that both IL-6 and BMI would exert influence over the heritability of 

CRP.  However, I expect the additive genetic effect on CRP to be influenced to a lesser 

extent by BMI than IL-6. 

 Study 2.1. There is ample debate over the effect of diet on BMI, whether it is simply 

a matter of energy imbalance (excess caloric intake and/or low expenditure), or whether 

relative macronutrient intake (carbohydrates vs. lipids) drives adipose accumulation.  The 

majority consensus is still that dietary lipids matter most, especially dietary cholesterol 

and saturated fats.  The relative effect of the various markers of metabolic status on CRP 

(e.g., BMI vs blood cholesterol) is still ill-characterized.  Here too the consensus points to 

blood cholesterol as the main target of treatment in metabolic syndrome and inflammatory 

disease.  There is also discussion on whether dietary macronutrients exhibit direct or 

indirect effect on inflammation.  I hypothesized that diet would explain a significant 

proportion of the variance in BMI, and that dietary carbohydrates would exert greater 

effect on adipose accumulation than lipids.  Similarly, I hypothesized greater direct and 

indirect effect of carbohydrates on CRP, as well as a greater proportion of the effect of 

carbohydrates than lipids to be mediated through BMI.  I also hypothesized that BMI 

would exert a greater effect on CRP than other markers of metabolic status. 
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 Study 2.2. There is much debate on whether carbohydrate or lipid metabolism sits 

at the origin of metabolic dysfunction, and considerable disagreement on the order of 

effects.  Path analyses of a structural equation model linking carbohydrate and lipid 

metabolism, adiposity and inflammatory markers can potentially disambiguate the order 

and directionality of effects.  Further, such model may be used to analyze system-wide 

shift in metabolic-adipose-inflammatory interactions across conditions.  Such model may 

help assess the alterations in physiological effects as a function of a condition or 

pharmaceutical manipulation.  Accordingly, there currently are many controversies 

regarding the use of statin medication to lower blood cholesterol.  It has been proposed 

that the beneficial effect of statins is due to its antiinflammatory effects rather than to its 

cholesterol lowering effects.  There is also suggestion that statin medications may cause 

susceptibility to diabetes.  Both hypotheses can be tested in our model, such that we may 

assess not only the effect of statins on the biomarker levels but also assess how the 

medication alter the relationship among those biomarkers.  I hypothesized a model where 

carbohydrate metabolism fed onto lipid metabolism and body adiposity and where the 

three systems would feed onto inflammatory factors.  I further hypothesized that this 

model would better fit the data than one that places lipid metabolism at the origin of the 

system.  I also hypothesized that the magnitude of effects in the model would demonstrate 

that the flux of effects would point to BMI as a major mediator of the effects of 

carbohydrate metabolism on the inflammatory biomarkers.  In addition, I expected that 

when diabetics and non-diabetics are compared in this model that we would observe 

alterations in path effects that are consistent with insulin resistance and diabetes.  I also 

expected similar path effect alterations when users and non-users of statin medications 
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are compared in the model, and that these analyses would reflect a weakening of the 

inflammatory pathways. 
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Abstract 

 

Body Mass Index (BMI) is a surrogate measure of body adiposity, a marker of metabolic 

dysfunction and a strong predictor of inflammation.  Cumulative evidence shows that 

visceral fat exerts greater inflammatory potential than other fat depots.  However, BMI 

does not specifically measure body composition or distribution.  The extent to which the 

effects of BMI on inflammatory markers reflect the proinflammatory capacity of specific 

body fat depots has not been thoroughly characterized. In our study, we sought to assess 

the impact of body adiposity on two common makers of chronic inflammatory physiology, 

Interleukin-6 (IL-6) and C-Reactive Protein (CRP).  We determined the extent to which 

BMI reflects total body fat, visceral and non-visceral fat depots.  We evaluated the value 

of specific DXA measurements of body composition in predicting IL-6 and CRP compared 

to BMI, and the extent to which specific fat depots mediate the effect of BMI on these 

proinflammatory biomarkers.  Because IL-6 also stimulate acute phase reactants, we also 

assessed the extent to which IL-6 mediates the effect of BMI on CRP.  We found that BMI 

was highly reflective of total body fat and non-visceral fat depots.  While DXA measure of 

total body fat was no better than BMI in predicting IL-6 and CRP, parsing body fat by 

visceral and non-visceral fat depots better predicted IL-6 and CRP than BMI.  Further, 

visceral fat was a better predictor of IL-6 than non-visceral fat, and the opposite was true 

for CRP.  IL-6 was also a significant mediator of the effect of fat depots on CRP.  Our 

analyses of mediation suggest that the use of BMI in predicting IL-6 and CRP reflect 

distinct anatomical effects.  Notwithstanding, our analyses showed that BMI is an efficient 
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alternative to the DXA measure of total body fat, especially in the prediction of IL-6 and 

CRP. 

 

Highlights:		

• BMI was highly correlated to total body fat and non-visceral body fat. 

• Total body fat was not better than BMI in estimating IL-6 and CRP. 

• Visceral fat exerted greater influence on IL-6 than non-visceral fat 

• Non-visceral fat exerted greater influence on CRP. 

• The effect of BMI on IL-6 was mediated by visceral fat. 

• The effect of BMI on CRP was mediated by non-visceral fat. 

• The effect of visceral and non-visceral fat on CRP were partially mediated by IL-6. 
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INTRODUCTION 

 

Body Mass Index as a measure of body adiposity 

 Body Mass Index (BMI) is a common surrogate measure of body adiposity in most 

research studies and institutional reports on diet, obesity, metabolic syndrome and 

disease.  BMI is a simple function calculated from an individual’s height and weight, thus 

it imprecisely represents body composition, and includes non-adipose tissues (e.g., 

skeletal muscles, organ tissues, bones) as well as a different types of fat tissue.  However, 

it is widely accepted that increased BMI is a directly reflective of fat gains, especially in 

western civilizations that are marked by obesity and metabolic syndrome.  

Notwithstanding, discussions persist over the best measure of adiposity as well as the 

validity, utility and clinical applicability of BMI, especially within specific populations 

(Geliebter, Atalayer, Flancbaum, & Gibson, 2013; Lam, Koh, Chen, Wong, & Fallows, 

2015; Okorodudu et al., 2010; Pietrobelli et al., 1998; Sardinha et al., 2016; Shah & 

Braverman, 2012; Stolic et al., 2002).  Even within a typical western population (e.g., the 

United states), the validity and utility of BMI may depend on the goals of the study, as well 

as the biological relationships under investigation.  This may be true even when BMI is a 

good representative measure of body adiposity.  The physiological and pathological roles 

of body fat tissue may vary by histology and by body compartment (Cannon & 

Nedergaard, 2004; Fontana, Eagon, Trujillo, Scherer, & Klein, 2007; Nicholls & Locke, 

1984; Vazquez et al., 2007).  Body adiposity can be measured or estimated by various 

means, Including: BMI, waist-to-hip ratio, skin caliper, bioelectrical impedance, 

hydrostatic weighing, air-displacement plethysmography, computer tomography, or dual-
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energy x-ray absorptiometry (DXA, or DXA).  The latter two can estimate fat mass and 

lean mass by body location, which is useful in accessing the physiological roles of specific 

adipose depots.  

 

Cross-system interactions 

 Contrary to conventional wisdom, body adiposity is not physiologically inert and 

does not serve solely as energy storage.  Fat tissues produce various endocrine factors, 

affect brain function, normal metabolism and immunity, and is involved in complex cross-

talk within each of those systems (Bartness, Kay Song, Shi, Bowers, & Foster, 2005; 

Galic, Oakhill, & Steinberg, 2010; Pénicaud, Cousin, Leloup, Lorsignol, & Casteilla, 2000; 

Romijn & Fliers, 2005; Vázquez-Vela, Torres, & Tovar, 2008).  For example, adipose 

tissue receives sympathetic and parasympathetic innervation, responds to 

neuroendocrine factors, and participants in the conversion of cortisone to cortisol (Lee et 

al., 2008; Stimson et al., 2009).  Adipose tissue is also regulated by multiple systems, and 

may become deregulated and dysfunctional in the context of obesity and metabolic 

syndrome (Dorresteijn, Visseren, & Spiering, 2012; Monteiro & Azevedo, 2010; Stolic et 

al., 2002; Strissel et al., 2007).   

 

Adipose tissue, immunity and inflammation 

 Fat tissues have the ability to exhibit active immune functions such as participating 

in acute phase responses to infections and in immune regulation (Calabro et al., 2005).  

Adipose tissue is also dependent on macrophages for adipose remodeling, the process 

of adipose expansion involving high rates progenitor cell proliferation as well as adipocyte 
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death (Cinti et al., 2005; Strissel et al., 2007).  Additionally, adipose tissue may exhibit 

two histological profiles: brown fat and white fat, the former which is involved in 

thermoregulatory functions (Cannon & Nedergaard, 2004; Nicholls & Locke, 1984) and 

the latter which presents greater cross-system complexity and which is more often 

associated with inflammation and disease (Trayhurn & Beattie, 2001b; Vázquez-Vela et 

al., 2008).   

 Recent evidence also points to differing disease impact based on adipose tissue 

distribution (Forouhi, Sattar, & McKeigue, 2001; Kang et al., 2011; Wajchenburg, 2014).  

Visceral adiposity is most commonly associated with metabolic syndrome, cardiovascular 

disease and other chronic inflammatory conditions, much of which is thought to be 

mediated by adipokine secretion (Fontana et al., 2007; Saijo et al., 2004).  Interleukin-6 

(IL-6) is a known mediator of many inflammatory processes, including T- and B-cell 

growth and differentiation, as well as a potent stimulant of acute phase protein production 

(Dienz & Rincon, 2009; Shrivastava et al., 2015).  IL-6 is produced by various cell and 

tissue types, including various immune cells, non-immune hepatocytes, synoviocytes in 

synovial fluid, intestinal enterocytes, neurons and astrocytes in the brain, skeletal 

myocytes, and adipocytes (Fried et al., 1998; Gadient & Otten, 1994; Gagari, Tsai, Lantz, 

Fox, & Galli, 1997; Guerne, Zuraw, Vaughan, Carson, & Lotz, 1989; Hope et al., 1995; 

Jones et al., 1993; Pedersen & Febbraio, 2008; Tiggelman et al., 1995; Van Wagoner, 

Oh, Repovic, & Benveniste, 1999).   

 Adipose tissue is a major source of systemic IL-6 secretion, most notably within the 

obese population.  In addition, studies have shown greater activity or release of IL-6 by 

visceral than subcutaneous adipose tissue in culture (Fried et al., 1998).  Studies have 
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reported stronger associations for metabolic and cardiovascular complications to visceral 

adiposity compared to non-visceral (Fontana et al., 2007; Item & Konrad, 2012; Kuk et 

al., 2006; Matsuzawa et al., 1995). C-Reactive Protein (CRP) is an acute phase reactant 

that has been thought to be produced in large by hepatocytes, and in minor proportion by 

endothelial cells (Castell et al., 1989; Devaraj, Torok, Dasu, Samols, & Jialal, 2008).  

However, we now know that adipocytes produce large quantities of CRP and that adipose 

tissue is a major source of systemic CRP levels (Anty et al., 2006; Calabro et al., 2005; 

Forouhi et al., 2001).  Although CRP production and release has not been experimentally 

shown to vary by adipose tissue location, systemic levels of CRP are sometimes, but not 

always, associated with visceral fat in cross-sectional studies (Carroll et al., 2009; Forouhi 

et al., 2001; Tsuriya et al., 2011).  In one study, systemic CRP correlated with IL-6 values 

measured from the portal vein, which drains the viscera, indicating a possible mediated 

effect of adiposity by IL-6 (Fontana et al., 2007).  Nonetheless, IL-6 and CRP are 

considered major mediators of chronic inflammation, largely produced by fat tissue.  

Accordingly, these measures are consistently associated with various measures of 

obesity, metabolic syndrome and cardiovascular disease (Malavazos et al., 2007; Wisse, 

2004).  

 

Goals 

 Because many studies utilize BMI as a proxy for body adiposity, we compared BMI 

to a DXA body composition assessment for a subsample of middle age adults in the 

Midlife in the United States (MIDUS) study. We sought to examine the extent to which 

BMI predicts total fat mass, visceral and non-visceral tissue composition.  The relevance 
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of utilizing detailed body composition measures over BMI likely depends on the context 

of the study and adipose function under investigation.  Therefore, we specifically 

examined the value of utilizing DXA body composition scans over BMI in predicting 

systemic IL-6 and CRP levels.  Because, IL-6 and CRP are produced and released from 

adipose tissues, muscle and organs, we sought to determine the effect exerted by specific 

measures of body composition.  In addition, we estimated the proportion of the effect of 

BMI on those proinflammatory markers that can be attributed to specific fat depots.  Given 

that CRP production and secretion may be stimulated by IL-6, we also estimated the 

proportion of the observed effects of IL-6 on CRP that is mediated by each DXA measure, 

and tested the interaction between IL-6 and each DXA component in predicting CRP 

levels.   

 

METHODS 

 

Participants and clinical information 

 DXA scan, biomarker, anthropomorphic and demographic data were retrieved for 

215 participants from the Biomarker Project in 2004-2009, from the original MacArthur 

Foundation Survey of Midlife Development in the United States (MIDUS II). Our analyses 

included 204 individuals who participated in the full DXA body composition assessment.  

Clinical and biological measures for these were assessed for participants who consented 

to the overnight hospital stay in Madison, WI.  Participants arrived on Day 1 and were 

admitted and escorted to their rooms.  That same evening, the participants completed 

their prior medical history and a physical exam with the help of staff, as well as a self-
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administered questionnaire.  Participants who participated in the biological assessment 

were demographically similar to the larger survey with respect to age, gender, marital 

status, and were slightly more educated (Love et al., 2010).  All sample collections and 

analyses were approved by the Health Sciences Institutional Review Board (IRB) at the 

University of Wisconsin-Madison, as well as by the IRBs at UCLA and Georgetown 

University. All participants provided informed consent. 

 

Dual-Energy X-ray Absorptiometry 

Scan data were obtained on GE Healthcare Lunar (Madison, WI) using an iDXA 

densitometer.  The entire body of all volunteers was contained within the scan field and 

positioning was per standard recommendations.  All scans were acquired and data 

generated with the GE enCORE software.  Total fat percentage was computed as 

follows: (total fat mass / (fat mass + lean soft mass + bone mineral content)) × 100. For 

measuring android fat, a region was defined between the top of the iliac crest and 20% 

of the distance from the top of the iliac crest to the base of the skull. Android fat 

percentage was calculated as follows: (android fat mass / (android fat mass + android 

lean mass + android bone mineral content)) × 100. Visceral fat was estimated by a 

proprietary algorithm, which is incorporated into the GE CoreScan software (Ergun, et 

al., 2013).  The width of the subcutaneous fat layer along the lateral extent of the 

abdomen was calculated, and the anteroposterior abdominal thickness of the abdomen 

was derived from basis set transformation. The subcutaneous fat width and 

anteroposterior abdominal thickness were used to calculate subcutaneous fat in the 
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android region. Visceral fat was calculated by subtracting subcutaneous fat from the 

total fat mass in the android region.  	

 

Specimen Collection 

 Fasted blood samples were obtained between 05:00 and 07:00 AM on Day 2.  Whole 

blood was used to determine HA1c; aliquots of serum and plasma were frozen for later 

analysis.  All sample collections and analyses were approved by the Health Sciences 

Institutional Review Board at the University of Wisconsin-Madison, as well as by the IRBs 

at UCLA and Georgetown University.  All participants provided informed consent. 

 

Biological assessments 

Glucose:  Blood glucose was measure by the standard clinical methods performed at 

Meriter Labs (GML) in Madison, WI.  Insulin: This assay is performed on a Siemens Advia 

Centaur analyzer.  The assay performed at GML in Madison, WI.  Glycosylated 

Hemoglobin (%) (HA1c):  Hemoglobin A1c assay performed at GML in Madison, WI.  

Triglycerides (TG), total cholesterol (TC), and High-Density Lipoprotein-Cholesterol 

(HDL-C):  A standard lipid panel was performed at GML in Madison, WI.  The HDL-C 

assay was re-standardized by Roche Diagnostics on August 6, 2007.  The results of 

assays done after that date were adjusted to bring the new values in line with the existing 

data:  Adjusted value = 1.1423(new value) - 0.9028.  Low Density Lipoprotein-Cholesterol 

(LDL-C): An estimation of LDL-C was calculated using the Fridewald formula from direct 

measurements of TC, TG, and HDL-C.  When TG values were above 400 mg/dl, the 

Biocore used 400 mg/dl as the upper limit for calculating LDL-C.  Interleukin-6 (IL-6):  IL-
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6 was measured using the Quantikine® High-sensitivity ELISA kit #HS600B (R & D 

Systems, Minneapolis, MN) at the MIDUS Biocore Laboratory at the University of 

Wisconsin, Madison, WI.  C-reactive protein (CRP): CRP was measured using the BNII 

nephelometer from Dade Behring utilizing a particle enhanced immunonepholometric 

assay.  The CRP assay was performed at the Laboratory for Clinical Biochemistry 

Research at the University of Vermont, Burlington, VT.  Body Mass Index:  BMI was 

computed by dividing weight (in kilograms) by height squared (in meters. Height measure 

(in centimeters) was multiplied by 100 to get the height in meters.  The measures were 

obtained by the clinical staff according to a standardized protocol.  Medication: 

Respondents were instructed to bring all their home medications, in the original bottles, 

to the GCRC (General Clinical Research Center) when they come for their visit. We ask 

them to do this to ensure that we are able to record medication names and dosages 

accurately.  Completed forms were sent to the University of Wisconsin-Madison (central 

coordinating site) for review prior to data entry. The review included specification of 

medication codes based on the medication name, as well as information about route, or 

reason for taking the medication, as appropriate. The medication codes were selected 

from our master list of medication codes derived from the UW Hospital Formulary which 

utilizes the American Hospital Formulary System (AHFS) Pharmacologic-Therapeutic 

classification system.  For our analyses, the only relevant medication information was 

whether the participant took medications for blood pressure (i.e., beta-blockers) or 

corticosteroid medications. 
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Statistics 

 Correlation was run in R (R Project for Statistical Computing) to inspect the 

associations among BMI and the various DXA measures.  A simple regression model 

regressed IL-6 or CRP on all independent continuous variables of interest in order to 

check model assumptions and regression outliers.  All analyses were carried out in R.  

Regressions were analyzed with the lmSupport package, standardized coefficients were 

computed with the ml.beta package, and the causal mediation models were analyzed with 

the “mediation” package, by a nonparametric bootstrapped confidence interval method 

running 1000 simulations.  Variance Inflation Factors (VIFs) were checked before 

assessing model results in order to detect multicollinearity issues that could lead to the 

misestimations of regression coefficients.  Regression coefficients were expressed as 

per-unit-change or per-standard-deviation-change, as indicated in the results.  When 

regression dependent variables were transformed to normalize the regression residual 

distributions, natural log transformations were chosen for ease of interpretability.  In those 

regressions, regression coefficients are predictive of the geometric and not arithmetic 

mean, and therefore may be interpreted as relative changes from the mean (x100 = 

percent change from the mean of regressed variable).  ETA-R-squared were computed 

to estimate the unique proportion of the variance explained by each predictor in 

regression models.   Linear regression models were used to estimate total effect of DXA 

components on IL-6 and CRP.  Mediation analysis models adjusted for concurrent effect 

of other DXA components. 

 

RESULTS 
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 This MIDUS participant subsample was comprised of male and female participants 

of Caucasian and African-American descent, averaging 50 years or age, and 

metabolically representative of the larger MIDUS cohort.  They were overweight and 

almost obese (BMI ≥25), pre-diabetic (fasting blood sugar levels from 100-125 mg/dL, 

and HA1c between 5.7-6.5), and exhibited low grade inflammation (CRP and IL-6 ≥ 3.0 

mg/L) (Table 1).   

 

Model assumptions and outlier analyses 

 IL-6, CRP and BMI were natural logged transformed when used as dependent 

variables in regressions to achieve normal distributions of regression residuals. No 

regression outliers were detected. 

 

BMI and DXA body composition 

 BMI, Total body fat and non-visceral fat were highly correlated, while BMI was only 

moderately correlated with visceral fat or lean mass (Table 2).  Unadjusted regression 

analyses showed that BMI predicted 76.4% of the variance in total body fat such that 

every one unit increase in BMI predicted a 195.1 g increase in total body fat (B=195.1, 

F(1, 202)=25.55, p<0.001).  BMI predicted 34.1% of the variance in visceral fat mass, 

such that a one unit increase in BMI predicted a 89.7g increase in visceral fat (B=89.7, 

F(1, 202)=10.21, p<0.001).  BMI predicted 74.1% of the variance in non-visceral fat, such 

that a one unit increase in BMI predicted a 186.1g increase in non-visceral fat (B=186.1, 

F(1,202)=24.05, p<0.001).  Finally, BMI predicted 9.59% of the variance in lean body 
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mass, such that a one unit increase in BMI predicted a 70.1g increase in lean body weight 

(B=70.1, F(1,202)=4.63, p<0.001). One-standard deviation increase in BMI predicted a 

58.3, 0.86 and 0.31 standard deviation increase in visceral fat, non-visceral fat and lean 

body mass, respectively.  Hence, higher in BMI values predicted greater gains in non-

visceral fat mass. 

 

Effects of BMI or DXA body composition in predicting IL-6 

 BMI predicted 13.5% of the variance in IL-6 values (F(1, 202)=32.67, p<0.001), while 

parsing body composition into total fat and lean masses predicted 14.48% of the variance 

in IL-6 concentrations (F(1, 201)=17.02, p<0.001).  Regression differences using ANOVA 

showed that the two models were not significantly different from one another (F(1,2)=0.53, 

p=0.25).    Parsing body composition by visceral and non-visceral fat and lean body mass 

predicted 18.8% of the variance in IL-6 (F(3,200)=15.46, p<0.001).  Using the DXA scan 

data over BMI explained an extra 4.9% of the variance in IL-6 values (F((1,2)=6.04, 

p=0.003).  Visceral fat explained 5.18% of the variance in IL-6 (β=0.3061, F(1, 

200)=12.76, p<0.001), while non-visceral fat explained 3.86% of the variance (β=0.2300, 

F(1,200)=9.52, p=0.002) and lean body mass did not predict IL-6 (β=-0.1054, 

F(1,200)=1.85, p=0.17).  Accounting for other effects, a standard deviation increase in 

visceral fat predicted a 30.61% increase from average IL-6 concentration, while a 

standard deviation increase in non-visceral fat predicted a 23.00% increase (Figure 1). 

Our analyses showed that visceral and non-visceral fat depots contributed unequally to 

systemic IL-6 and that visceral fat exhibited the greater effect.  Further, mediation 

analyses indicate that 32.0% (95% C.I. 11.4-65.9%, p<0.001) of the effect of BMI on IL-6 
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is mediated through visceral fat, while non-significant proportions were mediated through 

non-visceral fat (p=0.21) or lean body mass (p=0.27) (Figure 2).  We concluded that when 

measuring the effect of BMI on IL-6, most of that effect is mediated by visceral fat, even 

though both fat depots contribute to overall increasing systemic IL-6 levels. BMI is a good, 

albeit incomplete, proxy for visceral fat when predicting IL-6.  Our IL-6 analyses support 

previous findings that the differential effects of adipose tissue on systemic IL-6 depend 

on depot location. 

 

 

Figure 1. Body composition estimates unequally contribute to systemic IL-6 and 

CRP levels.  Effects indicate the differences in circulating IL-6 or CRP levels per standard 

deviation change in specific body composition measure.  

 

Effects of BMI or DXA body composition in predicting CRP 

 BMI predicted 25.31% of the variance in CRP (β=0.2531, F(1, 202)=68.46, 

p<0.001), while parsing body composition into total fat and lean masses predicted 27.59% 

of the variance in CRP (β=0.2759, F(1, 201)=38.29, p<0.001).  Regression differences 

using ANOVA showed that the two models were significantly different from one another 
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(F(1,2)=6.31, p=0.01); where the total body fat DXA measurement predicted an extra 

2.27% of the variance in CRP.  Analyzing body composition by visceral and non-visceral 

fat and lean body mass predicted 30.35% of the variance in CRP (β=0.3035, 

F(3,200)=29.05, p<0.001).  Using DXA scan data over BMI explained an extra 5.04% of 

the variance in CRP (F((1,2)=7.23, p<0.001).  Using said model, visceral fat explained 

3.71% of the variance in CRP (β=0.2589, F(1, 200)=10.64, p=0.001), while non-visceral 

fat explained 11.29% (β=0.3931, F(1,200)=32.42, p<0.001) and lean body mass 

explained 2.59% of the variance (β=-0.1956, F(1,200)=7.439, p=0.006).  Accounting for 

other effects, one standard deviation increase in visceral or non-visceral fat predicted 

25.89% and 39.31% increases in CRP over the average, respectively (Figure 1). On the 

other hand, one standard deviation increase in lean body mass predicted 19.56% lower 

CRP.  Contrary to IL-6, a greater effect on CRP was observed for non-visceral fat than by 

visceral fat, while greater lean body mass exhibited potentially protective effects. Further, 

the effect of BMI was mostly mediated by non-visceral fat.  Non-visceral adiposity was 

estimated to mediate 52.34% (95%C.I. 16.6-100%) of the effect of BMI on CRP (Figure 

2).  Visceral fat did not appear to mediate a significant effect of BMI on CRP (p=0.37).   
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Figure 2. The proportion of the effect of BMI on IL-6 or CRP that is mediated through 

specific body composition measure. 

 

Direct and indirect effects of body adiposity on CRP: mediation by IL-6 

 When IL-6 was added to the CRP regression, it explained an extra 10.75% of the 

variance (β=0.1075, F(1,2)=36.32, p<0.001), with only a small loss in significance from 

the effects of the three subcategories.  Hence, some of the effects of adiposity on CRP 

might be mediated by IL-6.  Mediation analyses estimated that 24.1% (95% C.I. 7.9-

56.1%) of the effects of visceral fat on BMI was mediated by IL-6. Whereas 17.7% (95% 

C.I. 6.2-33.2%) of the effects of non-visceral fat were shown to mediated by IL-6.  Hence, 

one might infer that IL-6 increases the effect of adiposity on CRP disproportionately based 

on location of body adiposity and where greater effects were mediated through visceral 

fat.  These results were in accordance with the previous analyses which showed that 

higher IL-6 levels were more associated with visceral than non-visceral fat.  Multiple 

regression analyses were used to test the interaction between IL-6 and each DXA 

component in the prediction of CRP; no interactions were detected. 
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DISCUSSION 

 

Comparison of BMI and DXA measures in the prediction of IL-6 and CRP 

 Our participant sample exhibited multiple signs of metabolic syndrome and were, on 

average, over-weight.  Hence, these results must be interpreted in the context of such 

population.  Previous studies have suggested that the representation of body composition 

and distribution by BMI depends on age, gender, and metabolic status (Daniels, Khoury, 

& Morrison, 1997; Goh, Tain, Tong, Mok, & Wong, 2004; Goulding et al., 1996; Lambert 

et al., 2012; Rothman, 2008).  We showed that, in this middle-age population, BMI is on 

average near-equivalent to DXA measures of total body fat.  BMI moderately 

corresponded differences in non-visceral fat, while visceral adiposity and lean mass were 

both underrepresented.  Consistent with the current literature, BMI was a significant 

predictor of both IL-6 and CRP (Aleksandrova, Mozaffarian, & Pischon, 2017; Debnath, 

Agrawal, Agrawal, & Dubey, 2016), but the latter to a greater extent.  In our sample, 

nothing was gained by utilizing the DXA measure of total body fat over BMI in the 

prediction of IL-6 or CRP.  However, by specifically estimating visceral and non-visceral 

fat and lean mass, we gained approximately 5% explanatory power in the prediction of 

these inflammatory markers. 

 

Effect of fat depots on IL-6 and CRP 

 Our results also showed that visceral fat predicted higher circulating levels of IL-6 

and explained a greater proportion of the variance than non-visceral fat.   These finding 

are in keeping with the literature that predict greater IL-6 with increases with abdominal 
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fat accumulation (Fried et al., 1998; Pou et al., 2007; Wajchenburg, 2014).  The opposite 

was true for CRP, which was better predicted by non-visceral fat.  Previous studies have 

also shown that while visceral fat is consistently associated with IL-6, mixed results are 

observed for CRP (Forouhi et al., 2001; Pou et al., 2007; Saijo et al., 2004).   Similarly, 

we found that that the effect of BMI on IL-6 largely represents the effect of visceral fat, 

while the effect of BMI on CRP represents the effect of non-visceral fat.  Together, these 

results suggest that the effect of BMI on IL-6 and CRP are differentially mediated by 

distinct anatomical and physiological pathways.  Although we did not detect interactions 

between IL-6 and DXA components in predicting CRP, we showed that the effects of BMI 

on CRP are partially mediated through IL-6.  While CRP can be produced independently 

of IL-6 stimulation, its production may be enhanced by IL-6 (Anty et al., 2006).  Greater 

mediative effects of IL-6 on CRP were observed through visceral rather than non-visceral 

fat.  Accordingly, a study by Anty et al. (2006) showed that visceral fat exhibited 

association to systemic CRP indirectly through greater IL-6 released at the portal vein.  

Further, while lean mass did not predict IL-6, it predicted lower circulating levels of CRP, 

perhaps reflecting a buffering effect. The same buffering effect was not observed for IL-

6, likely because skeletal muscle itself is a major source of IL-6 (Hiscock, Chan, Bisucci, 

Darby, & Febbraio, 2004; Pedersen & Febbraio, 2008). 

 

Significance 

 Given the high cost of DXA examination, its use may only be warranted when 

discrimination between specific body fat depots are necessary.  Until now, the relative 

value of utilizing DXA data over BMI in predicting IL-6 and CRP was as of yet ill-defined.  
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Our analyses allowed us to determine the value of utilizing DXA body composition 

measurements over BMI in assessing these proinflammatory markers in a small 

population sample.  Our analyses indicate that DXA total body fat estimates were highly 

correlated with BMI and that non-visceral fat also closely represented by BMI, to a further 

extent than visceral fat or lean mass.  Further, we showed that specific fat depots exerted 

distinct effects on IL-6 and CRP.  The effect of visceral fat on IL-6 was greater than the 

effect on non-visceral fat.  The opposite was true for CRP, although the difference by 

compartment were smaller for CRP than for IL-6.  These findings are in keeping with 

studies which have shown that visceral fat may exert greater inflammatory influence.   We 

also assessed the extent to which specific body fat depots mediated the effect of BMI on 

IL-6 and CRP.  According to the previous analyses, the effect of BMI on IL-6 was largely 

mediated by visceral fat, while the effects on CRP were mediated by non-visceral fat.  

These finding suggest that the use of BMI in predicting inflammatory markers may 

represent distinct anatomical and physiological pathways.  Our analyses also showed that 

part of the effect of visceral and non-visceral fat depots on CRP were also mediated by 

IL-6, suggesting that fat depots affect systemic levels of CRP both directly and, by a lesser 

extent, indirectly through IL-6 stimulation.  While the use of specific measures of body 

adiposity may be favored in the prediction of specific inflammatory biomarkers, the use of 

BMI is well warranted in assessing the general inflammatory effect of obesity.  To our 

knowledge, our study was the first to assess the utility of DXA over BMI in predicting 

inflammatory biomarkers and to determine the extent to which specific fat depots mediate 

the effect of BMI on inflammation. 
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Abstract 

 

The previous study showed that while the effect of BMI on inflammatory physiology was 

reflective of distinct anatomical effects, that BMI was also an appropriate surrogate of 

total body adiposity and a comparable predictor of Interleukin-6 (IL-6) and C-Reactive 

Protein (CRP) in population data.  To further assess the impact of body adiposity on 

inflammatory physiology, we determined the extent to which IL-6 and CRP share heritable 

influences with BMI.  Previous research has claimed large heritable effects on baseline 

levels of IL-6 and CRP.  However, gene association studies do not efficiently predict 

individual differences in unstimulated proinflammatory levels.  On the other hand, the 

heritability of body adiposity and obesity in the context of a fixed diet is well established.  

Given the strong relationship between adipose tissue and inflammatory physiology, it is 

likely that previously reported estimates of IL-6 and CRP have been inflated by the 

heritable influence of BMI.  In our study, we used twin heritability models to estimate the 

proportional effect of heritable and non-heritable influences on IL-6 and CRP and their 

covariance with BMI.  Like the previous study, BMI predicted distinct effects on IL-6 and 

CRP.  Our models indicated a greater genetic effect on IL-6 than on CRP.  However, the 

additive genetic effect of IL-6 was dominated by the heritable influence of BMI.  On the 

other hand, the additive genetic effect on CRP was split between influences by BMI and 

influences independent of BMI.  The genetic covariance between BMI and IL-6 was 83% 

while between BMI and CRP was 54.5%.  On the other hand, IL-6 and CRP were not co-

inherited to any degree.  Rather, they shared common environmental effects. 
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Nonetheless, BMI exhibited powerful influences on unstimulated blood levels of both IL-

6 and CRP.  

 

Highlights: 

• The additive genetic effects of BMI influenced the heritability of IL-6 and CRP. 

• The heritability of IL-6 was completely shared with BMI. 

• The heritability of CRP was split between the influence of BMI and genetic 

influences independent of BMI. 

• The BMI x IL-6 correlation between matched controls was similar to that of 

monozygotic twins. 

• The Heritability of CRP was not influenced by IL-6, but they shared common 

environmental influences. 

 



61 

INTRODUCTION 

 

The genetics of Interleukin-6 

 The pleiotropic cytokine, interleukin-6 (IL-6), is produced by many cells and 

tissues, and plays a major role in normal physiology and inflammatory responses.  It has 

been widely employed in research on population health and aging because circulating 

levels of IL-6 tend to rise in old age, with obesity, and following stressful life events (Fried, 

Bunkin, & Greenberg, 1998; Friedman et al., 2005; Kiecolt-Glaser et al., 2003).  It has 

also been associated with chronic stress and vulnerability to depression (Bob et al., 2010; 

Lutgendorf et al., 1999; G. E. Miller, Stetler, Carney, Freedland, & Banks, 2002).  It is 

known that the magnitude of the IL-6 response in inflammatory conditions can be affected 

by different single nucleotide polymorphisms (SNPs) associated with the IL-6 gene 

(Bruunsgaard et al., 2004; Sen, Paine, & Chowdhury, 2011; Walston et al., 2007).  

Accordingly, an examination of IL-6 responses to a strong inflammatory stimulus yielded 

high heritability estimates (de Craen et al., 2005).  However, this general conclusion is 

often, and inappropriately, overgeneralized to all aspects of IL-6 synthesis and release. 

In the absence of inflammatory stimuli, SNPs have a weak or no association with baseline 

levels of IL-6 in the blood stream (Bagli et al., 2003; Bennermo et al., 2004; Brull et al., 

2001; Burzotta et al., 2001; Herbert, Liu, Karamohamed, & Liu, 2006; Lieb et al., 2004; 

Markus Nauck et al., 2002; Sen et al., 2011; T. Shah et al., 2013; van Oijen et al., 2006; 

Wernstedt et al., 2004).   

 

IL-6 and body adiposity 
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Serum IL-6 is largely influenced by body adiposity (Crichton et al., 1996; Mehra et 

al., 2006; Vidya Mohamed-Ali et al., 1999; Pini et al., 2012).  Adipocytes, as well as the 

macrophages embedded in fat tissue, are known to be a major source of the IL-6 found 

in blood, especially in the non-inflammatory, healthy state (Simon W. Coppack, 2007; 

Fried et al., 1998; Khaodhiar, Ling, Blackburn, & Bistrian, 2004; Suganami & Ogawa, 

2010; Weisberg et al., 2003; Wisse, 2004). The adipokine leptin also stimulates the 

release of IL-6 from leukocytes and macrophages (Agrawal, Gollapudi, Su, & Gupta, 

2011; Behrendt et al., 2010; Kredel et al., 2013).  Although these biological pathways 

often interact in a bidirectional and reciprocal manner, there is considerable evidence to 

suggest that adiposity exerts a far greater influence on inflammatory physiology (G. Miller, 

2003; Welsh et al., 2010).  Given the strong association between obesity and IL-6, it is 

likely that heritable factors influencing weight gain would also have a parallel effect on IL-

6, a hypothesized linkage specifically tested in our analyses.   

 

C-Reactive Protein 

Likewise, the acute phase reactant, C-reactive protein (CRP) has been 

consistently associated with adiposity and inflammatory conditions, including 

cardiovascular disease (Carroll et al., 2009; N. K. Gupta et al., 2012; Saijo et al., 2004).  

Obesity can increase production of CRP by the liver as well as in adipose tissue (Anty et 

al., 2006; Calabro, Chang, Willerson, & Yeh, 2005b).  Although previous genetic and 

heritability studies have demonstrated direct and independent effects on CRP levels (de 

Maat et al., 2004; Dehghan et al., 2011; Pankow et al., 2001; Wörns, Victor, Galle, & 

Höhler, 2006), there is evidence suggesting a causal relationship between the genetics 
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of obesity and circulating CRP levels.  SNPs associated with body mass index (BMI) can 

influence blood levels of CRP, while the converse has not been demonstrated (Holmes et 

al., 2014; Welsh et al., 2010).  Thus, to further probe the unique nature and strength of 

the association between adiposity and IL-6, we also considered the relationship between 

adiposity and CRP.   It is known that both CRP and IL-6 are involved in inflammatory 

response pathways, but CRP production appears to be more readily stimulated by IL-6, 

even within adipose tissue (Anty et al., 2006; Calabro et al., 2005b; Heinrich, Castell, & 

Andus, 1990; Volanakis, 2001). In addition, circulating levels of CRP and IL-6 are 

regulated independently by different genes (T. Shah et al., 2013).  By analyzing these 

associations in identical and fraternal twins, we were able to directly compare and 

contrast the relative influence of adiposity on both CRP and IL-6, and to consider the 

reciprocal relationship between CRP and IL-6. 

 

Possibility of co-heritability 

Previous twin studies have determined that adiposity, measured as BMI, is highly 

heritable (Hjelmborg et al., 2008; Schousboe et al., 2003; Segal, Feng, & McGuire, 2008). 

Associations between a genetic score, consisting of 14 SNPs related to BMI, and multiple 

cardiovascular and inflammatory traits including both IL-6 and CRP, were recently 

assessed (Holmes et al., 2014).  However, it is still not known whether the heritable 

influence of obesity on IL-6 and CRP are coordinated.  We probed these relationships by 

comparing IL-6 and CRP levels in identical and fraternal adult twins, who also varied in 

adiposity and anthropometric concordance.  
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Inter-trait heritability models 

Twin studies take advantage of the different degree of genetic relatedness 

between monozygotic (MZ) and dizygotic (DZ) twins to estimate the relative contribution 

of genetic and environmental effects contributing to the phenotypic variance of a trait, as 

well as to the covariance between traits. Typical twin studies rely on the assumption that 

MZ twins share 100% and DZ twins share 50% of their genes, while both types of twins, 

regardless of zygosity, share a common rearing environment (Hall, 2003). In addition to 

the shared environment, it is also possible to discern effects of the non-shared 

environment, reflecting individual experiences not shared in common. Greater phenotypic 

similarity for MZ twins than found in DZ twins would be indicative of higher heritable 

contributions. On the other hand, when MZ and DZ twins present a similar phenotype, 

more variance attributable to life style and common environmental processes is assumed.  

Likewise, when monozygotic twins are discordant, it is usually attributed to unshared 

environmental influences (Boomsma, Busjahn, & Peltonen, 2002; Christensen, Støvring, 

& McGue, 2001; Duffy, Mitchell, & Martin, 1998; Hjelmborg et al., 2008).  

 

Hypotheses 

We utilized bivariate ACE heritability models (A, additive genetics; C,common environment; 
and E, unique environment)  based on structural equation modeling (SEM) to estimate the 
proportion of IL-6 and CRP variation accounted for by genetic, shared and unshared 
environmental factors, as well as the heritable influences shared with adiposity.  Our a 
priori hypothesis was that obesity would have a large effect on IL-6. Secondarily, the a 
posteriori hypothesis was tested:  obesity would exert a heritable influence on CRP, but 
one that was only moderately associated with the genetics of IL-6.  We also compared 
IL-6 intra-class correlations (ICCs) between co-twins in order to confirm the greater 
similarity between MZ co-twins than between DZ co-twins, indicative of heritable 
influences. To further test this hypothesis, we compared the ICC for MZ co-twins with 
that of genetically unrelated control participants matched to each MZ twin 
case.  Assuming that environmental and lifestyle factors, BMI in particular, play a 
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greater role in accounting for IL-6, we predicted that ICCs between the actual MZ co-
twins would be no higher than for control adults who were closely matched on age, 
gender, BMI and a socio-economic index (SEI). By matching control subjects to the twin 
cases on these attributes, we simulated 4 of the major environmental and host factors 
known to influence IL-6 (Ershler & Keller, 2000; Friedman et al., 2005; Hjelmborg et al., 
2008; Johnson & Krueger, 2005; O’Connor, Motivala, Valladares, Olmstead, & Irwin, 
2007; Wisse, 2004).  

 

Study population 

These analyses were possible because the recruitment strategy of a large survey 

of health and aging in the United States, Midlife Development in the United States 

(MIDUS), which included an over-sampling of twin siblings.  It provided the unique 

opportunity to determine the heritability of circulating IL-6 and CRP, as well as the 

heritable contribution of obesity. 

 

METHODS 

 

Participants 

 Participants were drawn from the MIDUS II Biomarker project, 2004-2009, a 

continuation of an earlier MIDUS 1 survey supported by the MacArthur Foundation in 

1995-96.  In addition to a representative probability sample, MIDUS 1 recruited a national 

sample of twin pairs, from which the current cohort was selected.  Between 2003-2005, 

blood specimens were obtained, enabling the determination of cytokines and other 

biomarkers for each twin pair (Love et al., 2010).  The twin sample was comprised of 73 

monozygotic and 32 dizygotic same-sex twin pairs, as well as 37 matched controls. In 

addition, we took advantage of BMI and IL-6/sIL-6r data on 830 unrelated participants. 
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The same dataset was utilized for the CRP analyses, with information available on 72 

monozygotic twins, 31 dizygotic twins, and 826 unrelated participants. 

 

Twin Recruitment 

 Twin pairs were recruited by asking randomly selected correspondents from about 

50,000 households across 48 states whether there were twin pairs in the immediate 

family. With their permission, twin pairs were referred to MIDUS II recruiters. The recruited 

twin pairs were related to original correspondents, reared together but living apart as 

adults, ranging from 25 to 74 years in age, residing in the continental U.S., English 

speakers, possessing a residential telephone number, and were mentally and physically 

capable of participating in interviews and questionnaires.  They had to be healthy enough 

to travel to one of three Institutes for Clinical and Translational Research (ICTR) for the 

Biomarker project, where they spent the night before sample collection on the following 

morning. 

 

Socio-Demographics, Zygosity, Clinical and Biological Measures 

Zygosity was determined by self-report in MIDUS 1.  Similarity of eye and hair 

colors, as well as the degree to which their identity was confused by others during 

childhood, were among the criteria for twin determination. This approach is more than 

95% accurate when compared to blood tests (Nichols & Bilbro, 1966).  Each sibling’s 

Socioeconomic Index (SEI) was derived using income, educational attainment and 

occupation categories from the 1990 Census classification (Hauser & Warren, 1997) and 

incorporated into MIDUS II, 2004-2006.     
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Clinical and biological measures were assessed for a total of 1255 participants in 

the Biomarker project who consented to the overnight stay, either in Madison, WI, Los 

Angeles, CA, or Washington DC. Participants arrived on Day 1 at one of the three sites 

where they were admitted to the hospital research unit. They completed a medical history 

and physical exam, as well as a self-administered questionnaire.  Smoking can affect IL-

6 and could interact with genetic factors that influence transcription and release of IL-6 

(Bruunsgaard et al., 2004; Semlali, Witoled, Alanazi, & Rouabhia, 2012; Zhou, An, & 

Chen, 2014).  Therefore, we also examined the concordance of the smoking history 

between MZ and DZ co-twins.  

 Smoking history was assessed on the clinical questionnaire by asking: “Have you 

ever smoked cigarettes regularly?“.  Fasted blood samples were obtained between 0500 

and 0700, and sera frozen until analyzed. All sample collections and analyses were 

approved by the Health Sciences Institutional Review Board at the University of 

Wisconsin-Madison, as well as by the IRBs at UCLA and Georgetown University. All 

participants provided informed consent. Nursing staff followed standardized procedures 

detailed in a general “Manual of Procedures”, as well as specific “Guidelines for Collecting 

and Processing Biomarkers” in order to maintain consistency. 

 

Cytokine Assessment 

Serum IL-6 levels were determined for all 1255 biomarker project participants by 

high-sensitivity enzyme-linked immunosorbent assay (ELISA) (Quantikine, R&D 

Systems, Minneapolis, MN), with a lower sensitivity of detection at 0.16 pg/mL.  All values 

were quantified in duplicate; any value over 10 pg/mL was re-run with sera diluted to fall 
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on the standard curve. The laboratory intra-assay coefficient of variance (CV) was 4.1% 

and the inter-assay CV was 12.9% (generated by inclusion of a low and high IL-6 serum 

pool in each assay).  Sandwich ELISA kits were also employed to quantify sIL-6r levels 

(Quantikine, R&D Systems). Sera were diluted 1:100 so values would fall on the standard 

reference curve from 7 to 2000 pg/mL. Thus, the effective assay range for sIL-6r was 0.7–

200 ng/mL. The intra-assay and inter-assay CVs was 2.0%.  Serum CRP levels were 

determined for all subjects via particle-enhanced immunonephelometric assay, and high 

values used as exclusion criteria. 

 

Statistical Analysis 

Nine twin pairs were excluded when a sibling had CRP levels indicative of sickness 

(above 10 mg/L), or they were discrepant on smoking status or chronic illness. In addition, 

because there were insufficient numbers of African-Americans (only 2 twin pairs), and 

there are known race differences in cytokine and CRP levels (Carroll et al., 2009; Coe et 

al., 2011; Crawford et al., 2006), both pairs were excluded. Opposite-sex, dizygotic twin 

pairs were also excluded from the analysis because there were too few pairs to include 

in the model. In order to achieve normal distributions, IL-6, CRP and BMI were natural 

log-transformed before statistical calculations. 

 Linear regressions were employed to examine the effect of BMI on IL-6 and CRP 

for singleton birth participants in the main Biomarker sample, after excluding the twin 

participants.  Including the twins in these regression analyses would have violated 

assumption of independent observations. Similarly, these regression analyses were run 
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on only the Caucasian participants of European descent, because of the known 

differences in African-Americans (Coe et al., 2011). 

In order to estimate the additive genetic and environmental effects contributing to 

the IL-6 and CRP variance, including the covariance with factors affecting BMI, we fitted 

bivariate ACE models to these data by using Cholesky’s decomposition approaches in 

SEM (Karmakar, Malkin, & Kobyliansky, 2012). SEM allows for testing whether 

covariance matrices of hypothetical models fit the covariance matrix of the actual data.  

They further allow for distinguishing the submodels that fit the data most parsimoniously.  

Classical ACE models decompose the phenotypic variance into three categories, A 

(Additive Genetic Effects), C (Common Environmental Effects) and E (Unshared 

Environmental Effects plus residual/error variance). Bivariate ACE models estimate A, C 

and E effects for two phenotypic traits and, in addition, estimate the covariance between 

each effect across phenotypes.  We defined a saturated ACE covariance model as well 

as submodels for AE covariance (negligible sharing of common environmental effects) 

and CE covariance (negligible sharing of additive genetic effects) which were tested 

against the data covariance matrices, providing the bases upon which one may identify 

the models that best fits the data. The Cholesky’s decomposition of phenotypic effects 

allowed us to parse out the additive genetic effects unique to IL-6 or CRP from those 

shared with BMI by comparing the various covariance submodels, while allowing 

univariate variance components to vary freely.  This same approach was used in order to 

test the genetic covariance shared between CRP and IL-6. 

These biometric models were run in MX using a script adapted from file 

rawVC4a.mx, provided with the MX software (Neale, Boker, Xie, & Maes, 2003; Posthuma 
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& Boomsma, 2005).  Because MZ and DZ twins share 100% and 50% of their 

independently segregating genes, respectively, SEM covariance coefficients for additive 

genetic effects were set to 1 for MZ twin pairs and to ½ for DZ pairs.  Covariance 

coefficients for common environment effects were set to 1 and those attributed to 

unshared environment effects were set to 0.  Age and Gender were included in Cholesky’s 

decomposition models as covariates in order to prevent indirect inflation of ICCs that 

could potentially confound heritability estimates (McGue & Bouchard, 1984).  Saturated 

and nested covariance submodels (ACE, AE and CE) were fit to the data and submodels 

were tested against the saturated ACE models. Non-significant differences in Chi-square 

probabilities allowed us to discern nested submodels that provided fit of the data. The 

models that best described our data were identified on the basis of maximum likelihood 

estimates, -2LL, (-2*log-likelihood = −2*log(C − χ² /2)), and relative fit indices, Akaike’s 

Information Criterion, AIC, (AIC = χ² − 2*d.f.), and Bayesian Information Criterion, BIC 

(BIC= χ² − d.f. * ln(n)). Lower AIC and BIC values indicate models that fit the observed 

data most parsimoniously.   

Intra-class correlations for IL-6 and smoking history were calculated for the MZ and 

DZ co-twins (Hawkins, 1989; Hotelling, 1953; Sedgwick, 2013). One-tailed Fisher’s r-to-

z tests assessed whether IL-6 ICCs for MZ twins were significantly greater than for DZ 

twins. To further evaluate the influence of obesity on IL-6, one-tailed Fisher’s r-to-z tests 

were used to compare the ICCs between MZ co-twins to the ICCs between 37 MZ twins 

and unrelated controls matched for age, gender, BMI and SEI.  Smoking history was 

assessed using a two-tailed Fisher’s r-to-z test to examine the presence of possibly 
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confounding differences between MZ and DZ ICCs.  Except for the biometrical models, 

analyses were determined with SPSS 19. 

 

RESULTS 

 

Twin Sample 

The MIDUS Biomarker project has been shown previously to be comparable to the 

larger MIDUS participants for most socio-demographic, health status, and health behavior 

indicators, but not race (Love et al., 2010). The latter was not an issue for the current 

analyses because the 2 African-American twin pairs were excluded. Table 1 presents the 

socio-demographic and clinical information, and mean cytokine values for MZ and DZ 

twins and the unrelated controls who were matched with the cases, as well as for the 

remaining Biomarker participants from which the controls were selected. 

 

 

Effect of BMI on IL-6 and CRP 

After adjusting the regression models for age and gender by including them as 

covariates, BMI accounted for 7.8% of the variance in IL-6 levels (β = 0.28, F[1,829] = 

42.4 , p < 0.001) and 18.0% of the variance in CRP levels (β = 0.43, F[1,826] = 70.0 , p 

< 0.001). In keeping with our predictions, BMI exerted a stronger effect on IL-6 than on 

the soluble IL-6 receptor among unrelated MIDUS participants, as well as had a 

substantial effect on CRP. 
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Heritability Estimates 

Non-significant chi-square difference tests indicated that CE and AE covariance 

submodels for BMI X IL-6, BMI X CRP and CRP X IL-6 presented an equivalent fit for the 

data as did the saturated ACE covariance models. In addition, lower relative fit indices 

(AIC and BIC) identified the AE submodels as most parsimoniously fitting all three sets of 

BMI covariance data, and the CE submodel as a better fit for the CRP X IL-6 data (Table 

3). In the three bivariate BMI models, additive genetic effects and unshared environmental 

effects comprised almost all of the influences acting independently on BMI, thus providing 

two available pathways for covariance with IL-6 and CRP (Table 4). Covariance was 

notably high in accounting for the heritable associations between BMI and IL-6 

(83.0%). The proportions presented in Table 4 were calculated based on the SEM path 

coefficient estimates.  
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Fig. 1 Path coefficient estimates for bivariate BMI X IL-6 model, including the 

corresponding percent contributions of additive genetic effects, and common and 

unshared environmental effects affecting IL-6.  The model also parses effects specific to 

IL-6 from those shared with BMI.  The most parsimonious model indicated that BMI and 

IL-6 share both genetic and unshared environmental effects.  However, model estimates 

further indicated that the additive genetic effect acting on IL-6 is mostly shared with BMI. 
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 These effects are also portrayed in Figure 1 for IL-6, which show the discrete 

effects parsed by specific sources of variation. These estimations indicated further that 

the suggestion of a genetic constraint on IL-6 levels was not attributable specifically to 

the genetics of IL-6, but rather was driven more indirectly by factors shared with the 

predisposition for BMI (Figure 1). Even when inflated by considering the high covariance 

with BMI (Table 4), the total genetic effect estimated for IL-6 was still small (averaging 

26.2%). In contrast, the heritable influences on the soluble receptor for IL-6 were 

significantly stronger (averaging 42.2%).  CRP also exhibited a high genetic covariance 

with BMI (54.5%, Table 4); however, not to the same extent as the IL-6 covariance 

(83.0%).  Further, the additive genetic effects on CRP were almost evenly divided 

between those shared with BMI and factors unique to CRP (Figure 3).  Moreover, our 

models did not reveal shared genetic effects between CRP and IL-6.  The covariance 

between CRP and IL-6 phenotype was split between shared and unshared environmental 

effects (Table 4).  
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Fig. 3 The most parsimonious path coefficient estimates for the bivariate BMI X CRP 

model also indicated shared covariance between genetic and unshared environmental 

effects.  Unlike the bivariate model for IL-6, however, the phenotypic variance attributed 

to the additive genetic effects was split between those shared with BMI and some 

independent of BMI. 
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Intra-Class Correlations 

 This case/control analysis confirmed the importance of heritable pathways related 

to obesity, and indicated that the 4 matching criteria resulted in IL-6 values similar to the 

twins, whereas there was no evidence that these 4 attributes increased the likelihood of 

a correlation in sIL-6r between cases and controls.  In addition, as shown in Table 2, the 

ICC for IL-6 between the MZ twins was not greater than for the DZ twins, demonstrating 

that the degree of relatedness did not influence IL-6 more than the concordance for 

obesity.  When a MZ participant was matched to an unrelated control by age, gender, BMI 

and SEI, the resulting ICC for IL-6 was nearly the same as for the MZ co-twin (Figures 5a 

& 5b). On the other hand, the sIL-6r of a twin was not significantly correlated with the 

value seen in the unrelated, matched control (Figures 5c & 5d). MZ and DZ twins were 

highly concordant for smoking history (r = 0.57, p < 0.001 and r = 0.41, p = 0.02, 

respectively). However, a history of smoking or abstinence did not significantly affect IL-

6. 
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Fig. 5 Intra-class correlations are shown for IL-6 between MZ co-twins and between MZ 

twins and unrelated, matched controls, as well as for the sIL-6r associations. The 

correlation for IL-6 for MZ co-twins (A) was nearly identical to the correlation between MZ 

twins and unrelated controls matched on age, gender, BMI and SEI (B). 
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DISCUSSION 

 

Co-heritability between BMI, IL-6 and CRP 

 By fitting bivariate ACE models, we calculated variance and covariance 

components, parsing out genetic and environmental effects specific to IL-6 and CRP from 

those linked to the heritability of BMI. The approach more clearly revealed the degree of 

covariance in the additive genetic effects shared by IL-6 and BMI.  Optimized path 

coefficients did not expose unique effects specific to the genetic control of IL-6, but rather 

an overlap of the heritable processes influencing both IL-6 and BMI in adults.  These 

analyses also extend our understanding of the differential influence exerted by BMI on 

CRP.  While the regression analyses did show that BMI affected serum CRP levels to a 

greater extent than IL-6, the heritability models indicated that the effects of BMI on IL-6 

were largely due to shared genetics. In contrast, the effect of BMI on CRP was split 

between shared genetics and environmental influences. The genetic effects acting on 

CRP were evenly distributed between those shared with BMI and those unique to CRP 

genetics, whereas the additive genetic effects influencing IL-6 phenotype appeared to be 

more exclusively tied to BMI.  In spite of the close relationship between CRP and IL-6, 

our heritability estimates point to environmental factors as the main source of covariance.  

Hence, in the unstimulated state without infection or chronic disease, the genetics 

underlying body adiposity appears to influence IL-6 and CRP levels in the blood through 

independent pathways. 

 

Matched Controls 
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 In order to further validate our conclusions on the differential constraints regulating 

IL-6, we conducted a case/control analysis, with each twin matched to an unrelated 

individual on the basis of gender, age, BMI, and education.  Given the strong influence 

these 4 variables have on IL-6, the ICCs attained for the matched controls were of the 

same magnitude as for the actual co-twin siblings.  

 

Genetics of IL-6 

 Our heritability estimates for IL-6 in blood do contrast with some of the commonly 

held assumptions derived from other approaches.  For example, it has been reported 

previously that both CRP and IL-6 levels are similar in twins, a finding that will emerge 

when the influence of adiposity is not taken into account, nor statistically considered as a 

contributing factor (Rooks, Veledar, Goldberg, Bremner, & Vaccarino, 2012; Wörns et al., 

2006).  In addition, there is a substantial literature reporting that allele polymorphisms 

affect IL-6 release, but that effect is most apparent in the context of inflammatory 

disorders, or when cells are activated in vitro by a proinflammatory stimulant (Bennermo 

et al., 2004; Brull et al., 2001; Burzotta et al., 2001; T. Shah et al., 2013).  IL-6 gene-

related polymorphisms include the SNPs rs1800795 and rs1800796 (Chatzikyriakidou, 

Voulgari, Lambropoulos, & Drosos, 2013; S. Chen, Chen, Lai, & Chen, 2012; Vaughn, 

Ochs-Balcom, & Nie, 2013).  Although these polymorphisms do affect inflammatory 

responses in patients (Bruunsgaard et al., 2004; Sen et al., 2011; Walston et al., 2007), 

they do not appear to have a strong influence on basal IL-6 in the blood of a healthy 

individual.  In addition, these SNPs do not have a strong effect on IL-6 transcription at 

baseline or even a large influence when the cells are activated by proinflammatory 
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stimulants (A. Smith, Zheng, Palmen, & Pang, 2012).  That may help to explain why 

studies of the association between the -176C/G SNP and cardiovascular disease have 

been inconsistent (Brull et al., 2001; Burzotta et al., 2001; Lieb et al., 2004; Markus Nauck 

et al., 2002).  Similar concerns have also been raised about the predictive power of IL-6 

related SNPs in meta-analyses of the literature on inflammatory disease (Dai, Liu, Guo, 

Wang, & Bai, 2012; Di Bona et al., 2009; Y. H. Lee et al., 2012; Nikolopoulos, Dimou, 

Hamodrakas, & Bagos, 2008; Y. Yang et al., 2012).   

 

IL-6 and adiposity 

 IL-6 is secreted by many cells, including fibroblasts, hepatocytes, endothelial cells, 

leukocytes, and in large systemic quantities by adipocytes (Hamzic et al., 2013; Lepiller, 

Abbas, Kumar, Tripathy, & Herbein, 2013; Saiki et al., 2013; Salman, Vahabi, Movaghar, 

& Mahjour, 2013).  The diversity of these tissue sources is key to understanding the 

heritability of IL-6, especially given the strong genetic and familial influences on adiposity 

(Schousboe et al., 2003; Segal et al., 2008).  Although some previous twin studies 

considered the influence of adiposity on IL-6 heritability by adjusting IL-6 values by BMI 

or waist-to-hip ratios, they did not account for the shared genetic covariance (de Maat et 

al., 2004; Sas et al., 2012; Su, Snieder, Miller, & Ritchie, 2008).  Therefore, those genetic 

estimates were likely inflated by the shared influence with BMI. 

 

Limitations 

Twin analyses have a number of assumptions, including that there is a sharing of 

100% of the genetic load by MZ twins versus 50% for DZ twins.  It is also assumed that 
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MZ and DZ siblings both share a similar influence of the common environments, and 

gene-environment interactions are not modeled in the standard twin model (e.g., ACE 

estimates are estimated as constant for the sample because potential moderator 

variables are not modeled).  Some investigations have questioned the latter assumption 

based on the view that epigenetic modifications and individual perceptions may lead to a 

differential experience of even minor environmental events (Stenberg, 2012).  Assuming 

a perfectly homogeneous and common environmental influence is probably not 

reasonable, so it will be important to verify our conclusions with a larger-scale gene-

association study (Purcell, 2002; Tan, Ohm Kyvik, Kruse, & Christensen, 2010).  In 

addition, a substantial portion of the variance in IL-6 and CRP still remains to be 

accounted.  Some variance may be attributed to reliability issues when relying on a single 

blood sample (Navarro et al., 2012).  Determining the stability of IL-6 levels over time 

through multiple samples, would be of value for replicating and extending our heritability 

estimates. It should also be acknowledged that our participants were entirely American 

adults of European descent. IL-6 tends to be higher in certain races, including in those of 

African backgrounds, whereas it tends to be lower in some Asian populations (e.g., 

Japanese) (Coe et al., 2011).  That was one reason why we opted not to include the small 

number of African-American twins in the current analyses.  Similarly, body adiposity, IL-6 

and CRP, as well as the relationships between adiposity and these inflammatory markers, 

vary not only by race, but also by gender (Carroll et al., 2009; Clifton, 2003; Coe et al., 

2011).  Hence, it is likely that estimates of shared genetic effects will vary by race and 

gender.    Further validation for the driving effects of obesity on IL-6 and CRP would be 
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achieved by controlled interventional studies targeting improvements in diet, exercise and 

weight reduction. 

 

Significance 

Variation in IL-6 and CRP levels has been associated with metabolic dysfunction, 

obesity and various inflammatory processes relevant to cardiovascular disease and 

cross-systems interactions.  However, the extent to which baseline levels of IL-6 and CRP 

are determined by body adiposity remains unknown.  Previous twin studies have shown 

that systemic levels of IL-6 and CRP are to some extent heritable.   However, that data 

contradicts genetic association studies which have shown only a minor influence by 

genetic polymorphisms.  In the context of the Western civilization, the body mass has 

been consistently shown to exhibit high heritability.  Hence, it is likely that the heritability 

of BMI inflates the estimated heritability for both IL-6 and CRP.  In this study, we sought 

to determine the extent to which the additive genetic effect on IL-6 and CRP were 

influenced by BMI.  We found high shared genetic covariance between BMI and both IL-

6 and CRP.  In support of these finding, matched control analyses showed that unrelated 

individuals show similar baseline levels of IL-6 when simple matched for age, sex, race 

and BMI.  While the heritable influence of BMI on IL-6 was greater than for CRP, the 

heritability of CRP was also influenced by IL-6.  This is in keeping with molecular biology 

studies, which have shown that IL-6 is a potent stimulation of acute phase reactants.  Our 

results were in keeping with assessments of adipose tissue which have shown that 

adiposity is a major determinant factor of unstimulated IL-6 and CRP, but contradicts 

studies gene association studies that clam independent genetic effect on systemic levels 
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of these proinflammatory markers.  While genetic polymorphisms are likely important in 

defining proinflammatory response to stimuli, baseline levels are likely under the influence 

of metabolic factors, especially body adiposity in an overweight population.  While other 

studies have shown high heritability for BMI, IL-6 and CRP, our study was the first to show 

the extent to which the additive genetic effect of BMI affects the heritability of both IL-6 

and CRP. 
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inflammation with a focus on lipid and carbohydrate metabolism 
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The Effect of Dietary Carbohydrates and Lipids on Adiposity and Inflammation in 

the Context of the American diet 
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Abstract 

 

 Results from epidemiological nutrition studies vary greatly.  Further, clinical and 

dietary guidelines have been recently criticized for the lack of methodological vigor, 

misinterpretation of data, or exclusion of important evidence that would challenge 

decades of dietary dogma.  These dogmas include: the “Diet-Heart Hypothesis”, which 

holds that foods high cholesterol and saturated fats cause obesity and heart disease; the 

“Calories-in, Calories-out Hypothesis”, which holds that obesity and heart disease are 

caused by excess caloric consumption and/or low caloric expenditure; and the “Lipid 

Hypothesis”, which holds that dietary lipid-induced high blood cholesterol clogs arteries 

thereby causing cardiovascular disease.  Studies supporting these hypotheses often are 

poorly controlled and often do not account for simultaneous confounding effects and 

interactions, often utilize antiquated statistical methods aimed at simplifying calculations 

and almost always test the effect of dietary lipids in the context of high carbohydrate diets. 

These studies often do not match the effects that are expected from the biochemistry, 

molecular biology and system biology approaches.  Consequently, few dietary factors 

have produced consistent effects on weight gain, inflammation and heart disease (e.g., 

dietary fiber).  Hence, we sought to apply modern statistical methods (relying on 

computationally-intensive estimations, such as generalized linear regressions and 

bootstrapping mediation analyses) to analyze the effect of dietary intake on Body 

adiposity (measured as Body Mass Index, BMI) and on a proinflammatory biomarker 

closely associated with metabolic syndrome and cardiovascular disease, C-Reactive 

Protein (CRP).  We analyzed data from the National Health and Nutrition Examination 
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Survey (NHANES 2003-2004, 2005-2006, 2007-2008 and 2009-2010) by utilizing modern 

statistical methods that account the full variance of the data and for simultaneous and 

interactive effects.  Specifically, we examined the extent to which dietary carbohydrates 

and lipids influenced BMI.  We compared the effect of BMI on CRP to the effect of other 

stable markers of metabolic status (HA1c, total cholesterol, HDL and blood pressure), 

and assessed the proportion of the effect of dietary carbohydrates and lipids that are 

mediated through BMI.  We also assessed the direct and indirect effect of dietary 

carbohydrates and lipids on CRP.  Our analyses indicated that macronutrients accounted 

for almost 4% more variance in BMI than caloric intake.  This effect was dominated by 

carbohydrates, especially sugar and fiber.  Monounsaturated fat was a significant 

predictor but multicollinearity indicated that its estimated was inaccurate.  On the other 

hand, other saturated and polyunsaturated fats were not predictive of BMI.  

Macronutrients accounted for 1.17% more variance in CRP than caloric intake.  The effect 

on CRP was also dominated by carbohydrates.  While starch was a significant predictor, 

its effect could not be accurately estimated.  Further, dietary cholesterol did not predict 

CRP after accounting for metabolic status; saturated fat was not a significant predictor, 

before or after.  Mediation analyses also showed that BMI mediated the effects of dietary 

carbohydrates but not lipids on CRP.  In addition, BMI exerted greater effect on CRP than 

all other markers of metabolic status.  Our results challenge the notion that dietary lipids, 

especially cholesterol and saturated fat, drive obesity and inflammation, and show that 

body adiposity is the main driver of inflammation, not blood cholesterol.  Our results 

support that dietary carbohydrates, not lipids, drive adipose accumulation and systemic 



98 

inflammation, both directly and indirectly.  Our results also closely conform to those 

obtained by biochemistry and molecular biology approaches.  

 

Highlights: 

• Macronutrients accounted for more variance in BMI and CRP than caloric intake.   

• The effects of diet on BMI and CRP were dominated by carbohydrates.   

• Saturated and polyunsaturated fats were not predictive of BMI. 

• Dietary cholesterol did not predict CRP after accounting for metabolic status.   

• Saturated fat was not a significant predictor, before or after accounting for 

metabolic status.  

• BMI mediated the effects of dietary carbohydrates but not lipids on CRP.  

• BMI exerted greater effect on CRP than all other markers of metabolic status. 
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INTRODUCTION 

 

Metabolic and inflammatory comorbidities 

Comorbidity is often observed between diseases that are traditionally categorized as 

metabolic or inflammatory (Chen, Chen, Wang, & Liang, 2015; Giugliano, Ceriello, & 

Esposito, 2006; Monteiro & Azevedo, 2010; Straub, 2014; Yu & Bennett, 2014).  

Unsurprisingly, most chronic diseases exhibit characteristics of both metabolic and 

inflammatory dysfunctions with ample evidence for bidirectional influence (Carrera-

Bastos et al., 2011; Franceschi & Campisi, 2014; Pawelec, Goldeck, & Derhovanessian, 

2014).  Although diet has been implicated in the both, there is debate over which specific 

dietary factors affect the progression of metabolic syndrome and the inflammatory 

disorders that drive many chronic diseases including cardiovascular, neurological and 

oncological ailments (Carrera-Bastos et al., 2011; Hou, Abraham, & El-Serag, 2011; La 

Vecchia et al., 1990; Myles, 2014; Yerushalmy & Hilleboe, 1957).  C-reactive protein 

(CRP) is an acute phase reactant and proinflammatory agent that has been consistently 

associated with metabolic syndrome and inflammatory conditions, and is an independent 

predictor of cardiovascular disease (Carroll et al., 2009; Gupta et al., 2012; Saijo et al., 

2004).  It is also known that obesity can increase the production of CRP by the liver as 

well as in adipose tissue (Anty et al., 2006; Calabro, Chang, Willerson, & Yeh, 2005).  

Hence, CRP has become a common marker of inflammation and an independent risk 

factor for casrdiovascular disease in population studies and in the clinical setting. 
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The American diet 

 The American diet is often described in scientific outlets as a “high fat diet” (Buettner, 

Schölmerich, & Bollheimer, 2007), which is misleading and may drive inaccurate 

conclusions and inferences about the development and management of metabolic 

diseases.  The American diet is more appropriately defined as a high-fat/high-

carbohydrate diet, in distinction to high-fat/low-carbohydrate diets, typically consisting of 

5-10% of calories by glycemic carbohydrates and near 70% of calories by fats (Westman 

et al., 2007).  The former is implicated with the initiation and progression of diabetes, 

obesity and other chronic diseases, whereas the latter refers to carbohydrate-restricted 

dietary practices associated with strong anti-obesogenic and antiinflammatory effects as 

well as the amelioration of metabolic markers of disease (Dupuis, Curatolo, Benoist, & 

Auvin, 2015; Gasior, Rogawski, & Hartman, 2006; Ruskin, Kawamura, & Masino, 2009; 

Yang & Cheng, 2010).  This distinction is necessary for the interpretation of dietary data 

that is characterized by high carbohydrate consumption.  Controlled studies, in both 

animals and humans, have characterized mechanisms by which high blood glucose 

affects metabolism, inflammation and the storage or oxidation of lipids (Altannavch, 

Roubalová, Kučera, & Anděl, 2004; Ceriello et al., 2008; Fu et al., 1994; Greene, Stevens, 

Obrosova, & Feldman, 1999; Russell et al., 2002; Schaefer, Gleason, & Dansinger, 2009; 

Sidossis, Stuart, Shulman, Lopaschuk, & Wolfe, 1996).  Therefore, our findings should 

be read in the specific context of a High-Fat High-Carbohydrate diet, as well as in the 

context of specific foods that make up this diet (highly processed).  While nutritional 

guidelines have recently improved by de-emphasizing the constraints on dietary fats and 
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cholesterol in favor greater restriction of sugars and alcohol, such warnings persist and 

continue to advise towards carbohydrate-based diets (U.S. Department of Health and 

Human Services and U.S. Department of Agriculture & Agriculture, 2015).  Accordingly, 

many researchers criticize the current guidelines for deviating from the scientific evidence 

by omitting important studies that contradict decades of dietary advice and by making 

recommendations based on inaccurate or incomplete interpretation of the literature 

(Aracenta and Pérez-Rodrigo, 2012; Marshall, 2011; Teicholz, 2015).    As such, many 

questions and controversies remain about the health impact of carbohydrates and lipids 

on adipose accumulation, inflammation and disease in the context of the current 

American diet.  Therefore, we assessed the direct and indirect impact of dietary 

carbohydrates and lipids on C-reactive Protein (CRP), controlling for simultaneous effects 

and interactions.  CRP is a potent proinflammatory mediator, which can be produced in 

large quantities by hepatic, endothelial and adipose tissues (Anty et al., 2006; Calabro et 

al., 2005; Castell et al., 1989; Devaraj, Torok, Dasu, Samols, & Jialal, 2008; Forouhi et 

al., 2001).  Hence, we also assessed the extent to which body mass mediated the effects 

of dietary carbohydrates and lipids on CRP. 

 

The effect of dietary carbohydrates and lipids on obesity 

 Experimental comparisons in humans have shown that high fat diets, in the context 

of low-carbohydrates produce greater weight loss than isocaloric low-fat high-

carbohydrate diets, both short- and long-term. (Gardner et al., 2007; Volek et al., 2004; 

Volek, Quann, & Forsythe, 2010).  In addition, high-fat low-carbohydrate diets also 

produce favorable markers of metabolic health than low-fat high carbohydrate diets, 
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including lower blood levels of triglycerides, saturated fat, glycated hemoglobin, fasting 

glucose and insulin, as well as improved LDL particle size and greater HDL cholesterol 

(Buyken et al., 2010; Forsythe et al., 2010; Gardner et al., 2007; Khatana, Taveira, Dooley, 

& Wu, 2010; Phinney, Bistrian, Wolfe, & Blackburn, 1983; Pradhan, 2001; Reaven, 1997; 

Volek et al., 2009; Volek, Sharman, & Forsythe, 2005).  On the other hand, obesogenic 

and metabolically detrimental effects of dietary fats are observed in the context of high 

carbohydrate diets (Hopper et al., 2012).  Similarly, animal models have shown that higher 

proportions of dietary fat cause weight gain and metabolic dysfunction in the presence of 

high carbohydrates (where the caloric intake from fat usually ranges from only 10 to 35% 

of the caloric intake), but where weight gain and effects on metabolic function vary greatly 

across species when fat constituted most of the caloric content of the diets (65-75% of 

the calories) (West and York, 1998).  Because the American diet is typically a high-

carbohydrate high-fat diet, epidemiological studies are likely to find pro-obesogenic 

effects of fats, especially when not accounting for the simultaneous effect of 

carbohydrates.  In our study, we assessed the effect of dietary carbohydrates and lipids 

while accounting for simultaneous effect in order to assess the extent to which each 

uniquely explained body mass in the population. 

 

Common issues with studies on diet and nutrition  

Due to the high costs associated with controlled human diet studies as well as the 

difficulties associated with dietary compliance, much of the diet research has relied on 

small controlled experimental designs in humans or nonhuman primates, rodent models, 

or large epidemiological studies.  While it is essential to address specific hypotheses, 
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experimental human diet studies are typically small, exhibiting low statistical power, and 

often limited to short-term effects.  Although rodent models are essential for assessing 

biological mechanisms, translation to human health must be carefully interpreted given 

the adaptive differences in digestive and metabolic systems, reflecting varying thresholds 

of carbohydrate and lipid tolerance (Buettner et al., 2007; Dietschy, Turley, & Spady, 

1993).  Nonhuman primate models are closet to the human condition, but studies are 

scarce.  While most have focused largely on caloric intake and diabetes, some have 

demonstrated the impact of fructose intake on metabolic and inflammatory markers of 

disease (Bremer et al., 2011; Mattison et al., 2014). One has examined the effect of low-

carbohydrate high fat-diet on glucoregulation (20% carbohydrate, 65% fat), showing no 

disturbance of glucose metabolism (Fabbrini et al., 2013).  In turn, epidemiological diet 

and nutrition studies often present major methodological issues.  In probing the effects of 

specific macronutrients, many population studies have omitted important confounding 

macronutrients and interactions as model covariates.  Variable selection has also been a 

common issue that may take various forms.  For instance, LDL cholesterol is often used 

as a measure of cardiovascular disease risk when many studies have shown that high 

levels of circulating LDL cholesterol is not necessarily atherosclerogenic (Fernandez, 

2012; Hite et al., 2011).  In addition, many population analyses have resorted to the 

simplification of the data by dichotomization of continuous variables when the 

categorization is theoretically unwarranted (Dawson & Weiss, 2012; Naggara et al., 2011; 

Preacher, Rucker, MacCallum, & Nicewander, 2005).  Statisticians have often criticized 

dichotomization practices for the amplification of biases, often yielding in deceptive results 

(Altman & Royston, 2006; MacCallum, Zhang, Preacher, & Rucker, 2002; Shentu & Xie, 
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2010).  An associated conundrum is imposed when studies unnecessarily utilize odd-

ratios of dichotomized outcome variables to emphasize relative probability while 

downplaying or omitting absolute effect sizes (Ravnskov et al., 2015).   A recent 

examination of the relationship between diet, CRP and lipid responses presented different 

findings depending on whether CRP was treated as a continuous variable or 

dichotomized (St-Onge, Zhang, Darnell, & Allison, 2009).  Similar effects have also been 

observed in the dichotomization of BMI in the NHANES (Janssen, Katzmarzyk, & Ross, 

2004).  Another possible source of bias in nutrition research is the source of funding and 

conflicts of interest (Chen, Gluud, & Kjaergard, 2017; Moher, Tetzlaff, Tricco, Sampson, 

& Altman, 2007; Shah et al., 2005).  Many nutrition studies are funded by private 

industries or by institutions organized to defend and advance their interests, including 

some that used the NHANES data (O’Neil et al., 2011; Sun, Anderson, Flickinger, 

Williamson-Hughes, & Empie, 2011).  Further, many nutrition epidemiology studies may 

contain confirmatory biases driven by perpetuated dogmas on what has historically been 

considered a healthy or unhealthy diet, often ignoring the underlying biochemistry or 

molecular biology of nutrient metabolism, adipose accumulation and inflammatory 

diseases.  Thus, epidemiological diet and nutrition studies have produced overwhelmingly 

inconsistent results in predicting weight loss, biomarkers of health and disease outcomes.  

Our hypotheses were based on findings from controlled studies carried out in either 

humans or animal models, emphasized the biological mechanisms linking diet, nutrient 

metabolism, adiposity and inflammation, and our analyzes were designed to minimize 

known sources of methodological bias.  While a few studies have already examined the 

relationship between dietary nutrients and CRP in various NHANES cohorts, all of which 
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dichotomized key variables (Ford, Mokdad, & Liu, 2005; King, Egan, & Geesey, 2003; 

Mazidi, Gao, Vatanparast, & Kengne, 2017; Mazidi, Kengne, P. Mikhailidis, F. Cicero, & 

Banach, 2017; Qureshi, Singer, & Moore, 2009; Stewart, Mainous III, & Gilbert, 2002).  In 

our study, we treated all variables in their original continuous form and applied 

simultaneous regressions and mediation models in order to parse out independent effects 

and the extent to which body mass mediates them, thereby minimizing statistical sources 

of bias. 

 

Goals and Hypotheses 

The primary goals of our study were to assess the effects of dietary carbohydrates 

and lipids on body adiposity and CRP in the context of the American diet, and to assess 

the extent to which those effects are mediated by body adiposity.  Our study also allowed 

us to compare the effect of body adiposity to that of other markers of metabolic.   

 Based on controlled experimental studies, especially those that assessed 

biochemical and biomolecular pathways, we expected to confirm the more established 

relationship between dietary fiber and inflammation, especially given that some research 

has brought to question whether the benefits of fiber are due to the fiber itself or to the 

absence of high-glycemic carbohydrates (Alessa et al., 2016; Jenkins et al., 2000).  We 

also sought to examine the effect of carbohydrate and lipid macronutrients for which 

recent guideline recommendations are shifting (fats, cholesterol, sugars and alcohol) 

(Grundy et al., 2016), and to assess the effect of starch, a broad carbohydrate category 

for which mixed results exist due to their heterogeneous composition or food source 

(Akande, Doma, Agu & Adamu, 2010; Pasiakos, Agarwal, Lieberman & Fulgoni, 2015; 
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Rehman & Shah, 2005; Pereira, Buzati & Leonel, 2014; Tovar & Melito, 1996).  We 

expected to find an antiinflammatory effect of fiber and polyunsaturated fats, a neutral 

effect of saturated and monounsaturated fats, and a proinflammatory effect of sugar, 

alcohol and starch, all of which may be partly mediated by body adiposity.  Further, we 

tested for non-linear relationships and specific macronutrient interactions that may affect 

adipose accumulation and inflammatory physiology.   

 Current experimental research suggests that higher dietary fiber may attenuate the 

glycemic impact of sugars (Alessa et al., 2016; Bednar et al., 2001; Jenkins et al., 1987; 

Neuhouser et al., 2012; Slavin, 2013).  Studies on the gut microbiome further suggest 

that the balance of digestible and non-digestible carbohydrates may alter the energetic 

harvesting potential of the gut microflora influencing metabolic health (Bednar et al., 2001; 

Payne, Chassard, & Lacroix, 2012).  Similarly, dietary carbohydrate composition may alter 

the absorption or production of meat-derived metabolites that influence inflammation 

either directly by dilution in fiber or by alterations in gut microbiota composition 

(Humphreys et al., 2014; Le Leu et al., 2015; Winter et al., 2011).  Various studies have 

suggested interactions between fats and carbohydrates (Gulliford, Bicknell, & Scarpello, 

1989; Owen & Wolever, 2003).  While dietary fats appear to slow the absorption of 

glycemic carbohydrates, these carbohydrates affect fat oxidation and deposition (Coyle, 

Jeukendrup, Wagenmakers, & Saris, 1997; Gulliford et al., 1989; Sidossis et al., 1996).  

Hence, we tested the interactive effects between fiber and sugar, starch and fiber, starch 

and protein, starch and fats, and sugar and fats.  We also explored bivariate correlations 

and confounding multicollinearity issues that may explain some of the discordant results 

in the nutrition epidemiology literature.  
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METHODS 

 

Participants 

Our study made used of publicly data available on 14,997 adult participants with 

ages 20 to 85 years old from multiple cohorts of the National Health and Nutrition 

Examination Survey for which all variables of interest were available, 2003-2010 period 

(“Centers for Disease Control and Prevention (CDC). National Center for Health Statistics 

(NCHS). National Health and Nutrition Examination Survey Laboratory Protocol,” 2003-

2004, 2005-2006, 2007-2008 and 2009-2010, “Centers for Disease Control and 

Prevention (CDC). National Center for Health Statistics (NCHS). National Health and 

Nutrition Examination Survey Questionnaire,” 2003-2004, 2005-2006, 2007-2008 and 

2009-2010). 

 

Demographics 

 Demographic information was collected at home prior to in-person examinations by 

computer assisted personal interviewing methodology, and answered directly or aided by 

a proxy if the participant was unable to answer questions themselves.  After data 

collection, interview records were reviewed by staff for accuracy and completeness.  

Gender was coded -0.5 for males and +0.5 for females, so that results can be interpreted 

as the difference in each measure when moving from males to females.  Race/ethnicity 

was derived from race and Hispanic origin questions and categorized as Mexican 

American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black and Other races 

(including multi-racial).  The variable was dummy coded to reflect variable differences in 
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reference to Non-Hispanic White which comprised the numeric majority of this study 

population.  Income and Education information was collected as stratified categories and 

used as such by dummy coding in reference to the lowest level available.  Education and 

Income were only included in the regression models as control covariates, since 

socioeconomic status reportedly affects measures of systemic inflammation (Koster et 

al., 2006; Steptoe, Owen, Kunz-Ebrecht, & Mohamed-Ali, 2002). 

 

Diet 

 Detailed dietary intake information were collected from NHANES participants by the 

What We Eat in America (WWEIA) dietary interview, conducted in partnership with the 

U.S. Department of Agriculture (USDA) and the U.S. Department of Health and Human 

Services (DHHS). The National Center for Health Statistics of the DHHS was responsible 

for the design and data collection methods of the WWEIA interview, as well as the 

databases used to code, process, generate nutrient data and quality-review the dietary 

data utilized in our study.  The interview was conducted in-person in the NHANES Mobile 

Examination Center (MEC), consisting of private rooms, and by phone interview based 

on 24-hour recalls.  The phone interview was conducted 3 to 10 days after the in-person 

interview.  The nutrient data utilized in our analyses were calculated by the average of the 

first day and second day from the total nutrients data file where both days were available.  

Otherwise, the measures for the one day were available and used (1502 cases).  

Macronutrient and micronutrient components used in our study were available in 

NHANES databases, except for calculated starch.  NHANES databases parsed 

carbohydrate intake into total carbohydrates, total sugars (which included both naturally 
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occurring and added sugars) and dietary fiber (including soluble and insoluble).  Total 

carbohydrates were comprised of sugars and complex carbohydrates. This was 

calculated by the difference between the total weight of the food and the weights of the 

protein, fat, ash, and water.  We calculated starch values for the diet by subtracting total 

sugars and dietary fiber from total carbohydrates.  In the current data, starch was 

comprised complex carbohydrates, which may include resistant and non-resistant 

starches as well as processed and unprocessed starches. These vary greatly in 

absorption rate and glycemic index.  Hence, results from this carbohydrate category must 

be interpreted cautiously.   

 Alcohol content of the diet was also available for the two-day interview.  However, 

because reporting of licit or illicit drugs are likely to be under-consumed, underestimated 

or omitted during a health diary survey, we utilized NHANES interview variables that were 

specific to alcohol use. We calculated the average daily alcohol consumption, measured 

as drinks per day (based on frequency of drinking and number of drinks per day when 

drank), reported for the preceding month.  Although the number of drinks consumed 

reflect not only alcohol but also sugar composition, the regression estimates reflect the 

effects of drinking while adjusting for the effect of total sugar consumption.   

 Variables for dietary fat content were available at two classification levels, as specific 

fatty acids (categorized by carbon chain length and saturation), and by the 3 saturation-

based categories: Saturated Fatty Acid (SFA), Monounsaturated Fatty Acid (MUFA) and 

Polyunsaturated Fatty Acid (PUFA). The latter was utilized in the main analyses.  

Analyses of the formaer were included in the Appendix to this study.  The dietary trans-
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fats composition was not available for the selected cohorts, therefore not included in this 

study. 

 

Metabolic Status 

Metabolic syndrome refers to a set of risk factors including excess over-weight, high 

blood triglycerides, low levels of high-density lipoproteins (HDL), high blood pressure and 

high fasting blood sugars. These risk factors are related to most chronic diseases 

associated with post-agricultural civilizations.  In the current analyses, we accounted for 

the meditative and moderate effects of metabolic status by including stable physiological 

measures available in the NHANES that best reflected metabolic syndrome: Body Mass 

Index (BMI), total cholesterol, HDL, systolic and diastolic blood pressures (SBP and DBP), 

and glycated hemoglobin (HA1c).  BMI was used as a measure of body adiposity, 

calculated from weight and height and reviewed by NHANES staff for accuracy and 

plausibility according to other anthropometric measures.  Lipid panels provided total 

cholesterol (TC), triglycerides, high-density Lipoprotein cholesterol (HDL) and estimated-

low-density lipoprotein cholesterol (LDL) measures.  We only considered stable metabolic 

markers, TC and HDL, as metabolic status covariates in our analysis.   

 While NHANES blood collections were expected in the morning and in the fasting 

state, the fasting length varied greatly or were not assessed in many individuals.  Previous 

studies have shown evidence of instability for glucose, triglycerides and LDL measures 

as a function of feeding and short fasting times, whereas TC and HDL have been shown 

to provide more stable measures of systemic lipid metabolism (Davis, 2013).  TC and 

HDL were quantified in serum by standard enzymatic and absorptiometry methods.  Due 
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to changes in equipment and observed measurement biases between major cohorts, HDL 

values were corrected for compatibility by NHANES staff according to control samples.   

 Further details about the specific procedures and adjustments are available on the 

NHANES web site (Centers for Disease Control and Prevention (CDC). National Center 

for Health Statistics (NCHS). National Health and Nutrition Examination Survey 

Laboratory Protocol, 2003-2004, 2005-2006, 2007-2008 and 2009-2010).  Systolic and 

diastolic blood pressure measures were averaged from 3 to 4 determinations by certified 

examiners after a 5-minute rest in the seated position.  HA1c was measured by standard 

boronate affinity high performance liquid chromatography, and the data was presented as 

percent glycohemoglobin. 

 

CRP 

 Blood was obtained by standardized methods and serum specimens were frozen to 

-20°C until thawed for analyses, and high sensitivity C-reactive protein was measured by 

latex-enhanced nephelometry as part of the NHANES laboratory examinations.  Further 

details about the specific method used in collection and laboratory procedures are 

available on the NHANES web site (Centers for Disease Control and Prevention (CDC). 

National Center for Health Statistics (NCHS). National Health and Nutrition Examination 

Survey Laboratory Protocol, 2003-2004, 2005-2006, 2007-2008 and 2009-2010).  There 

were no changes in equipment, lab method or analysis site for all cohorts included in our 

analyses. 

 

Statistics 
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 Base regression models (which included all variables, but no interaction or nonlinear 

effects) were built in order to test the assumptions that model parameters were linear, 

residuals are normally distributed and have constant variance.  Case analysis tests were 

conducted to identify and remove regression outliers of high influence; that is, cases that 

exhibit large residuals and high leverage.  Dietary variables were fit to regression models 

predicting BMI, and in models with and without variables of metabolic status in order to 

access the direct and indirect effects of diet on CRP.  All model models adjusted for 

common covariates associated with metabolic and inflammatory health including total 

caloric intake, salts (sodium and magnesium), demographics (age, gender and race) and 

socioeconomic status (income and education, categorically stratified as available in 

NHANES database), nicotine use status (current smoker versus non-smoker), as well as 

logistic variables of possible influence (time session of the blood collection and the year 

of cohort sampling).  All regression models were analyzed in the lmSupport package in 

R. 

 Further, the Variable Inflation Factor (VIF) was computed using the “car” package in 

R and presented for each regression factor in order to determine the extent to which the 

variance associated with each model prediction was overestimated by multicollinearity 

effects.  Variables with high inflation indices (VIF>5) exhibit high multicollinearity and 

variance, and therefore, may render unreliable effect estimates. VIF values between 2.5 

and 5 are acceptable, while values below 2.5 may be considered reliable, with 1 being 

perfectly reliable (no multicollinearity).   

 Hypothetical interactions were tested and retained in the final models if statistically 

significant in either model, including or excluding metabolic factors.  The final models also 
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included explorative quadratic relationships and interactions if statistically significant.  

Exploratory interactions included those among nutrients, demographic factors, as well as 

cohort year, in order to access changes in macronutrient effect across years which may 

suggest changes in nutrient quality over time.  All model interactions were interpreted 

according to the directionality of effects that was expected from the physiological 

literature.   

 Three conditions must be met in order to conclude mediation of effects: (1) a 

predictor or set of predictors must explain variation in the mediating factor, (2) the 

mediating factor must explain variation in the outcome variable, and (3) the effect of a set 

of predictors is reduced when accounting for the mediating factors.  If diet explains 

significant variance in BMI and other metabolic factors, if those explain significant 

variance in CRP, and if the dietary factors exhibit at least partial reduction in variance and 

non-variance based effect sizes when metabolic factors are included in the model, partial 

mediation of the effects of diet on CRP by those factors may be concluded.  When these 

conditions were met, a non-parametric bootstrapping method was applied to calculate the 

proportion of the effect of the macronutrient on CRP that was mediated by BMI.  Mediation 

models were carried out by the Yamamoto method (Tingley et al., 2014) in the “mediate” 

package in R in order to calculate the proportion of the effect variance mediated by BMI.   

 Models also tested total caloric intake as the only dietary predictor of BMI and CRP 

in order to compute the amount of variance explained by nutrient intake over and above 

total caloric intake.   Analysis of difference in model delta R-squared was computed by 

the lmSupport package in R. 
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 Because the consumption of dietary nutrients varies greatly by order of magnitude, 

standardized regression coefficients were produced in order to compare across the 

estimated effects.  

 

RESULTS 

 

Descriptives 

 On average, NHANES participants consumed approximately 2110 kcal a day, which 

was comprised of 82 grams of protein, 257 grams of carbohydrates and 79 grams of fat 

(Table 1).  Table 2 and Figure 1 describe the caloric intake parsed by the macronutrient 

source.  We found that carbohydrates comprised about half of the caloric content of the 

diet in these population samples, whereas sugars comprised almost half of the 

carbohydrate calories.  Fats made up little over 30% of the caloric intake.  Hence, it must 

be emphasized that the results that follow must be interpreted in the context of a high-

carbohydrate/high-fat diet, and marked by high sugar intake (Figure 1).  The two-day 

dietary diary also indicated a daily intake of 10 grams of alcohol, or per interview data, an 

average of a half of an “alcoholic drink a day” (Table 1).  According to the National Institute 

on Alcohol Abuse and Alcoholism, one standard drink consists of 12 fl oz of beer, 5 fl oz 

of wine or 1.5 fl oz of distilled spirit.  Alcohol intake also made significant contribution to 

the caloric make-up of this diet, averaging 71 kcal/day, or 3% of the caloric intake. In 

addition, participants were, on average, both overweight and pre-diabetic (Table 1).  
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Figure 1. Average dietary intake by NHANES participants across all cohorts. 

 

Bivariate Correlations 

 Bivariate correlations showed that all macronutrients, as well as total calories, were 

highly and positively correlated with one another (Table 3) suggesting that the average 

diet contains high content of all macronutrients, rather than being comprised of one 

macronutrient group over another; excluding alcohol.  As the intake of one macronutrient 

group increased, the intake of other macronutrients also increased.  Interestingly, CRP 

and almost all metabolic factors are negatively correlated to all dietary variables when not 

adjusted by simultaneous regressions.  The number of drinks per day and the estimated 

alcohol content of the diet exhibited the same correlation pattern across other variables 

(Table 3) and were moderately correlated with each other (r=0.56, p<0.001). 
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Analytical model, assumptions, case analyses and coding 

 BMI and CRP (mg/dL) were transformed to meet the General Linear Model 

assumptions when used as outcome variables.  Specifically, they were natural log 

transformed in order to also facilitate the conversion of the regression estimates to 

percent change from the sample mean (geometric mean estimates). Next, case analyses 

were conducted and two high leverage outliers were removed from the data.  Leaving 

14,995 total participants who remained for all analyses.  Categorical variables were 

centered when made binary and dummy coded, thus, comprising multiple categories.  

Gender was coded to reflect changes from male to female, race coded for White 

Caucasian as reference, and other categorical variables were coded for the lowest level 

as a reference.  The predicted effect of macronutrients described below were derived 

from two regression models:  one model that did not include metabolic factors in order to 

access the full effect of nutrients on CRP (including the portion of the effect that may have 

been mediated by metabolic factors); and a second model that included BMI and the 

metabolic factors to access the direct effects of macronutrients on CRP above and 

beyond those mediated by BMI and other markers of metabolic status.  All model 

estimates described account for the simultaneous effects of all other model variables.  

Covariate and interaction effects that were included in the models for the purpose of 

control were not reported unless they were relevant to the conclusions of this manuscript. 

 

The overall effect of diet on BMI 
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 10.04% of the variance in BMI (model adjusted-R²) was accounted by diet, 

demographics, smoking status and interactions.  Model comparison analyses showed 

that diet alone explained 2.64% of the variance in BMI F(28,14923)=21.931, p<0.001, 

ΔR²=2.64%).  Further, nutrient intake explained 3.69% more variance in BMI than a 

similar model where caloric intake was the only dietary predictor (F(25,14923)=17.606, 

p<0.001, ΔR²=3.69%), showing that the influence of diet on adipose accumulation is not 

a simple function of excessive caloric intake.  

 

The overall effect of diet and metabolic status on CRP 

 Our full model explained 27.62% of the variance in CRP, accounting for all dietary, 

metabolic, demographic and logistic factors, including non-linear relationships and 

interactions (model adjusted-R²).   Model comparison analyses showed that nutrient 

intake explained 1.20% of the CRP variance above and beyond metabolic status and 

other covariates (F(30,14892)=8.234, p<0.001, ΔR²=1.20%), while metabolic status 

accounted for 18.72% of the variance above all other factors (F(24,14892)=161.23, 

p<0.001, ΔR²=18.72%).  Further, nutrient intake explained 1.17% more variance in CRP 

than a similar model where caloric intake was the only dietary predictor 

(F(29,14892)=8.26, p<0.001, ΔR²=1.17%), showing that the influence of diet on 

inflammatory biology is also not a simple function of excessive caloric intake. 

 

The effect of BMI and other metabolic markers on CRP 

 Adjusted for all covariates, including dietary factors, increases in all markers of 

metabolic status predicted greater CRP.  BMI explained for the most variance in CRP, 
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accounting for 5.05% of the variance.  HDL, total cholesterol, HA1c and systolic blood 

pressure explained 0.83%, 0.69%, 0.16% and 0.06%, respectively.  As expected, CRP 

was largely predicted by BMI.  One standard deviation increase in BMI (SD=6.39 Kg/m²) 

predicted a 47.57% increase in CRP levels (β=47.57, F(1,14888)=1044.53, p<0.001, 

ΔR²=5.05%, VIF=2.78).  However, the effect of BMI became weaker as BMI increased 

(β=-4.01, F(1,14888)=61.28, p<0.001, ΔR²=0.30%).  Accordingly, greater HDL levels 

predicted lower CRP, such that one standard deviation increase in HDL (SD=16.51 

mg/dL) estimated a 16.45% decrease in CRP (β=-16.45, F(1,14888)=171.79, p<0.001, 

ΔR²=0.83%, VIF=2.02).  On the other hand, one standard deviation increase in total 

cholesterol in blood (SD=42.58 mg/dL) predicted a 12.33% increase in CRP (β=12.33, 

F(1,14888)=143.18, p<0.001, ΔR²=0.69%, VIF=1.36), with a weakening of effect as total 

blood cholesterol increased (β=-1.28, F(1,14888)=8.47, p=0.004, ΔR²=0.04%).  One 

standard deviation increase in HA1c (SD=0.99%) was predictive of 9.88% higher CRP 

(β=9.88, F(1,14888)=32.23, p<0.001, ΔR²=0.16%, VIF=3.886), also with a small 

decrease in effect as HA1c levels increased (β=-0.84, F(1,14888)=6.642, p=0.010, 

ΔR²=0.03%).  Finally, higher systolic, but not diastolic, blood pressure predicted 5.40% 

higher CRP (β=5.40, F(1,14888)=13.17, p<0.001, ΔR²=0.06%, VIF=2.72 and β=-2.51, 

F(1,14888)=3.19, p=0.074, ΔR²=0.02%, VIF=1.42 respectively) per standard deviation 

increase (SD=18.75 mmHg). 

 

The effects of carbohydrates on BMI 

 At average sugar intake, sugar did not predict greater BMI (β=-0.42, 

F(1,14923)=1.099, p=0.295), but with every standard deviation increase in sugar 
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(SD=69.7 gram), its effect on BMI increased by 0.08% (β=0.08, F(1,14923)=26.008, 

p<0.001, ΔR²=0.16%, VIF=2.485).  Increased dietary fiber predicted lower BMI.  For every 

standard deviation increase in dietary fiber consumption (SD=8.67 grams), BMI 

decreased by 1.28% (β=1.28, F(1,14923)=22.832, p<0.001, ΔR²=0.14%, VIF=2.714).  

Starch did not predict differences in BMI (β=0.18, F(1,14923)=0.156, p=0.692).  Alcohol 

intake, measured as average drinks per day, predicted lower BMI (β=2.26, 

F(1,14923)=56.381, p<0.001, ΔR²=0.34%, VIF=3.402).  At average intake, one drink per 

day predicted 2.26% lower BMI.  However, this negative relationship between BMI and 

alcohol was predicted to decreased by 0.17% with every additional drink per day (β=0.17, 

F(1,14923)=30.500, p<0.001, ΔR²=0.18%, VIF=2.430). 

 

The effects of lipids on BMI 

 At average intake, saturated fat did not predict differences in BMI (β=0.48, 

F(1,14923)=1.095, p=0.295).  However, with every standard deviation increase in 

saturated fat intake, its effect on BMI was estimated to become more negative by 0.19% 

(β=0.19, F(1,14923)=6.697, p=0.010, ΔR²=0.04%, VIF=2.789).  Monounsaturated fat 

predicted greater BMI, however multicollinearity analyses indicated that the regression 

coefficient could not be reliably estimated (β=1.69, F(1,14923)=10.694, p=0.001, 

ΔR²=0.06%, VIF=10.099).  Polyunsaturated fat did not predict differences in BMI (β=-

0.09, F(1,14923)=0.089, p=0.765). Dietary cholesterol also did not predict differences in 

BMI (β=0.20, F(1,14923)=0.667, p=0.414).  Compared to carbohydrates, dietary lipids 

were very poor predictors of BMI (ΔR²=0.04% and 0.06%, compared to 0.01%, 0.16%, 

0.14%, 0.34% and 0.18%). 
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The effect of macronutrient interactions on BMI 

 We detected significant macronutrient interactions among dietary carbohydrates but 

not lipids, accounting for another 0.15% of the variance in CRP over lipids.  We found an 

interaction between protein and starch (β=0.68, F(1,14923)=16.251, p<0.001, 

ΔR²=0.10%) and between sugar and magnesium (β=-0.51, F(1,14923)=7.842, p=0.005, 

ΔR²=0.05%).  For every standard deviation increase in starch intake, the effect of protein 

on BMI increases by 0.68%, and for every standard deviation increase in magnesium 

intake, the effect of sugar on BMI decreases by 0.51%. 

 

The effects of diet on each marker of metabolic status 

 The dietary factors and interactions that significantly predicted CRP in the main full 

CRP model were used to estimate the total variance explained by diet for the other 

markers of metabolic status.  Diet, as a whole, explained 5.30% of the variance in HDL, 

3.26% of the variance in HA1c, 2.64% of the variance in BMI, 1.66% of the variance in 

systolic blood pressure, 0.71% of the variance in total blood cholesterol and 0.62% of the 

variance in diastolic pressure (adjusted model R²). 

 

The effects of carbohydrates on CRP and mediation by BMI 

 According to out regression model, for every standard deviation increase in sugar 

intake (SD=69.7 grams), CRP was expected to increase by 8.35% (β=8.35, 

F(1,14918)=19.18, p<0.001, ΔR²=0.12%).  After accounting for metabolic status, the 

effect of sugar remained significant but was reduced (β=4.75, F(1,14888)=7.65, p=0.006, 



121 

ΔR²=0.04%), suggestive that its effects on CRP were partially mediated by metabolic 

factors.  Sugar predicted greater BMI and CRP, hence we bootstrapped the proportion of 

the effect of sugar mediated by BMI.  Our mediation analyses estimated that 42.39% 

(95% C.I.=27.93-61.03, p<0.01) of the effect of sugar was mediated by BMI.  Conversely, 

dietary fiber intake predicted significantly lower CRP.  For every standard deviation 

increase in fiber intake (SD=8.67 grams), CRP was predicted to decrease by 11.93% (β=-

11.93, F(1,14918)=53.56, p<0.001, ΔR²=0.32%).  After accounting for metabolic factors, 

fiber intake was still predictive of an 8.71% decrease in CRP levels (β=-8.71, 

F(1,14888)=35.05, p<0.001, ΔR²=0.17%). Dietary fiber predicted lower BMI and CRP, 

which is also indicative of a partial mediation by metabolic factors.  Specifically, our 

mediation analyses showed that 17.84% (95% C.I.=13.58-22.22, p<0.01) of the effect of 

fiber is mediated through its effect on BMI.  Calculated starch intake also predicted lower 

CRP before and after accounting for the metabolic factors (β=-2575.00, F(1,14918)=8.13, 

p=0.004, ΔR²=0.05% and β=-2220.00, F(1,14888)=7.56, p0.006, ΔR²=0.04%, 

respectively).  Notably, our models calculated discrepantly high coefficient for the effect 

of starch. These results were corroborated by multicollinearity analyses: while the effect 

estimates for both sugar and fiber intake were statistically reliable (VIP=3.79 and 2.78, 

respectively), the effect of starch on CRP exhibited unacceptable reliability 

(VIP=8.37x10^5), and therefore should not be interpreted.   Because starch did not predict 

BMI, we also cannot conclude mediation of its effects by BMI.  Average alcohol intake 

(measured in drinks per day) predicted higher CRP after accounting for metabolic factors 

with very high reliability; For every one daily drink of alcoholic beverage ingested, CRP is 

estimated to increase by 3.68% (β=3.68, F(1,14888)=12.34, p<0.001, ΔR²=0.06%, 
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VIF=1.41).  While the number of drinks per day predicted greater CRP, it non-linearly 

predicted lower BMI. Our mediation analyses indicated that 42.68% (95% C.I.=34.07-

54.08, p<0.01) of the effect of alcohol was mediated through BMI.  

 

The effects of lipids on CRP and mediation by BMI 

 Saturated fat did not significantly predict CRP before or after accounting for 

metabolic status (β=2.17, F(1,14924)=0.71, p=0.401, and β=1.40, F(1,14894)=0.368, 

p=0.544, respectively).  Monounsaturated fat predicted higher CRP before accounting for 

metabolic status but not after (β=9.08, F(1,14924)=8.38, p=0.004, ΔR²=0.05%, 

VIF=10.10 and β=2.20, F(1,14894)=0.62, p=0.432, respectively), indicative of mediation.  

However, monounsaturated fat exhibited high multicollinearity, indicating that its 

coefficient could not be reliably estimated.  On the other hand, higher intake of 

polyunsaturated fat significantly and reliably estimated lower CRP with little difference in 

effect before and after accounting for metabolic status (β=-4.29, F(1,14924)=5.08, 

p=0.024, ΔR²=0.03% and β=-3.83, F(1,14894)=5.075, p=0.024, ΔR²=0.02%, VIF=3.71, 

respectively), such that for every standard deviation increase in polyunsaturated fat intake 

(SD=17.0 grams), CRP is predicted to decrease by 4.29% before and 3.83% after 

accounting for metabolic status.   

 Dietary cholesterol predicted greater CRP.  For every one standard deviation 

increase in cholesterol intake (SD=199.43 milligrams), CRP is predicted to increase by 

3.25% before accounting for metabolic status (β=3.25, F(1,14918)=4.91, p=0.027, 

ΔR²=0.03%).  Dietary cholesterol did not predict CRP levels after accounting for metabolic 

status, suggesting that metabolic factors may have mediated its effects on CRP (β=1.83, 
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F(1,14918)=1.95, p=0.162).  VIF for dietary cholesterol indicates that it is within 

acceptable reliability (VIF=2.20). 

 BMI did not mediate the effects of any dietary lipids.  Polyunsaturated fat and dietary 

cholesterol did not predict BMI; therefore, their effects could not be mediated by BMI.  

Mediation analyses indicated that BMI did not significantly mediate the effect of saturated 

or monounsaturated fat (p=0.91 and p=0.26, respectively). 

 

Carbohydrate and lipid interactions 

 We tested the following hypothetical interactions between nutrients in the BMI and 

both CRP regression models: fiber and sugar, starch and fiber, and starch and protein, 

starch and fats, and sugar and fats.  The interaction of protein and starch only was 

predictive of BMI.  For every standard deviation increase in starch intake, the effect of 

protein on BMI increased by 0.68% (β=0.68, F(1,14918)=16.251, p<0.001, ΔR²=0.10%).  

All other macronutrient interactions were non-significant (statistics not shown).  Before 

accounting for metabolic status, we found significant interactions between fiber and sugar, 

starch and fiber, and starch and protein.  An increase in dietary fiber intake was 

associated with an attenuated effect of sugar on CRP (β=-2.50, F(1,14918)=7.13, 

p=0.008, ΔR²=0.04%).  On the other hand, increasing starch consumption predicted a 

decrease in the beneficial effect of dietary fiber on CRP (β=3.77, F(1,14918)=16.55, 

p<0.001, ΔR²=0.10%).  Greater starch consumption was also suggestive of an increased 

proinflammatory effect of protein (β=2.79, F(1,14918)=6.16, p=0.013, ΔR²=0.04%).  After 

accounting for metabolic status, only the interaction between fiber and starch remained 

significant (β=3.19, F(1,14888)=14.82, p<0.001, ΔR²=0.07%), suggesting that the 
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interactive effects of fiber and sugar and starch and protein on CRP may have been 

mediated by metabolic status (β=-1.09, F(1,14888)=1.71, p=0.192, ΔR²=0.01% and 

β=1.40, F(1,14888)=1.95, p=0.163, ΔR²=0.01%, respectively).  SFA, MUFA and PUFA did 

not exhibit interaction with fiber, starch or sugar (statistics not shown). 

 

DISCUSSION 

 

 NHANES has collected data on the U.S. Population for decades, making nationally 

representative data available on diet, eating behaviors, demographics and health.  By 

utilizing available data on nearly fifteen thousand adults, we examined the macronutrient 

composition of the American diet, analyzed the effects of dietary carbohydrates and lipids 

on BMI and CRP, tested the mediation by BMI as well as specific carbohydrate and lipid 

interactions.  Because of the uniformity in macronutrient intake ratios and high 

multicolinearity we were not able to reliably assess the effect of few dietary variables.  By 

inspecting simple bivariate correlations, it was evident that their simple associations were 

spurious and illogical – all macronutrients were negatively correlated with CRP.  An overall 

positive association amongst almost all macronutrients was also a strong indication that 

Americans eat more or less of every macronutrient without significant differences in 

macronutrient ratios, which may explain inconsistent health predictions that have been 

found by many epidemiological studies on diet that have simplified the data and failed to 

account for simultaneous effects. 

 

The effect of dietary carbohydrates and lipids on BMI 
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 Our analyses showed a nonlinear relationship between sugar and BMI where the 

higher sugar consumption the greater the effect of sugar on BMI such that sugar intake 

increases BMI for individuals who eat above average sugar.  While sugars may include 

many subtypes, most of which have been not well characterized, the majority of sugars 

consumed in the Western Diet is comprised of fructose and sucrose.  Fructose and 

sucrose exert important effect on energy metabolism and have been shown to 

differentially affect metabolic processes (Jameel et al., 2014; Schaefer et al., 2009).  

Fructose has been shown to drive triglyceride production in the liver (Kazumi et al., 1986), 

cause mitochondria dysfunction and cell damage in the liver and the brain systems that 

regulate peripheral energy metabolism, glucoregulation, and eating behaviors (Cigliano 

et al., 2017; Lopes et al., 2014; Lustig, 2013; Rayssiguier, Gueux, Nowacki, Rock, & 

Mazur, 2006), all of which may contribute to adipose accumulation.  On the other hand, 

dietary fiber predicted lower BMI.  Various types of dietary fiber have been shown to exert 

beneficial effects on gut microbiome and metabolite generation (Bednar et al., 2001; 

Lattimer & Haub, 2010).  Fiber may exert anti-obesogenic effects through short-chain fatty 

acid generation (Chakraborti, 2015; Lu et al., 2016) or by the modulation of the gut 

microbiome:  A number of studies have shown that microbiota composition affects 

metabolism and adipose accumulation independent of macronutrient composition of the 

diet (Rosenbaum, Knight, & Leibel, 2016; Tilg & Kaser, 2011).  Additionally, starch did not 

predict changes in BMI, which may be due to the heterogeneity of the starch 

macronutrient group, which includes resistant and non-resistant starches.  Resistant and 

non-resistant starch may play distinctive roles and metabolic effects (Lockyer & Nugent, 

2017; Lyte et al., 2016).  These are perhaps the most difficult to measure, since food 
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preparation has significant effect on starch structure and absorption.  Resistant starches 

may exert effects similar to that of dietary fiber, however, cooking complex carbohydrates 

increase their digestibility and absorption, hence, greater glycemic load more closely 

resembling simple carbohydrates (Atkinson, Foster-Powell, & Brand-Miller, 2008; El-hady 

& Habiba, 2003; Rehman & Shah, 2005).  The specific composition of starches (amylose 

content), cooking methods and cooling (retrogradation), may also modify the digestibility 

properties of resistant starches (El-hady & Habiba, 2003; Tovar & Melito, 1996).  These 

modifiable properties are difficult to account for in a dietary survey and may partially 

explain the mixed claims regarding this macronutrient.  Ultimately, the balance between 

digestible and non-digestible carbohydrates may influence an individual’s metabolism 

directly and indirectly. For example, by providing specific metabolism modulating 

phytonutrients, by providing raw materials for carbohydrate-derived short chain fatty acid 

(butyric, propionic and acetic acids) production by the gut flora, by influencing bacteria-

derived metabolites that affect hormones, or by dilution effect on other dietary factors.  

Conversely, sugars, non-resistant starches, cooked and processed starches, may inflict 

high glycemic impact and lead to dysfunctional metabolism.  Most of the carbohydrates 

consumed in the American diet are highly glycemic carbohydrates, as evident by the top 

dietary sources of non-fiber carbohydrates (sugars and starches) and the top sources of 

dietary fiber, according from a 2003-2006 NHANES report (O’Neil, Keast, Fulgoni, & 

Nicklas, 2012; O’Neil et al., 2012).  These reports also showed that the top-ranking 

sources of sugar in the American diet were soft drinks and soda, while the top-ranking 

source of fiber was yeast bread and rolls. While the effect of ethanol on hepatic 

adipogenesis is well documented (Nagy, Ding, Cresci, Saikia, & Shah, 2016), lesser is 
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known about whole body adipose accumulation as a function of alcohol consumption.  

Our analyses showed that, at average consumption, alcoholic drinks were associated 

with lower BMI, but also that this effect decreased with increased intake.  Alcohol may 

induce lipolysis and adipose tissue shrinkage, which results in fatty acid mobilization and 

liver fat accumulation, thereby aggravating fatty liver disease (Zhao et al., 2015). Our 

analyses also showed that, at average intake, saturated fats did not affect BMI.  However, 

a nonlinear relationship estimated a decrease in BMI with greater than average intake of 

saturated fat.  Polyunsaturated fat and dietary alcohol also did not predict BMI.  While 

Monounsaturated fat seemed to predict higher BMI, analyses of multicollinearity indicated 

that the effect its effect could not be accurately estimated because of high overlap with 

other variables.  Because our models adjusted for the simultaneous effects of 

carbohydrates and other nutrients, including their interaction, it is possible that we were 

able to isolate the effect of dietary lipids above and beyond the effects of carbohydrates.  

As such, these results were in agreement with human studies showing that dietary lipids 

do not themselves drive adipose accumulation (Volek et al., 2004; Volek, Quann, & 

Forsythe, 2010; West & York, 1998).  As a whole, the dietary effects on BMI were 

governed by carbohydrates, not lipids, where dietary carbohydrates accounted for more 

cumulative variance in BMI than lipids, including interactions (0.97% versus 0.10%). 

 In predicting BMI, we found interactions between magnesium and sugar and 

between starch and protein.  We found that magnesium intake attenuates the effect of 

sugar on adipose accumulation.  Magnesium is essential for many physiological 

processes and enzymatic reactions, many of which are essential to glucoregulation and 

immune function (Nielsen, 2010; Weglicki & Phillips, 1992; Weglicki, Phillips, Freedman, 
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Cassidy, & Dickens, 1992), and may thereby influence adipose accumulation.  We also 

found an interaction between protein and starch.  While we do not understand how such 

interaction may directly affect adiposity, it is known that starches alter the processing of 

animal derived proteins and may affect microbiome-gut interaction and metabolite 

generation (Bingham, 1997; Le Leu et al., 2015; Paturi et al., 2012; Toden, Bird, Topping, 

& Conlon, 2006). 

  

Effects and Mediation by BMI and other markers of metabolic status 

 Our analyses showed that diet affected all markers of metabolic status to some 

extent.  BMI, HDL and HA1c were most affected.   As a whole, diet predicted 2.64%, 

5.30% and 3.26% of the variance in BMI, HDL and HA1c, respectively, but less than one 

percent of the variance in total cholesterol and blood pressure.  In turn, BMI explained 

5.35% of the variance in CRP, while HDL, HA1c and total cholesterol explained less than 

one percent each, and blood pressure explained a negligible amount.  While we may also 

conclude partial mediation by the other markers of metabolic status, their effects were 

very small compared to that BMI.  Adipose tissue may exhibit local CRP production and 

may further stimulate the hepatic production of CRP through adipokines, and hence is a 

major driver of proinflammatory processes (Anty et al., 2006; Calabro et al., 2005; Goode 

& Watson, 2012; Lau et al., 2005; Peyrin-Biroulet et al., 2012).  In our analyses, 

carbohydrates explained most of the dietmetabolic factors.  Our mediation analyses also 

showed that large proportions of the effect of the carbohydrates, sugar, fiber and alcohol, 

were mediated by BMI.  At the same time, the effect of lipids on BMI was dismal.  

Accordingly, BMI did not mediate the effect of any dietary lipids on CRP.   



129 

 

The effect of caloric Intake on CRP 

 As a whole, diet explained a unique 1.20% of the variance in CRP above and beyond 

the effects of metabolic status, while metabolic status explained 18.72%.  The difference 

in variance based effect sizes makes sense given that metabolic status is a more proximal 

effector on inflammatory physiology while diet likely represents a mode distal influence.   

The nutrient intake model explained significantly more variance in CRP than a calories-

only model, which is in keeping with the up-to-date notion that the effect of diet on health 

is more complex than expected from hypotheses that obesity and disease are a function 

of excess calories (Hite et al., 2010).  Further, caloric intake was not a reliable predictor 

of CRP due to evident multicollinearity, and also not a significant predictor after adjusting 

for metabolic status.  These results were expected since caloric intake is a non-

physiological measure of macronutrient consumption and does not distinguish among the 

various pathways of nutrient metabolism.  According to our analyses, the population 

consumes more or less of everything, maintaining similar a High-Fat High-Carbohydrate 

macronutrient dietary profile, which may be the reason studies often detect high caloric 

intake as a key factor in health and disease.   

 

The effect of dietary carbohydrates on CRP 

 The dietary fiber content of foods affects their glycemic impact but also exerts direct 

antiinflammatory effects through gut bacteria products (Andoh, Bamba, & Sasaki, 1999).  

The short chain fatty acid, butyrate, is a major fiber-derived metabolite that has been 

shown to exert potent antiinflammatory effects (Andoh et al., 1999).  In our model, dietary 
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fiber intake was not only predictive of lower CRP but it also exhibited the largest variance 

based effect size among the dietary factors, before or after adjusting for the metabolic 

factors.   

 On the other hand, excessive sugars intake may exert proinflammatory effects 

(Jameel, Phang, Wood, & Garg, 2014; Jena et al., 2014).  High sugar consumption is also 

associated with glucose dysregulation, dyslipidemia and diabetes (Giuglino et al., 2006; 

Hofmann & Tschöp, 2009; Yan, Ramasamy, Naka, & Schmidt, 2003). At a cellular level, it 

also exerts its effects leading to dysfunctional mitochondria and oxidative stress, which 

are major drivers of inflammation (Fu et al., 1994; Jameel et al., 2014; Robertson, 2004).  

The Western Diet is also typically high in fructose. Fructose has been shown to have 

worse effects than sucrose alone, since it is not easily utilized in beta-oxidative processes 

and therefore directly converted to triglycerides for storage (Jameel et al., 2014; Kazumi, 

Vranic, & Steiner, 1986; Schaefer et al., 2009; Sun et al., 2011).  In our models, sugar 

predicted higher CRP and exhibited the second largest effect, and especially before 

adjusting for metabolic factors.   

 Alcohol consumption has also been shown to cause liver and brain tissue damage, 

affecting both metabolic and inflammatory systems by processes similar to that of fructose 

(Lieber, 2004; Mandrekar & Szabo, 2009; Topiwala et al., 2017; Wang, Zakhari, & Jung, 

2010).  In the past, many epidemiological studies have suggested non-linear effects for 

alcohol on cardiovascular health, albeit with speculations but not proof of mechanisms by 

which small amounts of alcohol intake could exert health benefits (Averina, Nilssen, 

Arkhipovsky, Kalinin, & Brox, 2006; Fekjær, 2013; Stockwell et al., 2016).  Contrary to 

popular belief, there is little consensus among governmental agencies on how much 
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alcohol is considered to be “healthy drinking.”  Governmental guidelines on alcohol 

consumption vary greatly across different countries (Dufour, 1999; Furtwængler & De 

Visser, 2013).  It is also noteworthy that most studies have dichotomized alcoholic drinks 

intake by “non-drinkers,” “moderate” and “high” consumers, rather than conserving the 

variable in its original continuous format.  The use of dichotomous variables has allowed 

many studies on alcohol to avoid reporting absolute risk estimates in favor of relative risk 

(Jackson & Beaglehole, 1995).  Many studies also did not include the obvious 

confounding variable, socioeconomic status, as a covariate, which has been shown to 

alter conclusions regarding moderate alcohol consumption (Averina et al., 2006; Towers, 

Philipp, Dulin, & Allen, 2016).  Further, as it has been more recently disclosed that studies 

that claim health benefits of moderate alcohol consumption have been systematically 

confounded by the inclusion of non-drinkers who do not consume alcohol because of 

sickness or poor health conditions, thereby shifting the effect on most measures of 

metabolic, inflammatory and cardiovascular function between non-drinker and moderate 

drinker categories (Holahan et al., 2010).  Such errors of great social impact could have 

been avoided by not-dichotomizing and by accounting for all the relevant covariates. The 

selection of alcohol consumption variables and their ability to estimate alcohol intake may 

also affect results – estimating the number of alcoholic drinks consumed may be more 

accurate in a survey study than the estimation of alcohol content (Chick & Kemppainen, 

2007; Rehm et al., 2003). Hence, we opted for using the number of alcoholic drinks per 

day over the estimated volume of alcohol in the diet.  In these analyses, the average 

number of alcoholic drink consumed per day predicted higher CRP, above and beyond 

the effects of sugar, other macronutrients, metabolic status and demographics, including 
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socioeconomic status.  Our analyses detected few non-linear regression effects, however 

the effect of alcohol on CRP was linear, as expected from previous studies that carefully 

addressed the physiological effects of alcohol. 

 

The effect of dietary lipids on CRP 

 While many studies have shown direct potent antiinflammatory effects of 

polyunsaturated fats, especially of DHA and EPA (Oh et al., 2010; Serhan et al., 2000; 

Singer et al., 2008) and consistently harmful effects of trans-fatty acids (Kris-Etherton, 

2010; Mozaffarian, Aro & Willett, 2009), the effects of other fatty acids in the context of 

high carbohydrate diets are still under examination and heavy debate (Nettleton, 

Koletzko, & Hornstra, 2011).   Polyunsaturated fats exhibit their effects though antioxidant 

and antiinflammatory actions, by contributing to cell membrane fluidity and architecture 

(Abbott et al, 2012; Richard et al., 2008; Shaikh and Edidin, 2006; Shaikh and Edidin, 

2008).   In our data, the polyunsaturated fat predicted lower CRP before and after 

accounting for metabolic status, though it only accounted for a small fraction of the 

variance in CRP, compared to other macronutrients.    

 Controlling for all other dietary effects, we did not find an effect of saturated fats on 

CRP before or after accounting for metabolic status.  Controlling for all dietary effects, we 

only found an effect of monounsaturated fats before accounting for metabolic status.  

While it may have been mediated by metabolic status, our mediation analyses showed 

that its effects were not mediated by BMI.  These results are in agreement with recent 

changes in dietary guidelines that de-emphasize harmful effects by dietary fats.  It is likely 

that the detrimental effects of fats on inflammation and cardiovascular health may have 
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been previously overstated in the literature.  Many clinical and population studies 

measure the impact of dietary lipids on “cardiovascular disease risk” (e.g., elevation in 

LDL) rather than on actual disease physiology.  Studies in molecular biology have shown 

that LDL is only atherosclerogenic in dysfunctional conditions, for example: in the form of 

remnant very-low-density lipoproteins (vLDL), which is associated with hypertriglycemia 

(Lewis & Steiner, 1996; Lewis, Uffelman, Szeto, & Steiner, 1993; Parks, Krauss, 

Christiansen, Neese, & Hellerstein, 1999); when carrying oxidized lipids or exposed 

reactive oxygen species (Chen, Azhar, Abbasi, Carantoni, & Reaven, 2000; Itabe, 

Obama, & Kato, 2011; Lercker & Rodriguez-Estrada, 2000; Perrin-Cocon et al., 2001; 

Sobal, Menzel, & Sinzinger, 2000); and when glycated by high glucose exposure 

(Angelica & Fong, 2008; Lyons, 1992; Sobal et al., 2000; Tero & Errera, 2002).  Fats have 

also been shown to exert potent antiinflammatory effects, but usually in the context of 

carbohydrate-restricted diets (Dupuis et al., 2015; Gasior et al., 2006; Ruskin et al., 2009; 

Yang & Cheng, 2010).  Many of the antiinflammatory effect of fats appear to be mediated 

by a fat-derived liver metabolite, beta-hydroxybutyrate, which is structurally similar to the 

fiber-derived bacterial metabolite butyrate. The liver produces beta-hydroxybutyrate from 

fats after the exhaustion of circulating glucose and liver glycogen during periods of 

carbohydrate restriction, as imposed by ketogenic diets, intermittent fasting protocols and 

very low caloric diets (Ballard et al., 2013; Hussain et al., 2012; Pan, Rothman, Behar, 

Stein, & Hetherington, 2000; Westman et al., 2007).  

 Likewise, dietary cholesterol exhibited only a very weak proinflammatory effect and 

only before accounting for metabolic status, accounting for a relatively negligible 

proportion of the variance in CRP, compared to other dietary factors.  This finding was 
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also in accord with recent de-emphasis of dietary cholesterol restriction in the most recent 

dietary guidelines.  The experimental evidence that dietary cholesterol induces 

atherosclerosis was modeled in rabbits, which are obligate herbivores, and therefore do 

not naturally consume animal-derived sterols and exhibit distinct cholesterol metabolism 

from humans.  Mammals vary in their need for dietary cholesterol.  Accordingly, liver 

cholesterol synthesis is regulated and differ greatly by species (Dietschy et al., 1993).  

Rabbits, rodents and humans do not share similar diets and hence, do not present the 

same mechanical, digestive or metabolic adaptations to diets.  Rabbits are often used to 

model atherosclerosis because it can be easily and quickly induced, however it is not an 

acceptable model for the etiology of atherosclerosis and inflammation, the early 

mechanisms of atherosclerogenic development, or even for interventions that depend on 

metabolic mechanisms that differ across species.  Likewise, rodent models of 

atherosclerosis have important limitations. Transgenic mice deficient for the LDL receptor 

have elevated LDL-cholesterol, but do not form lesions, and in models where lesions 

form, these present characteristics that differ from the human pathology (Buettner et al., 

2007; Jawień, Nastałek, & Korbut, 2004; Joven et al., 2007).  Hence, differences in 

metabolism need to be considered very carefully while translating animal model findings 

in nutrition to human health.  The effect of dietary cholesterol in nonhuman primate studies 

have indicated accelerated atherosclerosis as well as hypercholesteremia, but all in the 

context of high carbohydrate or high sugar diets (Cox, et al., 1958; Srinivasan, et al., 

1979; Vesselinovitch, et al., 1974).  Further, controlled studies in humans show that 

dietary cholesterol intake itself does not raise blood cholesterol levels in most individual, 

but rather in a subgroup of the population only (Fernandez, 2012; Ginsberg et al., 1995; 
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Griffin & Lichtenstein, 2013).  Conversely, hepatic cholesterol synthesis has been shown 

to be dependent on the intake of fructose and other sugars (Jameel et al., 2014; Moser, 

1985; Schaefer et al., 2009; Silbernagel et al., 2012). Cholesterol is essential in the 

maintenance of cellular structure as well as in the biosynthesis of steroid hormones, 

vitamin D and bile acids, and may also serve as an anti-oxidant (Lecerf & de Lorgeril, 

2011; Smith, 1991).  In addition, inflammation and phase reactants and alter cholesterol 

metabolism (Gierens et al., 2000; Heldenberg et al., 1980; Lindhorst, Young, Bagshaw, 

Hyland, & Kisilevsky, 1997; Pfohl, Schreiber, Liebich, Häring, & Hoffmeister, 1999).  

Studies have shown the crystallized cholesterol can be formed by the inflammatory 

process in atherosclerosis, requiring macrophage recruitment to remove the cholesterol 

crystals from underneath the vascular endothelium (Duewell et al., 2010; Rajam̈aki et al., 

2010).  While there are pathways by which cholesterol may elicit proinflammatory 

responses, we do not yet know how, or if, those processes contribute to chronic 

inflammation.  Dietary carbohydrates also accounted for more cumulative variance in 

CRP than lipids before accounting for metabolic status (0.75% versus 0.11%).  After 

accounting for metabolic status, carbohydrates still accounted for greater cumulative 

variance in CRP than did lipids (0.32% versus 0.02%). These results support recent 

experimental evidence in humans that dietary carbohydrates exhibit greater effect on 

proinflammatory physiology than do fats and cholesterol, both through and independently 

of body adiposity (Aljada et al., 2006; Buyken et al., 2010; Dhindsa et al., 2004; Forsythe 

et al., 2008, 2010; Khatana, Taveira, Dooley, & Wu, 2010; Pradhan, 2001; Seshadri et al., 

2004). 
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Carbohydrate and lipid interactions predicting CRP 

 We detected significant interactions only among dietary carbohydrates, and none 

among lipids.  These interactions accounted for another cumulative 0.18% of the variance 

explained in CRP over lipids.  We detected a significant interaction between protein and 

starch, such that the higher the starch content o the diet, the higher the inflammatory 

potential of protein.   This effect may reflect varying effects for meat in the context of 

different carbohydrates or a variation in types of starchy vegetables and their protein 

content/composition.  In terms of foods, these possibilities may reflect meat-starch 

combinations or the presence of inflammatory proteins in legumes (e.g. wheat and similar 

proteins) (Brouns, Van Buul, Shewry, Buul, & Shewry, 2013; Le Leu et al., 2015; Winter 

et al., 2011).   Further, interaction between meats and resistant or non-resistant starches 

may affect gut bacteria composition affecting metabolic and inflammatory processes 

(Bingham, 1997; Le Leu et al., 2015; Paturi et al., 2012; Toden, Bird, Topping, & Conlon, 

2006). In addition, we also found interactions between starch and fiber, as well as 

between fiber and sugar.  The fiber-starch interaction remained significantly predictive of 

CRP after adjusting for metabolic status.  Given the direction of the effects, we might 

interpret that higher starch content undermines the antiinflammatory effect of fiber, and 

that fiber attenuates the effect of sugar.  These effects may be a reflection of the effect of 

resistant starches and fibers verus non-resistant starches and sugars as they affect gut 

bacteria products, glycemic and insulinemic loads (Bednar et al., 2001; Behall & Howe, 

1995; Jenkins et al., 2000; Lattimer & Haub, 2010; Raben et al., 1994; Topping & Clifton, 

2001). On the other hand, we did not detect interactions between fats and carbohydrates 

in predicting CRP.   
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Multicollinearity issues 

 Analyses of multicollinearity indicated that, albeit significant, the effect of starch, 

protein and monounsaturated fat overlapped with other variables to the extent that their 

unique effects could not be calculated.  Their regression estimates likely depict 

simultaneous effects of various nutrients.  These results were not surprising given that 

starch (legumes and grains), protein (meats, legumes and grains) and monounsaturated 

fats (processed vegetable oils) are staples of the American diet.  And unlike sugar or fiber, 

which showed large distinct effects on CRP, starches are also a heterogeneous 

macronutrient group and likely exerts mixed effects depending on their solubility and 

digestibility.  Our models indicated that the only dietary factors that were reliable and 

significantly predictive of CRP were sugar, fiber, consumption of alcoholic drinks, 

polyunsaturated fat and dietary cholesterol. 

 

Similar studies of the NHANES data 

 

 Similar studies that examined the effect of the American diet on CRP in the NHANES 

data either using the same dataset, a subgroup of the same dataset, or the data from a 

younger cohort, arrived at some similar results and conclusions but also at important 

differences.  All these studies dichotomized the outcome variable (CRP) and/or the 

independent variables and used ANOVA, ANCOVA and Chi-Square tests, logistic 

regressions, or other methods that were referenced to outside sources but not explained 

in the methods.  None of them presented the rationale for their method choices.  In the 
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studies, the authors dichotomized CRP, its predictors, or both.  Their cutoffs for CRP 

stratification also varied greatly where authors categorized it by quarters, two cutoffs at 

1.0 and 3.0 mg/L, one cutoff at 3.0mg/L or a percentile cutoff at 85% of sex-specific 

distribution (4.4mg/L for males and 7.0mg/L for females).  The dietary data was also 

organized by various dissimilar methods: (1) summarizing the dietary data into a 

discretionary “Healthy Eating Index” that was computed from scoring the dietary 

composition based on the number of servings of specific foods in each food group (Ford 

et al., 2005); (2) combining dietary data into five “food group” categories (dairy, grains, 

fruits, vegetables and meat/other proteins) in servings per day, isolating specific foods 

(Qureshi et al., 2009); (3) and by utilizing micro- and macronutrient nutrient composition, 

but varying by which nutrients were included or excluded in the analyses and as 

covariates (Mazidi, Gao, et al., 2017; Mazidi, Kengne, et al., 2017).     

 One recent examination of this NHANES data was published in two manuscripts 

(Mazidi, Gao, et al., 2017; Mazidi, Kengne, et al., 2017).  This study closely resembled 

ours, except for various stratifications of the data, statistical approach and the exclusion 

various important covariates.  Mazidi and co-authors focused the first manuscript on all 

micro- and macronutrients and a second manuscript on the effects of specific dietary fatty 

acids.  In the first article, while adjusting by age, sex, race, BMI and total caloric intake, 

the authors found that sugar increased while dietary fiber and PUFA decreased across 

CRP quarters.  Their results were in agreement with only the more robust effects detected 

in our analyses (sugar, fiber and PUFA).  They also omitted important nutrients from their 

study, starch, alcohol (or alcoholic drinks) and cholesterol.  Adjusted for age, sex, race, 

BMI and total caloric intake, they found that total PUFA, PUFA 18:2 and PUFA 18:3 
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decreased and total SFA, SFA 4:0, SFA 6:0, SFA 8:0, SFA 10:0, SFA 14:0 and SFA 18:0 

increased across CRP quarters.  We did not find associations between PUFA 18:2 and 

PUFA 18:3, nor for SFA 4:0 and SFA 14:0 after accounting for all confounding factors.  

While we found similar associations between the SFAs 6:0, 8:0, 10:0 and 18:0, we also 

showed that these nutrients were not reliable predictors because of high multicollinearity 

in the data (Appendix 1.3).    

 A second study dichotomized CRP as well as the dietary factors into quartiles 

(dichotomized dependent and independent variables) and included age, race, gender, 

body mass index, smoking status, alcohol consumption, exercise, medications, and total 

caloric intake as covariates (King et al., 2003).  This analytical approach maximizes the 

chances of finding differences “somewhere and anywhere” among any of the 

macronutrient quartiles that can associate to any of the CRP quartiles.  Here, the authors 

concluded that total energetic intake, protein, carbohydrate, fish and cholesterol were not 

associated with CRP.  Fiber was associated with lower CRP and saturated fat was 

associated with elevated CRP, unless adjusted for fiber intake.  With adjustments, only 

the effect of dietary fiber was detected in their study.   

 A third study examined diet in five “food groups” and also percent caloric weight for 

the three major macronutrient types adjusting the data for stratification and clustering 

(Qureshi et al., 2009).  The authors found a significant association of CRP to grains and 

vegetables, as well as a very weaker association to dairy, but not to fruits or meats and 

other proteins.  Whether or not statistically significant, all their dietary variables were 

associated with lower CRP, similar to the bivariate correlations in our study.  The percent 

caloric weight for carbohydrates, fats, protein and dietary fiber (adjusted for caloric intake) 
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did not predict CRP in their study.  The association of CRP to grains and vegetables 

paralleled the direction of effects usually found for dietary fiber in other studies, although 

dietary fiber itself was not significantly associated with a decrease in CRP.   

 A fourth study focused on “Healthy Eating Index” but also included analyses for 

specific food groups and macronutrients, adjusted for age, sex, race, smoking, education, 

BMI, diabetes, caloric intake and others (Ford et al., 2005).  Total cholesterol was 

associated with higher CRP, while alcoholic drinks, energetic intake, grains and 

vegetables were associated with lower CRP, and no association to dairy, meats, or 

legumes were found.  These results differed from ours where we found no effect of 

cholesterol after accounting for metabolic status, the opposite effect for alcoholic drinks 

(unlike our bivariate correlations), and statistical evidence for redundancy in negative 

correlation for caloric intake. 

 Three other studies using overlapping NHANES datasets are notable for their highly 

controversial conclusions by using similarly biased statistical methods.  One study 

examined the association of various markers of metabolic syndrome, including CRP to 

candy consumption (O’Neil et al., 2011). They found that CRP and other markers of 

metabolic syndrome were significantly reduced in consumers of candy and chocolate 

candies.  Contrary to many studies, including ours that show robust proinflammatory 

effects of sugar on metabolic factors and CRP, the authors of this manuscript claimed that 

the “current level of candy consumption was not associated with adverse health effects.”  

A similar study also reported that the estimated fructose and non-fructose sugar contents 

of foods did not affect various markers of metabolic syndrome (CRP was not included in 

their analyses) (Sun et al., 2011).  This study dichotomized fructose as well as non-
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fructose sugar intake into 12 categories and did not account for confounding variables.  It 

should also be noted that O’Neil et al.’s and Sun et al.’s studies, reported funding from 

the National Confectioners Association and Archer Daniels Midland Company, 

respectively.  Their study results were far from the experimental evidence and more in 

keeping with the commercial interests of their research sponsors.  Another study using 

the NHANES data showed that nondrinkers had elevated CRP (31%) more often than 

moderate drinkers (21%) or high frequency drinkers (18%) (Stewart et al., 2002).  This 

study also only adjusted for age, sex, race, BMI, smoking status, two autoimmune disease 

diagnoses (but no other diagnoses) and antiinflammatory use.  This was a typical study 

on alcohol consumption that does not account for confounding factors that were available 

in the dataset such as diet, other metabolic factors, socioeconomic status or diagnoses 

that may have kept participants from drinking.  In our study, bivariate correlations showed 

that alcohol intake (g), as well as number of daily alcoholic drinks, were positively 

correlated with all other nutrients (except sugar), and negatively correlated with CRP 

(seemingly antiinflammatory when unadjusted for confounding factors).  However, when 

all appropriate variables are accounted for, our regression analyses showed a linear 

proinflammatory effect of alcoholic drinks on CRP.  This instance exemplifies how all 

relevant covariates need to be accounted. If a study focuses specifically on dichotomized 

alcohol consumption, and it must also account for the reasons why non-drinkers did not 

drink – which they did not do.  Studies such as this have been under the spotlight for 

systematic errors, specifically highlighting that most studies on alcohol did not account 

for individuals who did not drink because of health conditions (Averina, et al., 2006; 

Fekjaer, 2013; Fillmore et al., 2007; Stockwell et al., 2016). 



142 

 

Significance 

 Similar epidemiological and human studies on diet and health, including previous 

analyses of the NHANES diet data, have produced results that diverge from those 

produced by molecular biology and biochemistry research.   By applying simultaneous 

regression models, avoiding variable dichotomization, and by including in our models all 

relevant confounding factors that were available in the dataset, we estimated the effects 

of dietary carbohydrate and lipids on BMI and CRP.  We tested interactions and non-linear 

relationships, and identified which predictors reliably estimated those outcome variables.  

In addition, we compared BMI to other metabolic factors and tested for mediation effects 

linking diet, adiposity and inflammation.  Unlike similar epidemiological nutrition studies, 

we were able to detect effects that mirror what is expected from molecular biology, 

biochemistry and carefully controlled human and animal studies.  Specifically, we showed 

that macronutrients predicted BMI and CRP better than caloric intake, and that total 

caloric intake became insignificant and unreliable when accounting for macronutrient 

composition of the diet, thereby defeating common notions that obesity and inflammatory 

disease is a simple function of excess caloric intake.  We showed that dietary 

carbohydrates influence BMI and CRP to a much greater extent than dietary lipids, 

defeating the popular belief that dietary fats and cholesterol are drivers of obesity and 

inflammation.  Dietary carbohydrates exhibited the greatest influence on both BMI and 

CRP, mostly though the detrimental effect of sugar and the beneficial effect of dietary 

fiber.  Dietary lipids exhibited relatively little effect on either BMI or CRP.  Importantly, we 

detected macronutrients that exhibited significant effects but which did not yield reliable 
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estimates due to the overlap of their effects with other components of the diet, among 

them:  monounsaturated fats in predicting BMI; and starch, monounsaturated fat and 

protein in predicting CRP.  Among the metabolic factors, BMI exerted the greatest direct 

effect on CRP and was the main mediator of the effect of the macronutrients.   A large 

proportion of the effects of carbohydrates and none of the effects of lipids were mediated 

through BMI.  Additionally, all macronutrient interactions pertained to relationships with 

carbohydrates, but none with lipids.  We detected interactions between sugar and 

magnesium, and starch and proteins in predicting BMI, as well as between starch and 

protein, sugar and fiber, and sugar and starch in predicting CRP, all in the expected 

directions.  The American diet, as it reflected on the NHANES data, did not vary greatly 

in the proportion of macronutrients consumed.  The study population ate more or less of 

everything, as evidenced by high bivariate correlations among the macronutrient types.  

The high correlation among macronutrients and the similar correlation between 

macronutrients and BMI or CRP may also explain why epidemiological studies of the 

American diet may be so easily confounded, and why simultaneous effects, interactions 

of continuous variables and the inclusion of relevant confounding factors are necessary 

for conserving data variance and parsing of specific effects.  Our study adds significantly 

to the epidemiological nutrition literature by replicating effects that are usually found only 

in small controlled studies, thereby minimizing the discrepancies often found between 

those approaches.  By applying modern statistical methods in our study, we contributed 

by challenging decades of dietary dogma in favor of the recent evidence indicating that 

carbohydrates are the major determinants of obesity and inflammation and by showing 
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that body adiposity, not blood cholesterol, is the main mediator of the inflammatory 

physiology. 

 



145 

TABLES 



146 

 



147 

 

 



148 

P
ro
te
in
	(
g
m
)

T
o
ta
l	
s
u
g
a
rs
	(
g
m
)

C
a
lc
u
la
te
d
	S
ta
rc
h

D
ie
ta
ry
	f
ib
e
r	
(g
m
)

A
lc
o
h
o
l	
(g
m
)

N
u
m
b
e
r	
o
f	
A
lc
o
h
o
li
c
	

D
ri
n
k
s
	p
e
r	
D
a
y

T
o
ta
l	
s
a
tu
ra
te
d
	f
a
tt
y
	

a
c
id
s
	(
g
m
)

T
o
ta
l	

m
o
n
o
u
n
s
a
tu
ra
te
d
	

fa
tt
y
	a
c
id
s
	(
g
m
)

T
o
ta
l	

p
o
ly
u
n
s
a
tu
ra
te
d
	

fa
tt
y
	a
c
id
s
	(
g
m
)

C
h
o
le
s
te
ro
l	
(m

g
)

P
ro
te
in
	(
g
)

T
o
ta
l	
s
u
g
a
rs
	(
g
)

.3
86

**

C
a
lc
u
la
te
d
	S
ta
rc
h
	(
g
)

.6
31

**
.4
26

**

D
ie
ta
ry
	f
ib
e
r	
(g
)

.4
78

**
.2
93

**
.5
92

**

A
lc
o
h
o
l	
(g
)

.1
64

**
-.0

35
**

.2
12

**
-.0

20
*

N
u
m
b
e
r	
o
f	
A
lc
o
h
o
li
c
	D
ri
n
k
s
	p
e
r	
D
a
y

.1
28

**
-.0

24
**

.1
55

**
-.0

07
.5
59

**

T
o
ta
l	
s
a
tu
ra
te
d
	f
a
tt
y
	a
c
id
s
	(
g
)

.7
27

**
.4
72

**
.5
69

**
.3
17

**
.1
06

**
.0
88

**

T
o
ta
l	
m
o
n
o
u
n
s
a
tu
ra
te
d
	f
a
tt
y
	a
c
id
s
	(
g
)

.7
42

**
.4
30

**
.6
17

**
.3
99

**
.1
27

**
.0
93

**
.8
82

**

T
o
ta
l	
p
o
ly
u
n
s
a
tu
ra
te
d
	f
a
tt
y
	a
c
id
s
	(
g
)

.6
03

**
.3
57

**
.5
71

**
.4
38

**
.0
91

**
.0
55

**
.6
41

**
.8
04

**

C
h
o
le
s
te
ro
l	
(m

g
)

.6
56

**
.2
38

**
.3
26

**
.1
61

**
.1
16

**
.0
82

**
.5
99

**
.5
94

**
.4
49

**

E
n
e
rg
y
	(
k
c
a
l)

.8
16

**
.6
75

**
.8
21

**
.5
14

**
.3
14

**
.2
00

**
.8
31

**
.8
56

**
.7
37

**
.5
51

**

B
o
d
y
	M

a
s
s
	I
n
d
e
x
	(
k
g
/
m
*
*
2
)

-.0
03

-.0
46

**
-.0

49
**

-.0
58

**
-.0

77
**

-.0
80

**
-.0

01
.0
10

.0
04

.0
37

**

G
ly
c
o
h
e
m
o
g
lo
b
in
	(
%
)

-.0
52

**
-.1

15
**

-.0
75

**
-.0

22
**

-.0
71

**
-.0

56
**

-.0
68

**
-.0

51
**

-.0
47

**
.0
10

T
o
ta
l	
C
h
o
le
s
te
ro
l(
	m

g
/
d
L
)

-.0
17

*
-.0

32
**

-.0
39

**
-.0

12
.0
45

**
.0
42

**
-.0

15
-.0

23
**

-.0
37

**
.0
03

D
ir
e
c
t	
H
D
L
-C
h
o
le
s
te
ro
l	
(m

g
/
d
L
)

-.0
84

**
-.1

19
**

-.0
94

**
-.0

18
*

.1
15

**
.1
03

**
-.0

64
**

-.0
67

**
-.0

28
**

-.0
67

**

S
y
s
to
li
c

-.0
72

**
-.0

94
**

-.0
72

**
-.0

34
**

.0
34

**
.0
39

**
-.0

74
**

-.0
65

**
-.0

64
**

-.0
20

*

D
ia
s
to
li
c

.0
59

**
.0
32

**
.0
44

**
.0
01

.0
84

**
.0
67

**
.0
58

**
.0
72

**
.0
57

**
.0
49

**

C
-r
e
a
c
ti
v
e
	p
ro
te
in
(m

g
/
L
)

-.0
75

**
-.0

23
**

-.0
82

**
-.0

86
**

-.0
51

**
-.0

33
**

-.0
47

**
-.0

52
**

-.0
59

**
-.0

26
**

T
a
b
le
	3
.	
	B
iv
a
ri
a
te
	C
o
rr
e
la
ti
o
n
s
	A
m
o
n
g
	M

a
c
ro
n
u
tr
ie
n
ts
,	
T
o
ta
l	
C
a
lo
ri
e
s
,	
M
e
ta
b
o
li
c
	F
a
c
to
rs
	a
n
d
	C
-R
e
a
c
ti
v
e
	P
ro
te
in

**
	S
ig
ni
fic
an
t	a

t	t
he

	0
.0
1;
	*
	S
ig
ni
fic
an
t	a

t	t
he

	0
.0
5	
le
ve
l.



149 

  



150 

References 

 
Abbott, S. K., Else, P. L., Atkins, T. A., & Hulbert, A. J. (2012). Fatty acid composition of 

membrane bilayers: Importance of diet polyunsaturated fat balance. Biochimica et 
Biophysica Acta - Biomembranes, 1818(5), 1309–1317. 
http://doi.org/10.1016/j.bbamem.2012.01.011 

Akande, K. E., Doma, U. D., Agu, H. O., & Adamu, H. M. (2010). Major antinutrients 
found in plant protein sources: Their effect on nutrition. Pakistan Journal of 
Nutrition, 9(8), 827–832. http://doi.org/10.3923/pjn.2010.827.832 

Alessa, H. B., Ley, S. H., Rosner, B., Malik, V. S., Willett, W. C., Campos, H., & Hu, F. B. 
(2016). High Fiber and Low Starch Intakes Are Associated with Circulating 
Intermediate Biomarkers of Type 2 Diabetes among Women. The Journal of 
Nutrition, 146(2), 306–17. http://doi.org/10.3945/jn.115.219915 

Aljada, A., Friedman, J., Ghanim, H., Mohanty, P., Hofmeyer, D., Chaudhuri, A., & 
Dandona, P. (2006). Glucose ingestion induces an increase in intranuclear nuclear 
factor κB, a fall in cellular inhibitor κB, and an increase in tumor necrosis factor α 
messenger RNA by mononuclear cells in healthy human subjects. Metabolism: 
Clinical and Experimental, 55(9), 1177–1185. 
http://doi.org/10.1016/j.metabol.2006.04.016 

Altannavch, T., Roubalová, K., Kučera, P., & Anděl, M. (2004). Effect of High Glucose 
Concentrations on Expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with 
and without Cytokine Activation. Physiological Research, 53(1), 77–82. 

Altman, D. G., & Royston, P. (2006). The cost of dichotomizing continuous variables. 
British Medical Journal, 332(7549), 1080. http://doi.org/10.1136/bmj.332.7549.1080 

Andoh, A., Bamba, T., & Sasaki, M. (1999). Physiological and antiinflammatory roles of 
dietary fiber and butyrate in intestinal functions. Journal of Parenteral and Enteral 
Nutrition, 23(5), S70–S73. http://doi.org/10.1177/014860719902300518 

Angelica, M. D., & Fong, Y. (2008). Oxidized LDL and AGE-LDL in Circulating Immune 
Complexes Strongly Predict Progression of Carotid Artery IMT in Type 1 Diabetes. 
October, 141(4), 520–529. http://doi.org/10.1016/j.surg.2006.10.010.Use 

Anty, R., Bekri, S., Luciani, N., Saint-Paul, M.-C., Dahman, M., Iannelli, A., … Gual, P. 
(2006). The inflammatory C-reactive protein is increased in both liver and adipose 
tissue in severely obese patients independently from metabolic syndrome, Type 2 
diabetes, and NASH. The American Journal of Gastroenterology, 101(4), 1824–
1833. http://doi.org/10.1111/j.1572-0241.2006.00724.x 

Aranceta, J., & Pérez-Rodrigo, C. (2012). Recommended dietary reference intakes, 
nutritional goals and dietary guidelines for fat and fatty acids: a systematic review. 
British Journal of Nutrition, 107(S2), S8–S22. 
http://doi.org/10.1017/S0007114512001444 

Atkinson, F., Foster-Powell, K., & Brand-Miller, J. C. (2008). International Tables of 
Glycemic Index and Glycemic Load Values: 2008. Diabetes Care, 31(12), 2281–
2283. http://doi.org/10.2337/dc08-1239.J.B.M. 

Averina, M., Nilssen, O., Arkhipovsky, V. L., Kalinin, A. G., & Brox, J. (2006). C-reactive 
protein and alcohol consumption: Is there a U-shaped association? Results from a 



151 

population-based study in Russia. The Arkhangelsk Study. Atherosclerosis, 188(2), 
309–315. http://doi.org/10.1016/j.atherosclerosis.2005.11.007 

Ballard, K. D., Quann, E. E., Kupchak, B. R., Volk, B. M., Kawiecki, D. M., Fernandez, 
M. L., … Volek, J. S. (2013). Dietary carbohydrate restriction improves insulin 
sensitivity, blood pressure, microvascular function, and cellular adhesion markers in 
individuals taking statins. Nutrition Research (New York, N.Y.), 33(11), 905–12. 
http://doi.org/10.1016/j.nutres.2013.07.022 

Bednar, G. E., Patil, A. R., Murray, S. M., Grieshop, C. M., Merchen, N. R., & Fahey, G. 
C. (2001). Starch and Fiber Fractions in Selected Food and Feed Ingredients Affect 
Their Small Intestinal Digestibility and Fermentability and Their Large Bowel 
Fermentability In Vitro in a Canine Model. Journal of Nutrition, 131(2), 276–286. 

Behall, K. M., & Howe, J. C. (1995). Contribution of fiber and resistant starch to 
metabolizable energy. In American Journal of Clinical Nutrition (Vol. 62, p. 1158S–
1160S). 

Bingham, S. (1997). Meat, starch and non-starch polysaccharides, are epidemiological 
and experimental findings consistent with acquired genetic alterations in sporadic 
colorectal cancer? Cancer Letters, 114(1), 25–34. 

Bremer, A. A., Stanhope, K. L., Graham, J. L., Cummings, B. P., Wang, W., Saville, B. 
R., & Havel, P. J. (2011). Fructose-Fed Rhesus Monkeys: A Nonhuman Primate 
Model of Insulin Resistance, Metabolic Syndrome, and Type 2 Diabetes. Clinical 
and Translational Science, 4(4), 243–252. http://doi.org/10.1111/j.1752-
8062.2011.00298.x 

Brouns, F. J. P. H., Van Buul, V. J., Shewry, P. R., Buul, V. J. Van, & Shewry, P. R. 
(2013). Does wheat make us fat and sick? Journal of Cereal Science, 58(2), 209–
215. http://doi.org/10.1016/j.jcs.2013.06.002 

Buettner, R., Schölmerich, J., & Bollheimer, L. C. (2007). High-fat diets: modeling the 
metabolic disorders of human obesity in rodents. Obesity, 15(4), 798–808. 
http://doi.org/10.1038/oby.2007.608 

Buyken, A. E., Flood, V., Empson, M., Rochtchina, E., Barclay, A. W., Brand-Miller, J., & 
Mitchell, P. (2010). Carbohydrate nutrition and inflammatory disease mortality in 
older adults. American Journal of Clinical Nutrition, 92(3), 634–643. 
http://doi.org/10.3945/ajcn.2010.29390 

Calabro, P., Chang, D. W., Willerson, J. T., & Yeh, E. T. (2005). Release of C-Reactive 
Protein in Response to Inflammatory Cytokines by Human Adipocytes: Linking 
Obesity to Vascular Inflammation. Journal of the American College of Cardiology, 
46(6), 1112–1113. http://doi.org/10.1016/j.jacc.2005.06.017 

Carrera-Bastos, P., Fontes-Villalba, M., O’Keefe, Lindeberg, Cordain, Fontes, … 
Cordain. (2011). The Western Diet and lifestyle and diseases of civilization. 
Research Reports in Clinical Cardiology, 2011(2), 15–35. 
http://doi.org/10.2147/RRCC.S16919 

Carroll, J. F., Fulda, K. G., Chiapa, A. L., Rodriquez, M., Phelps, D. R., Cardarelli, K. M., 
… Cardarelli, R. (2009). Impact of race/ethnicity on the relationship between 
visceral fat and inflammatory biomarkers. Obesity (Silver Spring, Md.), 17(7), 1420–
1427. http://doi.org/10.1038/oby.2008.657 

Castell, J. V., Gómez-Lechón, M. J., David, M., Andus, T., Geiger, T., Trullenque, R., … 
Heinrich, P. C. (1989). Interleukin-6 is the major regulator of acute phase protein 



152 

synthesis in adult human hepatocytes. FEBS Letters, 242(2), 237–239. 
http://doi.org/10.1016/0014-5793(89)80476-4 

Centers for Disease Control and Prevention (CDC). National Center for Health Statistics 
(NCHS). National Health and Nutrition Examination Survey Laboratory Protocol. 
(2003). Hyattsville, MD: U.S. Department of Health and Human Services, Centers 
for Disease Control and Prevention. 

Centers for Disease Control and Prevention (CDC). National Center for Health Statistics 
(NCHS). National Health and Nutrition Examination Survey Questionnaire. (2003). 
Hyattsville, MD: Department of Health and Human Services, Centers for Disease 
Control and Prevention. 

Ceriello, A., Esposito, K., Piconi, L., Ihnat, M. A., Thorpe, J. E., Testa, R., … Giugliano, 
D. (2008). Oscillating Glucose Is More Deleterious to Endothelial. Diabetes, 
57(May), 1349–1354. http://doi.org/10.2337/db08-0063.FMD 

Chakraborti, C. K. (2015). New-found link between microbiota and obesity. World 
Journal of Gastrointestinal Pathophysiology, 6(4), 110. 
http://doi.org/10.4291/wjgp.v6.i4.110 

Chen, L., Chen, R., Wang, H., & Liang, F. (2015). Mechanisms Linking Inflammation to 
Insulin Resistance. International Journal of Endocrinology, 2015. 

Chen, N. G., Azhar, S., Abbasi, F., Carantoni, M., & Reaven, G. M. (2000). The 
relationship between plasma glucose and insulin responses to oral glucose, LDL 
oxidation, and soluble intercellular adhesion molecule-1 in healthy volunteers. 
Atherosclerosis, 152(1), 203–8. 

Chen, W., Gluud, C., & Kjaergard, L. L. (2017). Association of Funding and Conclusions 
in Randomized Drug Trials. The Journal of the American Medical Association, 
290(7), 921–928. 

Chick, J., & Kemppainen, E. (2007). Estimating alcohol consumption. In Pancreatology 
(Vol. 7, pp. 157–161). http://doi.org/10.1159/000104249 

Cigliano, L., Spagnuolo, M. S., Crescenzo, R., Cancelliere, R., Iannotta, L., Mazzoli, A., 
… Iossa, S. (2017). Short-Term Fructose Feeding Induces Inflammation and 
Oxidative Stress in the Hippocampus of Young and Adult Rats. Molecular 
Neurobiology. http://doi.org/10.1007/s12035-017-0518-2 

Cox, G. E., Taylor, C. B., Cox, L. G., & Counts, M. A. (1958). Atherosclerosis in rhesus 
monkeys. I. Hypercholesteremia induced by dietary fat and cholesterol. AMA Arch 
Pathol, 66(1), 32–52. 

Coyle, E. F., Jeukendrup, A. E., Wagenmakers, A. J., & Saris, W. H. (1997). Fatty acid 
oxidation is directly regulated by carbohydrate metabolism during exercise. 
American Journal of Physiology, 273(2 Pt 1), E268-75. 

Davis, H. E. (2013). Fasting time and lipid levels in a community-based population. 
Cardiology Review, 29(1), 1707–1710. 
http://doi.org/10.1001/archinternmed.2012.3708 

Dawson, N. V., & Weiss, R. (2012). Dichotomizing Continuous Variables in Statistical 
Analysis. Medical Decision Making, 32(2), 225–226. 
http://doi.org/10.1177/0272989X12437605 

Devaraj, S., Torok, N., Dasu, M. R., Samols, D., & Jialal, I. (2008). Adiponectin 
decreases C-reactive protein synthesis and secretion from endothelial cells: 



153 

Evidence for an adipose tissue-vascular loop. Arteriosclerosis, Thrombosis, and 
Vascular Biology, 28(7), 1368–1374. http://doi.org/10.1161/ATVBAHA.108.163303 

Dhindsa, S., Tripathy, D., Mohanty, P., Ghanim, H., Syed, T., Aljada, A., & Dandona, P. 
(2004). Differential effects of glucose and alcohol on reactive oxygen species 
generation and intranuclear nuclear factor-kappaB in mononuclear cells. 
Metabolism: Clinical and Experimental, 53(3), 330–334. 
http://doi.org/10.1016/j.metabol.2003.10.013 

Dietschy, J. M., Turley, S. D., & Spady, D. K. (1993). Role of liver in the maintenance of 
cholesterol and low-density lipoprotein homeostasis in different animal species, 
including humans. Journal of Lipid Research, 34(10), 1637–1659. 

Duewell, P., Kono, H., Rayner, K. J., Sirois, C. M., Vladimer, G., Bauernfeind, F. G., … 
Latz, E. (2010). NLRP3 inflammasomes are required for atherogenesis and 
activated by cholesterol crystals. Nature, 464(7293), 1357–1361. 
http://doi.org/10.1038/nature08938 

Dufour, M. C. (1999). What is moderate drinking? Defining “drinks” and drinking levels. 
Alcohol Research & Healt: The Journal of the National Institute on Alcohol Abuse 
and Alcoholism, 23(1), 5–14. 

Dupuis, N., Curatolo, N., Benoist, J. F., & Auvin, S. (2015). Ketogenic diet exhibits 
antiinflammatory properties. Epilepsia, 56(7), e95–e98. 
http://doi.org/10.1111/epi.13038 

El-hady, E. A. A., & Habiba, R. A. (2003). Effect of soaking and extrusion conditions on 
antinutrients and protein digestibility of legume seeds. LWT - Food Science and 
Technology, 36(3), 285–293. http://doi.org/10.1016/S0023-6438(02)00217-7 

Fabbrini, E., Higgins, P. B., Magkos, F., Bastarrachea, R. A., Voruganti, V. S., Comuzzie, 
A. G., … Klein, S. (2013). Metabolic response to high-carbohydrate and low-
carbohydrate meals in a nonhuman primate model. AJP: Endocrinology and 
Metabolism, 304(4), E444–E451. http://doi.org/10.1152/ajpendo.00347.2012 

Fekjær, H. O. (2013). Alcohol-a universal preventive agent? A critical analysis. 
Addiction, 108(12), 2051–2057. http://doi.org/10.1111/add.12104 

Fernandez, M. L. (2012). Rethinking dietary cholesterol. Current Opinion in Clinical 
Nutrition and Metabolic Care, 15(2), 117–121. 
http://doi.org/10.1097/MCO.0b013e32834d2259 

Fillmore, K. M., Stockwell, T., Chikritzhs, T., Bostrom, A., & Kerr, W. (2007). Moderate 
Alcohol Use and Reduced Mortality Risk: Systematic Error in Prospective Studies 
and New Hypotheses. Annals of Epidemiology, 17(5), S16–S23. 
http://doi.org/10.1016/j.annepidem.2007.01.005 

Ford, E., Mokdad, A., & Liu, S. (2005). Healthy Eating Index and C-reactive protein 
concentration: findings from the National Health and Nutrition Examination Survey 
III, 1988-1994. European Journal of Clinical Nutrition, 59(2), 278–283. 
http://doi.org/10.1038/sj.ejcn.1602070 

Forouhi, N. G., Sattar, N., & McKeigue, P. M. (2001). Relation of C-reactive protein to 
body fat distribution and features of the metabolic syndrome in Europeans and 
South Asians. Int J Obes Relat Metab Disord, 25(9), 1327–1331. 
http://doi.org/10.1038/sj.ijo.0801723 

Forsythe, C. E., Phinney, S. D., Feinman, R. D., Volk, B. M., Freidenreich, D., Quann, 
E., … Volek, J. S. (2010). Limited effect of dietary saturated fat on plasma 



154 

saturated fat in the context of a low carbohydrate diet. Lipids, 45(10), 947–962. 
http://doi.org/10.1007/s11745-010-3467-3 

Forsythe, C. E., Phinney, S. D., Fernandez, M. L., Quann, E. E., Wood, R. J., Bibus, D. 
M., … Volek, J. S. (2008). Comparison of low fat and low carbohydrate diets on 
circulating fatty acid composition and markers of inflammation. Lipids, 43(1), 65–77. 
http://doi.org/10.1007/s11745-007-3132-7 

Franceschi, C., & Campisi, J. (2014). Chronic inflammation (Inflammaging) and its 
potential contribution to age-associated diseases. Journals of Gerontology - Series 
A Biological Sciences and Medical Sciences, 69, S4–S9. 
http://doi.org/10.1093/gerona/glu057 

Fu, M. X., Wells-Knecht, K. J., Blackledge, J. A., Lyons, T. J., Thorpe, S. R., & Baynes, 
J. W. (1994). Glycation, glycoxidation, and cross-linking of collagen by glucose: 
Kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. 
Diabetes, 43(5), 676–683. http://doi.org/10.2337/diab.43.5.676 

Furtwængler, N. A. F. F., & De Visser, R. O. (2013). Lack of international consensus in 
low-risk drinking guidelines. Drug and Alcohol Review, 32(1), 11–18. 
http://doi.org/10.1111/j.1465-3362.2012.00475.x 

Gardner, C. D., Kiazand, A., Alhassan, S., Kim, S., Stafford, R. S., Balise, R. R., … 
King, A. C. (2007). Comparison of the Atkins, Zone, Ornish, and LEARN Diets for 
Change in Weight and Related Risk Factors Among Overweight Premenopausal 
Women. JAMA, 297(9), 969. http://doi.org/10.1001/jama.297.9.969 

Gasior, M., Rogawski, M. A., & Hartman, A. L. (2006). Neuroprotective and disease-
modifying effects of the ketogenic diet. Behavioural Pharmacology, 17(5–6), 431–9. 
http://doi.org/10.1097/00008877-200609000-00009 

Gierens, H., Nauck, M., Roth, M., Schinker, R., Schürmann, C., Scharnagl, H., … März, 
W. (2000). Interleukin-6 stimulates LDL receptor gene expression via activation of 
sterol-responsive and Sp1 binding elements. Arteriosclerosis, Thrombosis, and 
Vascular Biology, 20(7), 1777–83. http://doi.org/10.1161/01.ATV.20.7.1777 

Ginsberg, H. N., Karmally, W., Siddiqui, M., Holleran, S., Tall, A. R., Blaner, W. S., & 
Ramakrishnan, R. (1995). Increases in Dietary Cholesterol Are Associated with 
Modest Increases in Both LDL and HDL Cholesterol in Healthy Young Women. 
Arteriosclerosis, Thrombosis, and Vascular Biology, 15(2), 169 LP-178. 
http://doi.org/10.1161/01.ATV.15.2.169 

Giugliano, D., Ceriello, A., & Esposito, K. (2006). The Effects of Diet on Inflammation. 
Emphasis on the Metabolic Syndrome. Journal of the American College of 
Cardiology, 48(4), 677–685. http://doi.org/10.1016/j.jacc.2006.03.052 

Goode, E. C., & Watson, A. J. M. (2012). Mesenteric fat as a source of CRP and target 
for bacterial translocation in Crohn’s disease. Gastroenterology, 143(2), 496–8. 
http://doi.org/10.1053/j.gastro.2012.06.018 

Gray, J. I., Gomaa, E. A., Buckley, D. J., Gomaaa, E. A., Buckleyb, D. J., Gomaa, E. A., 
& Buckley, D. J. (1996). Oxidative quality and shelf life of meats. Meat Science, 
43(1), 111–123. http://doi.org/10.1016/0309-1740(96)00059-9 

Greene, D. A., Stevens, M. J., Obrosova, I., & Feldman, E. L. (1999). Glucose-induced 
oxidative stress and programmed cell death in diabetic neuropathy. European 
Journal of Pharmacology, 375(1–3), 217–223. http://doi.org/10.1016/S0014-
2999(99)00356-8 



155 

Griffin, J. D., & Lichtenstein, A. H. (2013). Dietary Cholesterol and Plasma Lipoprotein 
Profiles: Randomized-Controlled Trials. Current Nutrition Reports, 2(4), 274–282. 
http://doi.org/10.1007/s13668-013-0064-0 

Grundy, S. M., Rakita, L., Robertson, R. M., Weisfeldt, M. L., President, A. H. A., 
Cleeman, J. I., … Reviewer, S. (2016). The Cholesterol Facts Cholesterol, and 
Coronary Heart Disease. American Heart Association. 

Gulliford, M. C., Bicknell, E. J., & Scarpello, J. H. (1989). Differential effect of protein 
and fat ingestion on blood glucose responses to high- and low-glycemic-index 
carbohydrates in noninsulin- dependent diabetic subjects. American Journal of 
Clinical Nutrution, 50(4), 773–777. 

Gupta, N. K., De Lemos, J. A., Ayers, C. R., Abdullah, S. M., McGuire, D. K., & Khera, A. 
(2012). The relationship between C-reactive protein and atherosclerosis differs on 
the basis of body mass index: The Dallas Heart Study. Journal of the American 
College of Cardiology, 60(13), 1148–1155. http://doi.org/10.1016/j.jacc.2012.04.050 

Heldenberg, D., Rubinstein, A., Levtov, O., Berns, L., Werbin, B., & Tamir, I. (1980). 
Serum lipids and lipoprotein concentrations during the acute phase of myocardial 
infarction. Atherosclerosis, 35(4), 433–437. http://doi.org/10.1016/0021-
9150(80)90184-7 

Hite, A. H., Berkowitz, V. G., & Berkowitz, K. (2011). Low-carbohydrate diet review: 
shifting the paradigm. Nutrition in Clinical Practice, 26(3), 300–308. 
http://doi.org/10.1177/0884533611405791 

Hite, A. H., Feinman, R. D., Guzman, G. E., Satin, M., Schoenfeld, P. a, & Wood, R. J. 
(2010). In the face of contradictory evidence: report of the Dietary Guidelines for 
Americans Committee. Nutrition (Burbank, Los Angeles County, Calif.), 26(10), 
915–24. http://doi.org/10.1016/j.nut.2010.08.012 

Holahan, C. K., Carole, C. J., Schutte, K. K., Brennan, P. L., Moos, B. S., & Moos, R. H. 
(2010). Late-life alcohol consumption and 20-year mortality. Alcoholism: Clinical 
and Experimental Research, 34(11), 1961–1971. http://doi.org/10.1111/j.1530-
0277.2010.01286.x 

Hooper, L., Abdelhamid, A., Moore, H. J., Douthwaite, W., Skeaff, C. M., & Summerbell, 
C. D. (2012). Effect of reducing total fat intake on body weight: systematic review 
and meta-analysis of randomised controlled trials and cohort studies. BMJ, 
345(dec06 1), e7666–e7666. http://doi.org/10.1136/bmj.e7666 

Hou, J. K., Abraham, B., & El-Serag, H. (2011). Dietary intake and risk of developing 
inflammatory bowel disease: a systematic review of the literature. The American 
Journal of Gastroenterology, 106(4), 563–573. http://doi.org/10.1038/ajg.2011.44 

Humphreys, K. J., Conlon, M. A., Young, G. P., Topping, D. L., Hu, Y., Winter, J. M., … 
Le Leu, R. K. (2014). Dietary manipulation of oncogenic microRNA expression in 
human rectal mucosa: A randomized trial. Cancer Prevention Research, 7(8), 786–
795. http://doi.org/10.1158/1940-6207.CAPR-14-0053 

Hussain, T. A., Mathew, T. C., Dashti, A. A., Asfar, S., Al-Zaid, N., & Dashti, H. M. (2012). 
Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. 
Nutrition, 28(10), 1016–1021. http://doi.org/10.1016/j.nut.2012.01.016 

Itabe, H., Obama, T., & Kato, R. (2011). The Dynamics of Oxidized LDL during 
Atherogenesis. Journal of Lipids, 2011, 1–9. http://doi.org/10.1155/2011/418313 



156 

Jackson, R., & Beaglehole, R. (1995). Alcohol consumption guidelines: relative safety vs 
absolute risks and benefits. The Lancet, 346(8977), 716. 
http://doi.org/10.1016/S0140-6736(95)91496-X 

Jameel, F., Phang, M., Wood, L. G., & Garg, M. L. (2014). Acute effects of feeding 
fructose, glucose and sucrose on blood lipid levels and systemic inflammation. 
Lipids in Health and Disease, 13(1), 195. http://doi.org/10.1186/1476-511X-13-195 

Janssen, I., Katzmarzyk, P. T., & Ross, R. (2004). Waist circumference and not body 
mass index explains obesity- related health risk. American Journal of Clinical 
Nutrition, 79(3), 379–384. 

Jawień, J., Nastałek, P., & Korbut, R. (2004). Mouse models of experimental 
atherosclerosis. Journal of Physiological Pharmacology, 55(3), 503–517. 
http://doi.org/10.1115/1.4026364 

Jena, P. K., Singh, S., Prajapati, B., Nareshkumar, G., Mehta, T., & Seshadri, S. (2014). 
Impact of targeted specific antibiotic delivery for gut microbiota modulation on high-
fructose-fed rats. Applied Biochemistry and Biotechnology, 172(8), 3810–3826. 
http://doi.org/10.1007/s12010-014-0772-y 

Jenkins, D. J., Axelsen, M., Kendall, C. W., Augustin, L. S., Vuksan, V., & Smith, U. 
(2000). Dietary fibre, lente carbohydrates and the insulin-resistant diseases. The 
British Journal of Nutrition, 83 Suppl 1(2000), S157–S163. 
http://doi.org/10.1017/S0007114500001100 

Jenkins, D. J., Wolever, T. M., Collier, G. R., Ocana, A., Rao, A. V, Buckley, G., … 
Thompson, L. U. (1987). Metabolic of a low-glycemic-index. American Journal of 
Clinical Nutrition, 46(6), 968–975. 

Joven, J., Rull, A., Ferré, N., Escolà-Gil, J. C., Marsillach, J., Coll, B., … Camps, J. 
(2007). The results in rodent models of atherosclerosis are not interchangeable. 
The influence of diet and strain. Atherosclerosis, 195(2), 85–92. 
http://doi.org/10.1016/j.atherosclerosis.2007.06.012 

Kazumi, T., Vranic, M., & Steiner, G. (1986). Triglyceride kinetics: effects of dietary 
glucose, sucrose, or fructose alone or with hyperinsulinemia. The American Journal 
of Physiology, 250(3 Pt 1), E325-30. 

Khatana, S. A. M., Taveira, T. H., Dooley, A. G., & Wu, W. C. (2010). The association 
between C-reactive protein levels and insulin therapy in obese vs nonobese 
veterans with type 2 diabetes mellitus. Journal of Clinical Hypertension, 12(6), 462–
468. http://doi.org/10.1111/j.1751-7176.2010.00296.x 

King, D. E., Egan, B. M., & Geesey, M. E. (2003). Relation of dietary fat and fiber to 
elevation of C-reactive protein. American Journal of Cardiology, 92(11), 1335–
1339. http://doi.org/10.1016/j.amjcard.2003.08.020 

Koster, A., Bosma, H., Penninx, B. W. J. H., Newman, A. B., Harris, T. B., van Eijk, J. T. 
M., … Kritchevsky, S. B. (2006). Association of inflammatory markers with 
socioeconomic status. Journals of Gerontology. Series A, Biological Sciences and 
Medical Sciences, 61, 284–290. http://doi.org/10.1093/gerona/61.3.284 

Kris-Etherton, P. M. (2010). Trans-Fats and Coronary Heart Disease. Critical Reviews in 
Food Science and Nutrition, 50, 29–30. http://doi.org/Pii 
930706839\r10.1080/10408398.2010.526872 



157 

La Vecchia, C., Negri, E., D’Avanzo, B., Ferraroni, M., Gramenzi, A., Savoldelli, R., … 
Franceschi, S. (1990). Medical history, diet and pancreatic cancer. Oncology, 47(6), 
463–466. http://doi.org/10.1159/000226872 

Lattimer, J. M., & Haub, M. D. (2010). Effects of dietary fiber and its components on 
metabolic health. Nutrients, 2(12), 1266–1289. http://doi.org/10.3390/nu2121266 

Lau, D. C. W., Dhillon, B., Yan, H., Szmitko, P. E., & Verma, S. (2005). Adipokines: 
molecular links between obesity and atheroslcerosis. American Journal of 
Physiology. Heart and Circulatory Physiology, 288(5), H2031-41. 
http://doi.org/10.1152/ajpheart.01058.2004 

Le Leu, R. K., Winter, J. M., Christophersen, C. T., Young, G. P., Humphreys, K. J., Hu, 
Y., … Conlon, M. A. (2015). Butyrylated starch intake can prevent red meat-induced 
O6-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomized clinical 
trial. British Journal of Nutrition, 114(2), 220–230. 
http://doi.org/10.1017/S0007114515001750 

Lecerf, J.-M., & de Lorgeril, M. (2011). Dietary cholesterol: from physiology to 
cardiovascular risk. The British Journal of Nutrition, 106(1), 6–14. 
http://doi.org/10.1017/S0007114511000237 

Lercker, G. & Rodriguez-Estrada, M. T. (2000). Cholesterol Oxidation: Presence of 7-
ketocholesterol in Different Food Products. Journal of Food Composition and 
Analysis, 13(4), 625–631. http://doi.org/10.1006/jfca.2000.0901 

Lewis, G. F. & Steiner, G. (1996). Acute effects of insulin in the control of VLDL 
production in humans: Implications for the insulin-resistant state. In Diabetes Care 
(Vol. 19, pp. 390–393). http://doi.org/10.2337/diacare.19.4.390 

Lewis, G. F., Uffelman, K. D., Szeto, L. W., & Steiner, G. (1993). Effects of acute 
hyperinsulinemia on VLDL triglyceride and VLDL ApoB production in normal weight 
and obese individuals. Diabetes, 42(6), 833–842. 
http://doi.org/10.2337/diabetes.42.6.833 

Lieber, C. S. (2004). Alcoholic fatty liver: Its pathogenesis and mechanism of 
progression to inflammation and fibrosis. Alcohol, 34(1), 9–19. 
http://doi.org/10.1016/j.alcohol.2004.07.008 

Lindhorst, E., Young, D., Bagshaw, W., Hyland, M., & Kisilevsky, R. (1997). Acute 
inflammation, acute phase serum amyloid A and cholesterol metabolism in the 
mouse. Biochimica et Biophysica Acta, 1339(1), 143–154. 
http://doi.org/10.1016/S0167-4838(96)00227-0 

Lockyer, S., & Nugent, A. P. (2017). Health effects of resistant starch. Nutrition Bulletin, 
42(1), 10–41. http://doi.org/10.1111/nbu.12244 

Lopes, A., Vilela, T. C., Taschetto, L., Vuolo, F., Petronilho, F., Dal-Pizzol, F., … Schuck, 
P. F. (2014). Evaluation of the Effects of Fructose on Oxidative Stress and 
Inflammatory Parameters in Rat Brain. Molecular Neurobiology, 50(3), 1124–1130. 
http://doi.org/10.1007/s12035-014-8676-y 

Lustig, R. H. (2013). Fructose: it’s “alcohol without the buzz”. Advances in Nutrition 
(Bethesda, Md.), 4(2), 226–35. http://doi.org/10.3945/an.112.002998 

Lyons, T. J. (1992). Lipoprotein glycation and its metabolic consequences. Diabetes, 
41(SUPPL. 2), 67–73. http://doi.org/10.1097/00041433-199706000-00008 

Lyte, M., Chapel, A., Lyte, J. M., Ai, Y., Proctor, A., Jane, J.-L., & Phillips, G. J. (2016). 
Resistant Starch Alters the Microbiota-Gut Brain Axis: Implications for Dietary 



158 

Modulation of Behavior. PloS One, 11(1), e0146406. 
http://doi.org/10.1371/journal.pone.0146406 

MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of 
dichotomization of quantitative variables. Psychological Methods, 7(1), 19–40. 
http://doi.org/10.1037/1082-989X.7.1.19 

Mandrekar, P., & Szabo, G. (2009). Signaling pathways in alcohol-induced liver 
inflammation. Journal of Hepatology, 50(6), 1258–1266. 
http://doi.org/10.1016/j.jhep.2009.03.007 

Marshall, T. A. (2011). Dietary Guidelines for Americans, 2010: an update. Journal of 
the American Dental Association, 142(6), 654–6. http://doi.org/10.1016/S0300-
7073(05)71075-6 

Mattison, J. A., Wang, M., Bernier, M., Zhang, J., Park, S. S., Maudsley, S., … De Cabo, 
R. (2014). Resveratrol prevents high fat/sucrose diet-induced central arterial wall 
inflammation and stiffening in nonhuman primates. Cell Metabolism, 20(1), 183–
190. http://doi.org/10.1016/j.cmet.2014.04.018 

Mazidi, M., Gao, H., Vatanparast, H., & Kengne, A. P. (2017). Impact of the dietary fatty 
acid intake on C-reactive protein levels in US adults. Medicine, 96(7), 1–5. 
http://doi.org/10.1097/MD.0000000000005736 

Mazidi, M., Kengne, A. P., P. Mikhailidis, D., F. Cicero, A., & Banach, M. (2017). Effects 
of selected dietary constituents on high-sensitivity C-reactive protein levels in U.S. 
adults. Annals of Medicine, 49(6), 1–14. 
http://doi.org/10.1080/07853890.2017.1325967 

Moher, D., Tetzlaff, J., Tricco, A. C., Sampson, M., & Altman, D. G. (2007). Epidemiology 
and reporting characteristics of systematic reviews. PLoS Medicine, 4(3), e78. 
http://doi.org/10.1371/journal.pmed.0040078 

Monteiro, R., & Azevedo, I. (2010). Chronic inflammation in obesity and the metabolic 
syndrome. Mediators of Inflammation, 2010(Atp Iii), 1–10. 
http://doi.org/10.1155/2010/289645 

Moser, H. (1985). Effect of glucose or fructose feeding on cholesterol synthesis in 
diabetic animals. American Journal of Physiology. 

Mozaffarian, D., Aro, A., & Willett, W. C. (2009). Health effects of trans-fatty acids: 
experimental and observational evidence. European Journal of Clinical Nutrition, 63 
Suppl 2(S2), S5–S21. http://doi.org/10.1038/sj.ejcn.1602973 

Myles, I. a. (2014). Fast food fever: reviewing the impacts of the Western diet on 
immunity. Nutrition Journal, 13(1), 61. http://doi.org/10.1186/1475-2891-13-61 

Naggara, O., Raymond, J., Guilbert, F., Roy, D., Weill, A., & Altman, D. G. (2011). 
Analysis by categorizing or dichotomizing continuous variables is inadvisable: An 
example from the natural history of unruptured aneurysms. American Journal of 
Neuroradiology, 32(3), 437–440. http://doi.org/10.3174/ajnr.A2425 

Nagy, L. E., Ding, W.-X., Cresci, G., Saikia, P., & Shah, V. H. (2016). Linking Pathogenic 
Mechanisms of Alcoholic Liver Disease with Clinical Phenotypes. Gastroenterology, 
150(8), 1756–1768. http://doi.org/10.1053/j.gastro.2016.02.035 

Nettleton, J. A., Koletzko, B., & Hornstra, G. (2011). Healthy fats for healthy hearts - 
Annotated report of a scientific discussion. In Annals of Nutrition and Metabolism 
(Vol. 58, pp. 59–65). http://doi.org/10.1159/000324749 



159 

Neuhouser, M. L., Schwarz, Y., Wang, C., Breymeyer, K., Coronado, G., Wang, C., … 
Lampe, J. W. (2012). A Low-Glycemic Load Diet Reduces Serum C-Reactive 
Protein and Modestly Increases Adiponectin in Overweight and Obese Adults. The 
Journal of Nutrition, 142(2), 369–374. http://doi.org/10.3945/jn.111.149807 

Nielsen, F. H. (2010). Magnesium, inflammation, and obesity in chronic disease. 
Nutrition Reviews, 68(6), 333–40. http://doi.org/10.1111/j.1753-4887.2010.00293.x 

O’Neil, C. E., Fulgoni, V. L., & Nicklas, T. A. (2011). Candy consumption was not 
associated with body weight measures, risk factors for cardiovascular disease, or 
metabolic syndrome in US adults: NHANES 1999-2004. Nutrition Research, 31(2), 
122–130. http://doi.org/10.1016/j.nutres.2011.01.007 

O’Neil, C. E., Keast, D. R., Fulgoni, V. L., & Nicklas, T. A. (2012). Food sources of 
energy and nutrients among adults in the US: NHANES 2003-2006. Nutrients, 
4(12), 2097–2120. http://doi.org/10.3390/nu4122097 

Oh, D. Y., Talukdar, S., Bae, E. J., Imamura, T., Morinaga, H., Fan, W., … Olefsky, J. M. 
(2010). GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent 
Antiinflammatory and Insulin-Sensitizing Effects. Cell, 142(5), 687–698. 
http://doi.org/10.1016/j.cell.2010.07.041 

Owen, B., & Wolever, T. M. S. (2003). Effect of fat on glycaemic responses in normal 
subjects: A dose-response study. Nutrition Research, 23(10), 1341–1347. 
http://doi.org/10.1016/S0271-5317(03)00149-0 

Pan, J. W., Rothman, T. L., Behar, K. L., Stein, D. T., & Hetherington, H. P. (2000). 
Human brain beta-hydroxybutyrate and lactate increase in fasting-induced ketosis. 
Journal of Cerebral Blood Flow and Metabolism, 20(10), 1502–1507. 
http://doi.org/10.1097/00004647-200010000-00012 

Park, S. H., Park, J. H. Y., Kang, J. S., & Kang, Y. H. (2003). Involvement of transcription 
factors in plasma HDL protection against TNF-??-induced vascular cell adhesion 
molecule-1 expression. International Journal of Biochemistry and Cell Biology, 
35(2), 168–182. http://doi.org/10.1016/S1357-2725(02)00173-5 

Parks, E. J., Krauss, R. M., Christiansen, M. P., Neese, R. A., & Hellerstein, M. K. 
(1999). Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, 
production, and clearance. Journal of Clinical Investigation, 104(8), 1087–1096. 
http://doi.org/10.1172/JCI6572 

Pasiakos, S. M., Agarwal, S., Lieberman, H. R., & Fulgoni, V. L. (2015). Sources and 
amounts of animal, dairy, and plant protein intake of US adults in 2007-2010. 
Nutrients, 7(8), 7058–7069. http://doi.org/10.3390/nu7085322 

Paturi, G., Nyanhanda, T., Butts, C. A., Herath, T. D., Monro, J. A., & Ansell, J. (2012). 
Effects of Potato Fiber and Potato-Resistant Starch on Biomarkers of Colonic 
Health in Rats Fed Diets Containing Red Meat. Journal of Food Science, 77(10), 
216–223. http://doi.org/10.1111/j.1750-3841.2012.02911.x 

Pawelec, G., Goldeck, D., & Derhovanessian, E. (2014). Inflammation, ageing and 
chronic disease. Current Opinion in Immunology, 29(1), 23–28. 
http://doi.org/10.1016/j.coi.2014.03.007 

Payne, A. N., Chassard, C., & Lacroix, C. (2012). Gut microbial adaptation to dietary 
consumption of fructose, artificial sweeteners and sugar alcohols: Implications for 
host-microbe interactions contributing to obesity. Obesity Reviews, 13(9), 799–809. 
http://doi.org/10.1111/j.1467-789X.2012.01009.x 



160 

Pereira, B., Buzati, L., & Leonel, M. (2014). Resistant starch in cassava products. Food 
Science and Technology, 34(2), 298–302. http://doi.org/10.1590/fst.2014.0039 

Perrin-Cocon, L., Coutant, F., Agaugue, S., Deforges, S., Andre, P., & Lotteau, V. 
(2001). Oxidized Low-Density Lipoprotein Promotes Mature Dendritic Cell 
Transition from Differentiating Monocyte. The Journal of Immunology, 167(7), 
3785–3791. http://doi.org/10.4049/jimmunol.167.7.3785 

Peyrin-Biroulet, L., Gonzalez, F., Dubuquoy, L., Rousseaux, C., Dubuquoy, C., 
Decourcelle, C., … Desreumaux, P. (2012). Mesenteric fat as a source of C 
reactive protein and as a target for bacterial translocation in Crohn’s disease. Gut, 
61(1), 78–85. http://doi.org/10.1136/gutjnl-2011-300370 

Pfohl, M., Schreiber, I., Liebich, H. M., Häring, H. U., & Hoffmeister, H. M. (1999). 
Upregulation of cholesterol synthesis after acute myocardial infarction--is 
cholesterol a positive acute phase reactant? Atherosclerosis, 142(2), 389–393. 
http://doi.org/10.1016/S0021-9150(98)00242-1 

Phinney, S. D., Bistrian, B. R., Wolfe, R. R., & Blackburn, G. L. (1983). The human 
metabolic response to chronic ketosis without caloric restriction: Physical and 
biochemical adaptation. Metabolism, 32(8), 757–768. http://doi.org/10.1016/0026-
0495(83)90105-1 

Pradhan, A. D. (2001). C-Reactive Protein, Interleukin 6, and Risk of Developing Type 2 
Diabetes Mellitus. JAMA, 286(3), 327. http://doi.org/10.1001/jama.286.3.327 

Preacher, K. J., Rucker, D. D., MacCallum, R. C., & Nicewander, W. A. (2005). Use of 
the Extreme Groups Approach: A Critical Reexamination and New 
Recommendations. Psychological Methods, 10(2), 178–192. 
http://doi.org/10.1037/1082-989X.10.2.178 

Qureshi, M. M., Singer, M. R., & Moore, L. L. (2009). A cross-sectional study of food 
group intake and C-reactive protein among children. Nutrition & Metabolism, 
6(Cvd), 40. http://doi.org/10.1186/1743-7075-6-40 

Raben, A., Tagliabue, A., Christensen, N. J., Madsen, J., Holst, J. J., & Astrup, A. 
(1994). Resistant starch: The effect on postprandial glycemia, hormonal response, 
and satiety. American Journal of Clinical Nutrition, 60(4), 544–551. 

Rajam̈aki, K., Lappalainen, J., Öörni, K., Välimäki, E., Matikainen, S., Kovanen, P. T., & 
Kari, E. K. (2010). Cholesterol crystals activate the NLRP3 inflammasome in 
human macrophages: A novel link between cholesterol metabolism and 
inflammation. PLoS ONE, 5(7). http://doi.org/10.1371/journal.pone.0011765 

Ravnskov, U., Diamond, D. M., & Ravnskov, U. (2015). How statistical deception 
created the appearance that statins are safe and effective in primary and 
secondary prevention of cardiovascular disease. Expert Review of Clinical 
Pharmacology, 1–10. http://doi.org/10.1586/17512433.2015.1012494 

Rayssiguier, Y., Gueux, E., Nowacki, W., Rock, E., & Mazur, A. (2006). High fructose 
consumption combined with low dietary magnesium intake may increase the 
incidence of the metabolic syndrome by inducing inflammation. Magnesium 
Research, 19(4), 237–243. http://doi.org/10.1684/mrh.2006.0068 

Reaven, G. M. (1997). Do high carbohydrate diets prevent the development or 
attenuate the manifestations (or both) of syndrome X? A viewpoint strongly against. 
Current Opinion in Lipidology, 8(1), 23–27. 



161 

Rehm, J., Room, R., Graham, K., Monteiro, M., Gmel, G., & Sempos, C. T. (2003). The 
relationship of average volume of alcohol consumption and patterns of drinking to 
burden of disease: An overview. Addiction. http://doi.org/10.1046/j.1360-
0443.2003.00467.x 

Rehman, Z., & Shah, W. H. (2005). Food Chemistry Thermal heat processing effects on 
antinutrients, protein and starch digestibility of food legumes. Food Chemistry, 
91(2), 327–331. http://doi.org/10.1016/j.foodchem.2004.06.019 

Richard, D., Kefi, K., Barbe, U., Bausero, P., & Visioli, F. (2008). Polyunsaturated fatty 
acids as antioxidants. Pharmacological Research, 57(6), 451–455. 
http://doi.org/10.1016/j.phrs.2008.05.002 

Robertson, A. P. (2004). Chronic oxidative stress as a central mechanism for glucose 
toxicity in pancreatic islet beta cells in diabetes. Journal of Biological Chemistry, 
279(41), 42351–42354. http://doi.org/10.1074/jbc.R400019200 

Rosenbaum, M., Knight, R., & Leibel, R. L. (2016). The gut microbiota in human energy 
homeostasis and obesity. Trends in Endocrinology and Metabolism, 26(9), 493–
501. http://doi.org/10.1016/j.tem.2015.07.002.The 

Ruiz-Capillas, C., & Jiménez-Colmenero, F. (2005). Biogenic Amines in Meat and Meat 
Products. Critical Reviews in Food Science and Nutrition, 44(7–8), 489–599. 
http://doi.org/10.1080/10408690490489341 

Ruskin, D. N., Kawamura, M., & Masino, S. A. (2009). Reduced pain and inflammation 
in juvenile and adult rats fed a ketogenic diet. PLoS ONE, 4(12), 1–6. 
http://doi.org/10.1371/journal.pone.0008349 

Russell, J. W., Golovoy, D., Vincent, A. M., Mahendru, P., Olzmann, J. A., Mentzer, A., & 
Feldman, E. L. (2002). High glucose-induced oxidative stress and mitochondrial 
dysfunction in neurons. FASEB Journal, 16(13), 1738–1748. 
http://doi.org/10.1096/fj.01-1027com 

Saijo, Y., Kiyota, N., Kawasaki, Y., Miyazaki, Y., Kashimura, J., Fukuda, M., & Kishi, R. 
(2004). Relationship between C-reactive protein and visceral adipose tissue in 
healthy Japanese subjects. Diabetes, Obesity & Metabolism, 6, 249–258. 
http://doi.org/10.1111/j.1462-8902.2003.0342.x 

Schaefer, E. J., Gleason, J. a, & Dansinger, M. L. (2009). Dietary Fructose and Glucose 
Differentially Affect Lipid and Glucose Homeostasis. The Journal of Nutrition, 
139(6), 1257S–1262S. http://doi.org/10.3945/jn.108.098186.WHO 

Serhan, C. N., Clish, C. B., Brannon, J., Colgan, S. P., Chiang, N., & Gronert, K. (2000). 
Novel functional sets of lipid-derived mediators with antiinflammatory actions 
generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal 
antiinflammatory drugs and transcellular processing. The Journal of Experimental 
Medicine, 192(8), 1197–204. http://doi.org/10.1084/jem.192.8.1197 

Seshadri, P., Iqbal, N., Stern, L., Williams, M., Chicano, K. L., Daily, D. A., … Samaha, 
F. F. (2004). A randomized study comparing the effects of a low-carbohydrate diet 
and a conventional diet on lipoprotein subfractions and C-reactive protein levels in 
patients with severe obesity. American Journal of Medicine, 117(6), 398–405. 
http://doi.org/10.1016/j.amjmed.2004.04.009 

Shah, R. R. V, Albert, T. J., Bruegel-Sanchez, V., Vaccaro, A. R., Hilibrand, A. S., & 
Grauer, J. N. (2005). Industry support and correlation to study outcome for papers 



162 

published in Spine. Spine, 30(9), 1099–1104. 
http://doi.org/10.1097/01.brs.0000161004.15308.b4 

Shaikh, S. R., & Edidin, M. (2006). Polyunsaturated fatty acids, membrane organization, 
T cells, and antigen presentation. The American Journal of Clinical Nutrition, 84(6), 
1277–1289. 

Shaikh, S. R., & Edidin, M. (2008). Polyunsaturated fatty acids and membrane 
organization: The balance between immunotherapy and susceptibility to infection. 
Chemistry and Physics of Lipids, 153(1), 24–33. 
http://doi.org/10.1016/j.chemphyslip.2008.02.008 

Shentu, Y., & Xie, M. (2010). A note on dichotomization of continuous response variable 
in the presence of contamination and model misspecification. Statistics in Medicine, 
29(21), 2200–2214. http://doi.org/10.1002/sim.3966 

Sidossis, L. S., Stuart, C. A., Shulman, G. I., Lopaschuk, G. D., & Wolfe, R. R. (1996). 
Glucose plus insulin regulate fat oxidation by controlling the rate of fatty acid entry 
into the mitochondria. Journal of Clinical Investigation, 98(10), 2244–2250. 
http://doi.org/10.1172/JCI119034 

Silbernagel, G., Lütjohann, D., Machann, J., Meichsner, S., Kantartzis, K., Schick, F., … 
Fritsche, A. (2012). Cholesterol synthesis is associated with hepatic lipid content 
and dependent on fructose/glucose intake in healthy humans. Experimental 
Diabetes Research, 2012, 7. http://doi.org/10.1155/2012/361863 

Singer, P., Shapiro, H., Theilla, M., Anbar, R., Singer, J., & Cohen, J. (2008). 
Antiinflammatory properties of omega-3 fatty acids in critical illness: Novel 
mechanisms and an integrative perspective. Intensive Care Medicine. 
http://doi.org/10.1007/s00134-008-1142-4 

Slavin, J. L. (2013). Carbohydrates, dietary fiber, and resistant starch in white 
vegetables: links to health outcomes. Advances in Nutrition, 4(3), 351S–5S. 
http://doi.org/10.3945/an.112.003491 

Smith, L. L. (1991). Another cholesterol hypothesis: Cholesterol as antioxidant. Free 
Radical Biology and Medicine, 11(1), 47–61. http://doi.org/10.1016/0891-
5849(91)90187-8 

Sobal, G., Menzel, J., & Sinzinger, H. (2000). Why is glycated LDL more sensitive to 
oxidation than native LDL? A comparative study. Prostaglandins, Leukotrienes, and 
Essential Fatty Acids, 63(4), 177–86. http://doi.org/10.1054/plef.2000.0204 

Srinivasan, S. R., Clevidence, B. A., Pargaonkar, P. S., Radhakrishnamurthy, B., & 
Berenson, G. S. (1979). Varied effects of dietary sucrose and cholesterol on serum 
lipids, lipoproteins and apolipoproteins in rhesus monkeys. Atherosclerosis, 33(3), 
301–314. http://doi.org/10.1016/0021-9150(79)90182-5 

St-Onge, M.-P., Zhang, S., Darnell, B., & Allison, D. B. (2009). Baseline Serum C-
Reactive Protein Is Associated with Lipid Responses to Low-Fat and High-
Polyunsaturated Fat Diets. The Journal of Nutrition, 139(4), 680–683. 
http://doi.org/10.3945/jn.108.098251.baseline 

Steptoe, A., Owen, N., Kunz-Ebrecht, S., & Mohamed-Ali, V. (2002). Inflammatory 
cytokines, socioeconomic status, and acute stress responsivity. Brain, Behavior, 
and Immunity, 16(6), 774–784. http://doi.org/10.1016/S0889-1591(02)00030-2 



163 

Stewart, S., Mainous III, A., & Gilbert, G. (2002). Relation between alcohol consumption 
and C-reactive protein levels in the adult US population. The Journal of the 
American Board of Family Practice, 15(6), 437–42. 

Stockwell, T., Zhao, J., Panwar, S., Roemer, A., Naimi, T., & Chikritzhs, T. (2016). Do 
“Moderate” Drinkers Have Reduced Mortality Risk? A Systematic Review and Meta-
Analysis of Alcohol Consumption and All-Cause Mortality. Journal of Studies on 
Alcohol and Drugs, 77(2), 185–198. http://doi.org/10.15288/JSAD.2016.77.185 

Straub, R. H. (2014). Interaction of the endocrine system with inflammation: a function 
of energy and volume regulation. Arthritis Research & Therapy, 16(1), 203. 
http://doi.org/10.1186/ar4484 

Sun, S. Z., Anderson, G. H., Flickinger, B. D., Williamson-Hughes, P. S., & Empie, M. W. 
(2011). Fructose and non-fructose sugar intakes in the US population and their 
associations with indicators of metabolic syndrome. Food and Chemical Toxicology, 
49(11), 2875–2882. http://doi.org/10.1016/j.fct.2011.07.068 

Teicholz, N. (2015). The scientific report guiding the US dietary guidelines: is it 
scientific? Bmj, 4962(September), h4962. http://doi.org/10.1136/bmj.h4962 

Tero, P. A. O., & Errera, E. M. H. (2002). Original Contribution Dual Effect of Glucose on 
LDL Oxidation: Dependence on Vitamin E. Science, 33(8), 1133–1140. 

Tilg, H., & Kaser, A. (2011). Gut microbiome, obesity, and metabolic dysfunction. The 
Journal of Clinical Investigation, 121(6), 2126–2132. 
http://doi.org/10.1172/JCI58109.2126 

Tingley, D., Yamamoto, T., Hirose, K., Imai, K. and Keele, L. (2014). "mediation: R 
package for Causal Mediation Analysis", Journal of Statistical Software, Vol. 59, 
No. 5, pp. 1-38. 

Toden, S., Bird, A. R., Topping, D. L., & Conlon, M. a. (2006). Resistant starch prevents 
colonic DNA damage induced by high dietary cooked red meat or casein in rats. 
Cancer Biology and Therapy, 5(3), 267–272. http://doi.org/10.4161/cbt.5.3.2382 

Topiwala, A., Allan, C. L., Valkanova, V., Zsoldos, E., Filippini, N., Sexton, C., … 
Ebmeier, K. P. (2017). Moderate alcohol consumption as risk factor for adverse 
brain outcomes and cognitive decline: longitudinal cohort study. BMJ, 357357, 
j2353. http://doi.org/10.1136/bmj.j2353 

Topping, D. L., & Clifton, P. M. (2001). Short-chain fatty acids and human colonic 
function: Roles of resistant starch and non-resistant starch polysaccharides. 
Physiological Reviews, 81(3), 1031–1064. 

Tovar, J., & Melito, C. (1996). Steam-Cooking and Dry Heating Produce Resistant 
Starch in. Journal of Agricultural and Food Chemistry, 44, 2642–2645. 

Towers, A., Philipp, M., Dulin, P., & Allen, J. (2016). The “Health Benefits” of Moderate 
Drinking in Older Adults may be Better Explained by Socioeconomic Status. The 
Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 0, 
1–6. http://doi.org/10.1093/geronb/gbw152 

U.S. Department of Health and Human Services and U.S. Department of Agriculture, & 
Agriculture, U. S. D. of H. and H. S. and U. S. D. of. (2015). 2015 – 2020 Dietary 
Guidelines for Americans. 2015 – 2020 Dietary Guidelines for Americans (8th 
edition) (Vol. 232). http://doi.org/10.1016/S0300-7073(05)71075-6 



164 

Wang, H. J., Zakhari, S., & Jung, M. K. (2010). Alcohol, inflammation, and gut-liver-brain 
interactions in tissue damage and disease development. World Journal of 
Gastroenterology, 16(11), 1304–1313. http://doi.org/10.3748/wjg.v16.i11.1304 

Weglicki, W. B., Phillips, T. M., Freedman, A. M., Cassidy, M. M., & Dickens, B. F. 
(1992). Magnesium-deficiency elevates circulating levels of inflammatory cytokines 
and endothelin. Molecular and Cellular Biochemistry, 110(2), 169–173. 
http://doi.org/10.1007/BF02454195 

Weglicki, W. B., Phillips, T. M., & Phillips, M. (1992). Pathobiology of magnesium 
deficiency: a cytokine/neurogenic inflammation hypothesis. The American Journal 
of Physiology, 263(3 Pt 2), R734–R737. 

West, D. B., & York, B. (1998). Dietary fat, genetic predisposition, and obesity: lessons 
from animal models. The American Journal of Clinical Nutrition, 67(3 Suppl), 505S–
512S. 

Westman, E. C., Feinman, R. D., Mavropoulos, J. C., Vernon, M. C., Volek, J. S., 
Wortman, J. a, … Phinney, S. D. (2007). Low-carbohydrate nutrition and 
metabolism. American Journal of Clinical Nutrition, 86(6), 276–284. 

Winter, J., Nyskohus, L., Young, G. P., Hu, Y., Conlon, M. A., Bird, A. R., … Le Leu, R. 
K. (2011). Inhibition by resistant starch of red meat-induced promutagenic adducts 
in mouse colon. Cancer Prevention Research, 4(11), 1920–1928. 
http://doi.org/10.1158/1940-6207.CAPR-11-0176 

Vesselinovitch, D., Getz, G. S., Hughes, R. H., & Wissler, R. W. (1974). Atherosclerosis 
in the rhesus monkey fed three food fats. Atherosclerosis, 20(2), 303–321. 
http://doi.org/10.1016/0021-9150(74)90015-X 

Volek, J. S., Phinney, S. D., Forsythe, C. E., Quann, E. E., Wood, R. J., Puglisi, M. J., 
… Feinman, R. D. (2009). Carbohydrate restriction has a more favorable impact on 
the metabolic syndrome than a low fat diet. Lipids, 44(4), 297–309. 
http://doi.org/10.1007/s11745-008-3274-2 

Volek, J. S., Quann, E. E., & Forsythe, C. E. (2010). Low-Carbohydrate Diets Promote a 
More Favorable Body Composition Than Low-Fat Diets. Strength and Conditioning 
Journal, 32(1), 42–47. http://doi.org/10.1519/SSC.0b013e3181c16c41 

Volek, J. S., Sharman, M. J., & Forsythe, C. E. (2005). Modification of Lipoproteins by 
Very Low-Carbohydrate Diets. The Journal of Nutrition, 135(6), 1339–1342. 

Volek, J., Sharman, M., Gómez, A., Judelson, D., Rubin, M., Watson, G., … Kraemer, 
W. (2004). Comparison of energy-restricted very low-carbohydrate and low-fat diets 
on weight loss and body composition in overweight men and women. Nutrition & 
Metabolism, 1(1), 13. http://doi.org/10.1186/1743-7075-1-13 

Yan, S. F., Ramasamy, R., Naka, Y., & Schmidt, A. M. (2003). Glycation, Inflammation, 
and RAGE: A Scaffold for the Macrovascular Complications of Diabetes and 
Beyond. Circulation Research, 93(12), 1159–1169. 
http://doi.org/10.1161/01.RES.0000103862.26506.3D 

Yang, X., & Cheng, B. (2010). Neuroprotective and antiinflammatory activities of 
ketogenic diet on MPTP-induced neurotoxicity. Journal of Molecular Neuroscience, 
42(2), 145–153. http://doi.org/10.1007/s12031-010-9336-y 

Yerushalmy, J., & Hilleboe, H. E. (1957). Fat in the diet and mortality from heart disease; 
a methodologic note. New York State Journal of Medicine, 57(14), 2343–54. 



165 

Yu, E. P. K., & Bennett, M. R. (2014). Mitochondrial DNA damage and atherosclerosis. 
Trends in Endocrinology and Metabolism, 25(9), 481–487. 
http://doi.org/10.1016/j.tem.2014.06.008 

Zhao, C., Liu, Y., Xiao, J., Liu, L., Chen, S., Mohammadi, M., … Feng, W. (2015). 
FGF21 mediates alcohol-induced adipose tissue lipolysis by activation of systemic 
release of catecholamine in mice. Journal of Lipid Research, 56(8), 1481–1491. 
http://doi.org/10.1194/jlr.M058610 

 

  



166 

 

 

Section 2.2. 

 

Pathways Linking Carbohydrate and Lipid Metabolism, Adiposity and 

Inflammation 

 



167 

Abstract 

 

Assessing causality in human disease is a major challenge, especially in conditions 

characterized by multiple dysfunctional systems like metabolic syndrome.  While many 

clinical association studies point to dysfunctional lipid metabolism as the main target of 

treatment, recent evidence has challenged that notion.  For example, lipid targeted 

therapies have not reversed the development of metabolic syndrome, nor reduced 

mortality.  Similarly, dietary guidelines to reduce fat and cholesterol intake have not 

reduced obesity or the development of cardiovascular disease in the population.  With the 

advancement of modern biological techniques and greater computational power, recent 

research in biochemistry and molecular biology has elucidated pathways by which excess 

glycemic carbohydrate intake disrupts glucodysregulation, causes dyslipidemia, weight 

gain and inflammation.  Our previous study showed that dietary carbohydrates, rather 

than lipids, exerted the greater effect on obesity and inflammation and that body adiposity 

is the main mediator between diet and inflammation.  In further support of those analyses, 

we applied structural equation models to test and revise hypothetical models fit to the 

biomarker data available from the Midlife in the United States (MIDUS) to determine the 

path and direction of effects liking carbohydrate and lipid metabolism to body adiposity 

and inflammation.  In keeping with the effects expected from the biochemistry and 

molecular biology literature, and in contrast to many clinical and epidemiological studies, 

our analyses place glucodysregulation at the origin of the system, driving dyslipidemia 

and weight gain, and affecting inflammation indirectly through lipid metabolism and 

adiposity, where body adiposity serves as the major path mediating the effect of 
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carbohydrate and lipid metabolism on systemic inflammation.  The resulting model was 

further tested across levels of diabetic status.  The alterations observed in path effects 

were consistent with metabolic shift expected during diabetes.  Further, we tested this 

model across users and non-users of statin medication, and found evidence that the 

beneficial effects of statins may be due to a weakening of proinflammatory pathways 

rather than by necessarily lowering blood cholesterol.  In addition, this analysis suggest 

that statin medication may cause systemic changes that resemble the alterations 

previously observed across diabetic status.  These findings support recent evidence that 

statins exert antiinflammatory action but may also exhibit pro-diabetic side-effects.  These 

systems-level analyses effectively placed carbohydrate metabolism at the genesis of 

metabolic dysfunction and obesity as the main path to inflammation.  

 

Highlights: 

• Carbohydrate metabolism was at the origin of the system, affecting lipid 

metabolism and body adiposity, which in turn affected the systemic and vascular 

inflammation 

• The main path of effects linked carbohydrate metabolism to inflammation through 

BMI. 

• Comparisons between non-diabetics and diabetics indicated alterations in path 

effects that are consistent with insulin resistance and type-2 diabetes 

• Pre-diabetics show alterations that are already indicative of diabetic physiology. 

• Comparisons between users and non-users of statin medications indicate 

similarities to the diabetic physiology.   
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• Comparisons between users and non-users of statin medications indicated a 

weakening of the inflammatory pathways 
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INTRODUCTION 

 

Shifting away from traditional dogmas 

 The scientific literature is slowly moving away from blaming cardiovascular disease 

on dietary fats and cholesterol and abandoning longstanding, over-simplified views on 

blood lipids.  As more careful observations and specific assessments accrue, the spotlight 

is turning to the excessive consumption of highly processed foods and highly glycemic 

carbohydrates that are common staple in the traditional American diet (Baker & Friel, 

2014; Hofmann & Tschöp, 2009; Lustig, 2013; Myles, 2014).  Our understanding of the 

“Diet-Heart Hypothesis” is being reshaped by biological assessments of greater specificity 

as well as the integrations among the various fields of science (Hite et al., 2011; Hu, 2010; 

Kiecolt-Glaser, 2010; Malhotra, Redberg, & Meier, 2017).  Molecular approaches and 

improvements in statistical modeling have allowed for the elucidation of biological 

networks regulating energy balance and inflammatory processes and for more 

comprehensive analyses of epidemiological data.  Nevertheless, headlines still reference 

fat-clogged arteries, even though lipids have never been shown to clog blood vessels.  In 

clinical settings, a formula-based estimation of LDL cholesterol is still used as the main 

basis of dyslipidemia diagnosis and main criterium in the prescription of statin treatment.  

In research, LDL cholesterol estimation also serves as the main outcome measure of 

cardiovascular risk.  The artificial lowering of LDL cholesterol has only been shown to 

prevent cardiovascular events in a small subgroup of the population who already have 

inflammatory disease, while naturally low levels are often associated with higher, not 

lower, disease and mortality (Bae et al., 2012; Berger, Raman, Vishwanathan, Jacques, 
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& Johnson, 2015; Eichholzer et al., 2000; Nago et al., 2011; Ravnskov et al., 2015).  In 

addition, over half of the hospital admission for cardiovascular cases do not present 

elevated LDL cholesterol levels (Horwich, Hernandez, Dai, Yancy, & Fonarow, 2008; 

Sachdeva et al., 2009).   In epidemiological research, causal relationships are often 

assumed based on prior associations without careful examination of directionality, 

mediation and biological mechanisms.  We carried out a thorough review of the literature 

linking nutrient metabolism, glucoregulation, lipoprotein turnover, adipose accumulation 

and the proinflammatory processes involved in the atherosclerogenic process.  The key 

aspects of this physiology are described below and were the bases used to build and test 

structural equation models that delineate the sequence of events linking nutrient 

metabolism, obesity and inflammation. 

 

The physiology of cardiovascular disease 

 Metabolic syndrome is closely tied to lifestyle factors such as diet, physical activity 

and stress, and is the main driver of cardiovascular disease in the Western World.  

Although cardiovascular disease encompasses multiple illnesses, many are closely 

related to the atherosclerotic process.  Until recently, atherosclerosis was considered a 

result of passive fat and cholesterol accumulation in the vascular wall (Jensen et al., 

2014).  However, we now appreciate the complexity of this process, which requires 

specific molecular events:  LDL-modification (Ahmed, 2005; Angelica & Fong, 2008; Itabe 

et al., 2011; Yoshida & Kisugi, 2010), vascular infiltration of LDLs (Nordestgaard & 

Tybjaerg-Hansen, 1992), reactive oxygen species (ROS) generation by mitochondria 

(Bonnefont-Rousselot, 2002; Figueroa-Romero, Sadidi, & Feldman, 2008; Schleicher & 
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Friess, 2007), the formation of foam cells (Huh, Pearce, Yesner, Schindler, & Silverstein, 

1996), chronic inflammatory processes taking place at the vascular (Corti, Hutter, 

Badimon, & Fuster, 2004; Libby, 2006) and systemic levels (Shrivastava et al., 2015), as 

well as arterial calcification (Kalampogias et al., 2016; Zieman, Melenovsky, & Kass, 

2005).  Understanding this process also sheds light on the potential effect of diet on 

metabolic dysregulation, chronic inflammation and disease.  

 

Blood cholesterol, triglycerides and the role of lipoproteins 

 The pathophysiology of cardiovascular inflammation also depends on briefly 

disambiguating the identity and the assumptions involving the measurement most 

commonly associated with cardiovascular health:  the Low-Density Lipoprotein 

Cholesterol (LDL, or LDL-C).  The simple lipid panel commonly ordered for both clinical 

or research use includes concentrations of Total Cholesterol (TC), High Density 

Lipoprotein Cholesterol (HDL-C, or HDL, by common usage), Low Density Lipoprotein 

Cholesterol (LDL-C, or just LDL, by common usage) and Triglycerides (or technically 

correct, triacylglycerides).  HDL-C and LDL-C refer to the cholesterol content within those 

lipoproteins, which is measured by the common panel.  This is to differentiate the 

assessment from that of the HDL-Particle (HDL-P) and LDL-Particle (LDL-P), referring to 

the lipoproteins’ particle counts, which are important for the discussion.  Further, LDL-C 

is rarely assessed.  Rather, it is estimated by the Friedewald Formula; said formula was 

a product of an important advance in lipoprotein measurements — the ability to measure 

cholesterol-triglyceride ratios within lipoproteins. Cholesterol molecules, triglycerides and 

other lipids are hydrophobic; hence they are mainly carried by lipoproteins in circulation.  
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Each lipoprotein has a characteristic ratio of cholesterol and triglycerides.  Hence, LDL-

C is estimated by the subtraction of HDL-C and 1/5 of the triglyceride concentration (vLDL 

particles typically present a cholesterol-to-triglyceride ratio of 1:5) from the TC 

concentration.  HDL-C and TC are easy to assay, which is not the case for LDL-C and 

other cholesterol subfractions.  The formula disregards other lipoproteins, which present 

cholesterol in negligible quantities during the fasted state in non-insulin resistant 

individuals, and therefore will misestimate LDL as triglycerides increase (Cordova, 

Schneider, & Juttel, 2004; Wagner et al., 2000, Whitting, Shephard, & Tallis, 1997).  The 

expected cholesterol-to-triglyceride ratio of lipoproteins do not hold for insulin resistant 

individuals. The lesser cholesterol and greater triglyceride content, the smaller and 

denser the lipoproteins particles are (Goldberg, Eckel, & McPherson, 2011; Verges, 

2015).  They are, in increasing order of density and decreasing particle size:  

chylomicrons, vLDL (very Low-Density Lipoprotein), IDL (Intermediate Density 

Lipoprotein), LDL and HDL.  Chylomicrons particles carry triglycerides, cholesterol and 

lipids from the small intestines into circulation and to tissues for utilization.  While vLDL 

and LDL particles carry both triglycerides and cholesterols from the liver into circulation 

and to tissues, vLDL particles carry mostly triglycerides and LDL particles carry mostly 

cholesterol.  IDL particles are intermediaries between vLDL and LDL.  As triglycerides in 

vLDL are transferred to tissue or other lipoproteins, it becomes smaller and denser (Koi, 

Ohnishi, & Yokoyamaff, 1994; Skeggs & Morton, 2002).  With the transfer, the vLDL 

particle becomes IDL, which may lose further triglycerides and proteins to become an 

LDL particle (Biggerstaff & Wooten, 2004).  In such state, this lipoprotein is referred to as 

small dense LDLs, or sdLDL particles.  Other lipoprotein remnants (depleted of their lipid 
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core) are also small and dense.  High blood triglycerides interfere with the hepatic 

reabsorption of lipoproteins and thereby may increase circulating levels or remnants 

(Kissebah, Alfarsi, & Adams, 1981; Peterson, Olivecrona, & Bengtsson-Olivecrona, 

1985).  Hypertriglyceridemia also interferes with the lipoprotein structure, thereby 

affecting normal cholesterol transfer, susceptibility to oxidation, as well as the feedback 

regulation of cholesterol synthesis (Callow, Samra, & Frayn, 1998; Deckelbaum, Granot, 

Oschry, Rose, & Eisenberg, 1984; Skeggs & Morton, 2002).  When lipoproteins are small 

enough may they infiltrate the vascular endothelia.  Hence, cholesterol-rich (large and 

fluffy) LDL particles do not infiltrate behind endothelial walls in large quantities.  

Accordingly, various studies have shown evidence that LDL-P count, vLDL or sdLDL are 

better predictors of atherosclerosis than LDL-C (Austin, 2000; Aviram, Lund-Katz, Phillips, 

& Chait, 1988; Campos et al., 1992; Martin et al., 2009; Prenner et al., 2014; Rajman, 

Eacho, Chowienczyk, & Ritter, 1999; Vakkilainen et al., 2000; VanderLaan, Reardon, 

Thisted, & Getz, 2009).  Hence, two individuals may present the same total LDL-C 

concentration, while discordant in LDL-P.  One individual may present fewer larger 

cholesterol-rich LDL particles (a healthy profile) while another individual may present 

greater numbers of small dense cholesterol-poor triglyceride-rich LDL particles carrying 

the same total concentration of LDL-C.  Notwithstanding, the commonly calculated LDL 

still shows a positive association with atherosclerosis in the American population.  The 

high LDL-C observed in a proportion of the cardiovascular disease cases may be product 

of dysregulated glucose metabolism and hypertriglyceridemia, but not the actual cause 

of disease.  Dietary cholesterol only modestly increases blood cholesterol (Ginsberg et 

al., 1995; Griffin & Lichtenstein, 2013; Hopkins, 1992), cholesterol is dynamically 
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controlled at various levels that may exhibit dysfunction (Dietschy et al., 1993; Lecerf & 

de Lorgeril, 2011; Ono, 2012).  Cholesterol is either absorbed from the diet or produced 

in the liver by sugar ingestion (Jameel et al., 2014; Moser, 1985; Schaefer et al., 2009).  

Excess cholesterol is readily excreted by erythrocytes in the intestines or converted to 

bile, much of which is lost in feces (Lammert & Wang, 2005).  Hence, higher LDL-C may 

be reflective of an abnormal cholesterol absorption, synthesis or clearance.  More likely, 

it is induced by carbohydrate-induced synthesis and hypertriglyceridemia induced 

impairment of hepatic reabsorption of lipoproteins, generating an accumulation of 

cholesterol-containing remnant particles (Skeggs & Morton, 2002).  Altogether, the 

current body of evidence seems to suggest that LDL-C is not the cause of atherosclerosis, 

but instead a by-product of carbohydrate metabolism.  Based on this literature, our 

hypothetical model tested the influence of glucoregulatory pathwyas and triglycerides on 

LDL.  In addition, we expected weak effects of LDL on inflammation. 

 

High blood glucose, Reactive Oxygen Species and glycosylation 

 Glucose-induced Reactive Oxygen Species (ROS) is generated by mitochondria as 

well as through Protein Kinase C (PKC) pathways (Figueroa-Romero et al., 2008; Lee, 

Yu, Song, & Ha, 2004; Rolo & Palmeira, 2006).  Lipoproteins may become glycated, the 

damaging non-enzymatic glycosylation by high glucose exposure.  High glucose in 

circulation has also been shown to induce glycation products, such as the glycated 

hemoglobin (HA1c), commonly used as a biomarker of glucoregulation and diabetes 

(Makita et al., 1992).  If not cleared, these damaged products may become further 

glycated by further glucose exposure, giving rise to Advanced Glycation End-Products 
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(AGEs), which are highly proinflammatory and add to the inflammatory burden associated 

with metabolic syndrome and cardiovascular disease (Fu et al., 1994; Turk et al., 1998; 

Yan et al., 2003).  LDLs may also become oxidized by glycation or exposure to ROS 

(Giugliano, Ceriello, & Paolisso, 1996).   Based on this literature, we expected 

glucoregulatory pathways to also affect inflammatory biomarkers directly. 

 

Lipoprotein oxidation and clearance 

 When lipoproteins are oxidized or glycated behind the vascular endothelium, they 

elicit potent proinflammatory responses (Yan et al., 2003).  Soluble proinflammatory 

products such as the Intercellular Adhesion Molecule 1 (ICAM-1) are produced in 

atherosclerotic inflammation and facilitate the recruitment and infiltration of macrophages 

(Davies et al., 1993).  The vascular inflammatory process, including the ICAM-1 induction, 

may be further amplified by the presence of high circulating levels of C-Reactive protein 

(CRP), a proinflammatory acute phase reactant (Devaraj, Kumaresan, & Jialal, 2004; 

Montecucco et al., 2008; Pasceri, Cheng, Willerson, & Yeh, 2001; Woollard, Phillips, & 

Griffiths, 2002).  Through phagocytosis, macrophages absorb these damaged 

lipoproteins, including their lipid content.  In abnormal conditions when endothelial 

accumulation of lipoproteins is high, overwhelmed macrophages form foam cells.  Their 

accumulation marks the initiation of atherosclerosis and elicits further inflammatory 

processes and cellular dysfunctions.  High glucose adds to the atherosclerogenic process 

by driving the calcification of vascular tissue by calcium accumulation and chondrocyte 

induction, thereby making the vasculature stiff and brittle (Yoshida & Kisugi, 2010).   
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 HDL particles are known as good or protective lipoproteins because they may accept 

triglycerides from vLDLs, retrieve lipids from the endothelial vasculature, exert anti-

oxidant and antiinflammatory properties, and shuttle cholesterol cargo back to the liver 

for reabsorption and recycling (Barter et al., 2004; De Nardo et al., 2014; Drew, Rye, 

Duffy, Barter, & Kingwell, 2012; Gomaraschi et al., 2005; Mertens & Holvoet, 2001; Nofer 

et al., 2002).  Though, HDL can also become dysfunctional and atherosclerotic (Bindu G, 

Rao, & Kakkar, 2011; Navab et al., 2006).  And while the “reverse cholesterol transport” 

[to the liver] is seen as characteristic of HDL particles, LDL particles not only play this 

same role, but actually accounts for about 90% of the reverse cholesterol transport 

(Spady, 1992).  Based on this literature, we expected HDL cholesterol to reflect beneficial 

effects on inflammation and the possibility that LDL cholesterol may not always exert 

detrimental effects. 

 

Glucose, de novo lipogenesis and fat accumulation 

 Hepatic triglycerides and cholesterol are produced in small part by lipoproteins that 

are retrieved from blood circulation and lymphatic tissue, which absorbs dietary lipids, 

while in individuals feeding on high carbohydrate diets, these lipids are formed by a 

process known as de novo lipogenesis (Ginsberg, Zhang, & Hernandez-Ono, 2005; Parks 

et al., 1999).  Hepatic cholesterol and triglycerides syntheses are stimulated by insulin 

and produced from sugars, especially fructose (Jameel et al., 2014; Moser, 1985; 

Schaefer et al., 2009).  Fructose and glucose are often absorbed together as a sucrose 

disaccharide.  Almost all fructose in the body is obtained from dietary consumption. 

Glucose on the other hand, may be released from the liver where it is stored as glycogen, 
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or produced from amino acids in the liver. Because a high concentration of glucose is 

toxic, it is readily stored as glycogen in the liver and muscles. In the absence of dietary 

glucose and exhaustion of glycogen, the body’s glucose needs are met by hepatic 

gluconeogenesis. When the system is overwhelmed, glucose is also converted to and 

stored as triglycerides in adipose tissue, thereby adding to body adiposity.  Under normal 

physiological conditions, this glucoregulatory process is meticulously controlled by 

hormones insulin and glucagon. Glucagon raises blood glucose and fatty acids, is 

regulated by insulin, and stimulated by gluconeogenic amino acids.  Insulin is a major 

orchestrator of energy balance and its release is readily stimulated by glucose and a few 

amino acids.  Insulin regulates glucose absorption by tissues, the conversion of glucose 

to triglycerides, and lipolysis. High insulin signals the deposition of triglycerides in adipose 

tissue and lipogenesis, while low insulin signals lipolysis and lipid beta-oxidation.  Hence, 

insulin is a major force regulating the accumulation and expenditure of adipose fat 

storage.  Based on this literature, we expected glucose to drive triglycerides. 

 

Adipose tissue and inflammation 

 Body fat accumulation requires a process known as adipose remodeling.  Adipose 

remodeling involves the proliferation of new adipocytes as well as cell death (Strissel et 

al., 2007; Suganami & Ogawa, 2010).  With repetitive or sustained insulin stimulus, 

precursor stem cells proliferate at high rates.  Insulin stimulates the uptake of glucose, 

the deposition of lipids by LDL-P, and the inhibition of fatty acid release in the adipose 

tissue.  Adipocytes grow in number and size, altering the adipose tissue profile from the 

metabolically healthy brown fat to the proinflammatory white fat.  Stem cell survival and 
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maturation to adipocytes are incomplete.  The associated cell death stimulates cytokine 

and adipokine release and the recruitment of macrophages.  Adipocytes and the resident 

macrophages are major producers of proinflammatory signaling molecules, including 

Interleukin-6 (IL-6) and CRP (Anty et al., 2006; Calabro et al., 2005; Mazurek et al., 2003).  

Studies also show that IL-6 induces CRP production in the liver, adding to systemic 

inflammatory load (Castell et al., 1989). In turn, systemic inflammation may also affect 

systemic oxidative stress, glucoregulation and lipoprotein metabolism, further developing 

the metabolic syndrome complex and aggravating cardiovascular disease (Dandona, 

Aljada, & Bandyopadhyay, 2004; Donath & Shoelson, 2011; Shoelson et al., 2006; Yan et 

al., 2003).  Based on this literature, we expected adiposity to mediate the effects of 

glucoregulatory pathways on inflammatory pathways. 

 

Carbohydrate metabolism at the origin of metabolic dysregulation 

 Recent experimental data convincingly points to carbohydrate metabolism as the 

root problem driving lipid metabolism dysfunction and inflammatory processes, 

contributing to the rapid increase in development of diabetes, metabolic syndrome, 

chronic inflammation and cardiovascular disease (Ballard et al., 2013; Boden, 2009; 

Bueno et al., 2013; Douris et al., 2015; Hussain et al., 2012; Kirk et al., 2009; Volek et al., 

2009).  Our culture has moved from a much more varied diet to guidelines that advise the 

substitution of saturated fats by carbohydrates.  These recent changes in dietary 

guidelines in the U.S. coincide with the increase in incidence of obesity and metabolic 

and inflammatory diseases. While common genetic differences do not determine disease, 

they may represent different susceptibilities to the current diet, characterized by 
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excessive amounts of highly processed and highly glycemic foods.  Still, many 

epidemiological studies on diet and metabolism, as well as governmental guidelines, 

continue to rely on correlations and imply causations based on notions conceived from 

antiquated methods and correlational studies (Binnie et al., 2014; Fernandez, 2012; 

Gifford, 2002; Hite et al., 2010; Teicholz, 2015).  While earlier studies lacked technological 

means, we now enjoy a surplus of data produced by highly specific assessments.  While 

many of these assessments are too expensive for large population studies, we can 

analyze the clinical biomarkers that we do have available in the context of biomolecular 

pathways.  Our study was designed to test whether the metabolic and inflammatory data 

available in the Midlife in the United States (MIDUS) project fits a mathematical model 

that was based on the current understanding of human molecular biology and nutrient 

metabolism. 

 

Goals and hypotheses 

 We built a hypothetical structural equation model based on the accruing literature in 

the molecular biology and biochemical sciences, linking glucoregulation to the lipid 

metabolism and inflammatory processes that are relevant to the progression of 

cardiovascular disease, as above described.  We tested how well this model fit the data 

of a subsample of non-diabetic, White Caucasian Americans, who were not taking insulin 

or cholesterol targeted medications.  This original model was then revised by removing 

non-significant relationships.  Given that most biological systems present regulatory 

feedback loops, the relationship between two biomarkers may be dominated by one 

direction over another.   For instance, changes in blood glucose elicit insulin responses 
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while the variation in blood insulin levels also regulates glucose production, release and 

absorption.  Model variations were created in order to test the dominating directionality of 

effects and to compare with other directional possibilities.  Thus, structural equation 

models can also help support hypotheses about the directionality of effects.  Because age 

may influence the efficiency of synthesis or clearance of metabolic and inflammatory 

components, thereby affecting the sensitivity of a system, the effect of age on each 

biomarker was tested and retained when significant.  We hypothesized that our model 

would detect the effect of carbohydrate metabolism at the origin of the system, feeding 

on lipid metabolism and body adiposity (BMI), directly and indirectly affecting the 

biomarkers of systemic and vascular inflammation.   Our model was then used to predict 

how these biological systems were affected by specific conditions of metabolic interest.  

This was accomplished by fitting this model to the data of participant subsamples that 

varied by diabetic status (diabetes mellitus) and statin usage.  Because experimental 

studies point to glucodysregulation as a principal cause of dyslipidemia, inflammation and 

cardiovascular disease, we compared the model effects across diabetic status. In order 

to further validate such model, the differences in model effects by diabetic status should 

be reflective of the physiological alterations that are expected in type-II diabetes.  Recent 

evidence also suggests that the pharmacological family of statin medications benefit 

individuals who already present cardiovascular disease but does little to prevent such 

disease (Hayward, Hofer, & Vijan, 2006).  Recent studies also suggest that the benefits 

of statins are due to their antiinflammatory effects rather than to their cholesterol lowering 

effect (Blake & Ridker, 2000; Montecucco et al., 2009; Sukhova, Williams, & Libby, 2002).  

Further, the benefits of lowering blood cholesterol in preventing cardiovascular disease 
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has also been brought to question, especially as concerns accrue about the side-effects 

of statins, which may include insulin resistance, mitochondrial and cognitive dysfunction 

(Deichmann, Lavie, & Andrews, 2010; Ganda, 2016; Golomb & Evans, 2008; Riordan, 

2012; Seneff, 2009).  By comparing statin users to non-users, we provided insights to the 

effects of statins on the relationships among the various biomarkers of metabolism and 

inflammation.  Further, by comparing the results from the statins model to the diabetic 

model, we may infer whether our data and models support the suggestion that stating use 

may drive metabolic alterations that resemble the diabetic status.  Through group-mean 

analyses, we also assessed the general effects of those metabolic conditions on the 

biomarker levels, thereby confirming the effects of our path analysis models. 

 

METHODS 

 

Participants and Clinical Information 

 Participants were drawn from the Biomarker Project (2004-2009) stemming from the 

original MacArthur Foundation Survey of Midlife Development in the United States 

(MIDUS II).  Clinical and biological measures were assessed for 1,255 participants in the 

Biomarker Project who consented to the overnight hospital stay, either in Madison, WI, 

Los Angeles, CA, or Washington DC.  Participants arrived on Day 1 at one of the three 

sites where they were admitted and escorted to their rooms.  That same evening, the 

participants completed their medical history and a physical exam with the help of staff, as 

well as a self-administered questionnaire.  The subject participating in the biological 

assessment were demographically like the larger survey with respect to age, gender, 
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marital status, and generally had a higher level of education (Love, Seeman, Weinstein, 

& Ryff, 2010).  In order to increase the representation of African–American participants 

during this second assessment, a sample was added from Milwaukee, WI.  All sample 

collections and analyses were approved by the Health Sciences Institutional Review 

Board (IRB) at the University of Wisconsin-Madison, as well as by the IRBs at UCLA and 

Georgetown University. All participants provided informed consent. 

 

Specimen Collection 

 Fasted blood samples were obtained between 05:00 and 07:00 AM on Day 

2.  Specimens were frozen until analyzed.  All sample collections and analyses were 

approved by the Health Sciences IRB at the University of Wisconsin-Madison, as well as 

by the IRBs at UCLA and Georgetown University.  All participants provided written 

informed consent. 

 

Assessments 

 Glucose:  Blood glucose was measured by the standard clinical methods performed 

at Meriter Labs (GML) (Madison, WI).  Insulin: This assay was performed on a Siemens 

Advia Centaur analyzer.  The assay was performed at Meriter Labs (GML) in Madison, 

WI.  Glycosylated Hemoglobin (%) (HA1c):  Hemoglobin A1c was measured using 

monoclonal antibodies, binding the ß-N-terminal fragments of HbA1c. The quantity of 

bound glycopeptides was measured turbidometrically at 552 nm. Percent HA1c is then 

determined by dividing the concentration of HA1c by the total hemoglobin. The assay was 

performed at GML in Madison, WI. Triglycerides, total cholesterol, and HDL-C:  A standard 



184 

blood lipid panel was performed at GML in Madison, WI.  The HDL-C assay was re-

standardized by Roche Diagnostics on August 6, 2007.  The results of assays done after 

that date were adjusted to bring the new values in line within the existing data:  Adjusted 

value = 1.1423(new value) - 0.9028.  LDL-C: An estimation of LDL-C was calculated by 

using the Fridewald formula from direct measurements of total cholesterol (TC), 

triglycerides (TG), and HDL-C.  When triglyceride values were above 400 mg/dl, the 

MIDUS Biocore used 400 mg/dl as the upper limit for calculating LDL-cholesterol. 

Interleukin-6 (IL-6):  IL-6 was measured using the Quantikine® high-sensitivity ELISA kit 

#HS600B (R & D Systems, Minneapolis, MN) at the MIDUS Biocore Laboratory at the 

University of Wisconsin, Madison, WI. C-reactive protein (CRP): CRP was measured 

using the BNII nephelometer from Dade Behring utilizing a particle enhanced 

immunonepholometric assay.  The CRP assay was performed at the Laboratory for 

Clinical Biochemistry Research at the University of Vermont, in Burlington, VT. Human 

Soluble Intercellular Adhesion Molecule-1 (ICAM-1): ICAM-1 was measured by an ELISA 

assay (Parameter Human sICAM-1 Immunoassay; R&D Systems, Minneapolis, MN) and 

performed at the Laboratory for Clinical Biochemistry Research at the University of 

Vermont, Burlington, VT.  Body Mass Index:  BMI was computed by dividing weight (in 

kilograms) by height squared (in meters. Height measure (in centimeters) was multiplied 

by 100 to get the height in meters.  The measures were obtained by the clinical staff per 

standardized protocol.  Medication: Respondents were instructed to bring all their 

medications in the original bottles to the General Clinical Research Center (GCRC) during 

clinic visits. We asked them to do this to ensure that medication names and dosages were 

recorded accurately.  Completed forms were sent to the University of Madison (central 
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coordinating site) for review prior to data entry. Said review included specification of 

medication codes based on the medication name, as well as information about route, or 

reason for taking the medication, as appropriate. The medication codes were selected 

from our master list of medication codes derived from the UW Hospital Formulary, which 

utilizes the American Hospital Formulary System (AHFS) Pharmacologic-Therapeutic 

classification system.  Diabetic Status:  HA1c was dichotomized according to clinical 

cutoffs in order to compare the model effects across three diabetic statuses: non-diabetics 

(HA1c < 5.7%), pre-diabetics (5.7% ≤ HA1c < 6.5%), and diabetics (HA1c ≥ 6.5%).  Statin 

Use: For comparing model effects across users and non-users of statin medications, 

participants were categorized based on whether they took HMG-CoA reductase inhibitor 

at any dosage and frequency for at least the past three weeks. 

 

SEM Data Preparation 

 Participants with incomplete data were not considered in the analyses and were 

removed from the dataset.  Due to lack of participants from other racial ethnicities, only 

Caucasian and African American participants were retained in the dataset. The 

categorical variables: sex, race, diabetic status and statin use were dummy coded.  Ill-

scaled variances were checked and HA1c, IL-6 and ICAM-1 were re-scaled for analyses, 

yet, model estimates were converted back to their original units.  Our hypothetical model 

was tested and revised based on data that excluded extreme cases.  Five percent of the 

most extreme multivariate covariances were removed in order to conform the data to a 

sample distribution of Mahalanobis Distance (MD) scores that did not deviate significantly 

from the chi-square distribution. MD scores were calculated using the R-Project software, 
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and the data distribution was checked by plotting MD scores against quantiles of the chi-

squared distribution using the chisq.plot package in R.  The data was further checked for 

positive definite variance-covariance matrix (i.e., acceptable eigenvalues greater than 0). 

 

Structural Equation Modeling 

 The R package lavaan was used to fit SEM models to the data.  SEM assumptions 

were modified by selecting the Wishart likelihood function, requiring the covariance matrix 

of the data follow a central Wishart distribution rather than full multivariate normality.  

Robust Maximum Likelihood estimator (MLR) for non-normality was also selected to 

adjust chi-square and standard error estimates.  Huber White “sandwich” estimator was 

used as the default standard errors adjustment for MLR.   

 The original model tested the following regressions: HA1c was regressed on 

glucose; glucose was regressed on insulin; insulin was regressed IL-6, CRP and glucose; 

triglyceride values were regressed on glucose and insulin; HDL was regressed on IL-6, 

CRP and ICAM-1;  LDL was regressed on triglycerides, IL-6, CRP and ICAM-1; BMI was 

regressed on glucose, insulin, triglycerides, LDL and HDL; IL-6 was regressed on BMI, 

glucose, triglycerides, HDL and LDL; CRP was regressed on IL-6, BMI, glucose, 

triglycerides, HDL and LDL; ICAM-1 was regressed on IL-6, CRP, glucose, triglycerides, 

HDL and LDL.  Model regressions were revised by stepwise removal and by adding 

residual correlations as non-causal model covariances when, and only when, compatible 

with observed physiology.  Individual regression predictors in the SEM were retained 

based on their p-values and the regression estimates were presented in raw units 

(allowing for the comparison of regression coefficients across subsamples) and in 
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standardized units (allowing for comparisons between regression coefficients within the 

model).  Model variations were also tested by inverting the directionality or route of 

specific regression effects, when in conformity with physiological alternatives.  Various 

indices of absolute fit were used to test whether our revised hypothetical model fit the 

data, including Chi-square, Root Mean Square Error of Approximation (RMSEA), 

Standardized Root Mean Square Residual (SRMR), [Robust] Tucker-Lewis Index (TLI) 

and [Robust] Comparative Fit Index (CFI).  The model Chi-Square analysis tests whether 

there is a statistically significant difference between model and data covariance matrices, 

hence, non-significant p-values indicate that the model fits the data.  As a result of chi-

square tests tending to produce statistically significant p-values for data containing many 

cases (>400), other fitness indices were also examined and considered.  The RMSEA 

test requires large degrees of freedom; and the null hypothesis is that the hypothetical 

model fits no worse than the close-fitting model (which is an RMSEA = 0.05).  A value of 

RMSEA > 0.05 is indicative of a good global fit of the model.  When RMSEA values are 

lesser than 0.05, 95% confidence intervals overlap with zero, and the RMSEA p-value is 

greater than 0.05, it is concluded that the model fits the data better than the null model.  

The RMSEA penalty for complexity is the Chi-Square to DF ratio.  Like RMSEA, SRMR 

is an absolute measure of fit, where SRMR = 0 indicates the perfect fit.  However, unlike 

RMSEA, SRMR has no penalty for model complexity.  RSMR < 0.08 is generally 

considered a good fit.  The TLI indicates good fitting models at low Chi-Square to degrees 

of freedom ratios.  CFI is like, and highly correlated to TLI, but imposes a penalty for every 

parameter estimated.  Good fitting models should exhibit TLI and CFI > 0.95.  Power 
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analyses consisted of computing power for RMSEA. The analysis was set to alpha=0.05, 

null hypothesis RMSEA=0, and the alternative hypothesis at RMSEA = 0.01. 

 Alternative model variations were tested by placing the dyslipidemia at the origin of 

the system, and feeding forward onto inflammatory and glucoregulatory biomarkers.  

Various permutations of effects were tested, keeping lipid biomarkers at the origin of the 

system according to perpetuating claims that dyslipidemia cause obesity and 

inflammation, which, in turn can cause diabetes.  A final model was optimized for best fit 

based on mathematical associations and the order of effects without necessarily 

complying with known physiological mechanisms. This final model was tested for the 

absolute fit to the data, then compared to our hypothetical model, which places 

glucoregulatory biomarkers at the origin of the system.  Those models were compared 

based on relative fit indices, such as negative-Loglikelihood, Akaike Information Criterium 

(AIC) and Bayesian Information Criterium (BIC) and Sample-Adjusted Bayesian 

Information Criterium (SABIC).  AIC and SABIC may be less biased for data with large 

number of cases, while BIC may be more appropriate for data with lesser cases, hence 

greater weight should be place on the former two.  Lower values indicate a better fit, 

therefore, the model with lowest LL, AIC, BIC or SABIC values is the best fitting model. 

 Chi-Square difference tests were used to decide whether subsamples that reflect 

conditions of metabolic interest (diabetic status, statin use, race and sex) should be 

modeled together or separate.  If the chi-square difference test is nonsignificant, modeling 

the subsamples separately is not any worse, statistically speaking, than modeling the 

subsamples together as a single sample.  In cases of nonsignificant differences, the most 

parsimonious model should be chosen — the model that treats all participants as a single 
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sample.  Conversely, when the Chi-Square difference test is significant, the model should 

treat the subsamples separately (e.g., the specified model does not equally fit all 

subgroups).  SEM differences by diabetic status was carried out on participants who did 

not use insulin targeted medications or statins.  Differences by statins usage were tested 

in participants who were not diabetic.  To test the effect of race and sex, insulin targeted 

and statin medication users as well as diabetics were excluded from analysis.  

 

Group-Mean Analyses 

 Group-mean analyses of the biomarkers of glucoregulation, lipid balance and 

inflammation were also carried out.  Each biomarker was tested by t-test or ANOVA, 

without adjustments, across the metabolic conditions of interest (diabetic status and statin 

use) to aid in the interpretation of their effects on the SEM relationships and the system 

as a whole. 

 

RESULTS 

 

Descriptive statistics 

 A total of 1161 Caucasian and African-American participants had complete data, 

including 57.2% females and averaging 54.8 years of age (Table 1).  On average, these 

participants were also pre-diabetic (fasting blood sugar levels from 100-125 mg/dL, and 

HA1c between 5.7-6.5).  Sixteen percent of them had HA1c levels indicative of type 2 

diabetes.  The majority were also overweight and almost obese (BMI> 30).  By clinical 

standards, their CRP were indicative of high risk for cardiovascular disease (CRP> 3.0 
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mg/L).  Yet, per standard clinical guidelines, most their blood lipids were within optimum 

or near optimum ranges: triglycerides (<150 mg/dL), total cholesterol (<200 mg/dL) and 

estimated LDL-C (<100 mg/dL); and HDL (40-59 mg/dL) were considered within 

acceptable range.  However, these averages included participants taking statins, which 

amount to approximately 24.0% of participants.  Although most participants in this study 

presented blood lipid biomarkers within controlled ranges, they still presented with a high 

inflammatory profile. 

 

SEM path analyses 

 In order to test and revise the hypothetical model, a more homogeneous subsample 

was generated. Five percent of the most extreme cases were removed based on MD 

scores and chi-square distributions; 1103 remaining cases were filtered for Caucasian 

participants who were not users of insulin or cholesterol targeted medications and who 

did not present HA1c levels indicative of diabetes (greater than 6.7%), yielding a total of 

626 cases to be considered for analysis.  The covariance matrix and eigenvalues for the 

full complete dataset are presented in Table 2.  All Eigenvalues were acceptable (>0).  

The original model was fit to the data and revised by path analyses as described (see 

example in Table 3).  The final model was estimated for 626 cases at 27 degrees of 

freedom, producing a nonsignificant chi-square, indicating that the model fit the data 

(Table 4).  Chi-square analyses of SEMs tend to produce statistically significant values 

for data containing over 350 cases.  The fact that our hypothetical model produced a 

nonsignificant chi-square value despite a large number of cases indicates a strong fit for 

the data. Other indices of absolute model fit, RMSEA, SRMR, CFI and TLI, all support 
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this conclusion (Table 4).  Although, there were residual correlations not accounted by the 

model (Figure 1), those associations did not produce significant covariances (regression 

predictors or non-causal covariances), nor rendered the model unfit of the data.   
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Figure 1.  Model Residual Correlation.  Faint colors indicate that little covariance was 

not accounted for given two factors in this model.  Conversely, darker colors/larger circles 

indicate significant residual covariances that were not accounted for in the model. 
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 The final model also provided many significant regression estimates that were in 

keeping with our hypotheses, pointing to glucodysregulation at the main physiological 

driver affecting lipid balance and inflammation (Table 5).   Specifically, we observed large 

effects of glucose on HA1c and insulin; insulin on triglycerides; triglycerides on LDL, 

insulin and HDL on BMI; LDL, HDL and BMI on IL-6; BMI and IL-6 on CRP; and moderate 

effects of CRP and HDL on ICAM-1; lastly, IL-6 on insulin (Table 5).  In all cases, HDL 

exhibited protective effects. While LDL added to BMI, it also contributed to lower IL-6.  

The largest biomarker effects in each regression were: glucose on insulin; insulin on 

triglycerides; insulin on BMI; BMI on IL-6; IL-6 on CRP; and similar effects for CRP and 

HDL on ICAM-1.  Age exerted a positive effect on HA1c (expected with slower hemoglobin 

turn over in aging).  Age predicted higher HDL, IL-6 and ICAM-1 (Table 5).  Our model did 

not detect the effect of age on glucose, insulin, LDL or CRP, as expected.  Direct effects 

of glucose on inflammation were not detected as expected.  Through inspection of the 

relative effect sizes in the model (indicated by standardized coefficient estimates), we 

concluded that the major route of effect followed from glucose to insulin to BMI to both IL-

6 and CRP, from IL-6 to CRP, and CRP to ICAM-1 (Figure 2).  This effect pathway reflects 

a proinflammatory drive. A secondary, but weaker, proinflammatory route was exhibited 

from triglycerides to LDL to BMI (Figure 2).  HDL exhibited lowering effects on BMI, IL-6 

and ICAM-1.  All routes support our hypothesis that glucodysregulation is the root of 

dyslipidemic metabolism and body adiposity, ultimately affecting systemic inflammation 

and vascular inflammation.  However, we did not detect direct deleterious effects of 

glucose metabolism, triglycerides or LDL on systemic or vascular inflammation markers. 



194 

Our SEM explained approximately 16% of the variance in HA1c, 18% of the variance in 

insulin, 21% of the variance in triglycerides, 6.1% of the variance in LDL, less than 1% of 

the variance in HDL (by age), 35% of the variance in BMI, 12% of the variance in IL-6, 

29% of the variance in CRP and 8% of the variance in ICAM-1.  Based on 626 cases, 27 

degrees of freedom, as well as the specifications described in Methods, RMSEA power 

analyses indicated that we had a 97.30% probability of rejecting a false model. 

 

 

Figure 2. Causal modeling of metabolic-inflammatory relationships.  Significant 
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parameter estimates in final model are shown.  The directionality of effects is indicated 

by the arrow head.  Sign in parenthesis indicate positive and negative effects. The relative 

magnitude of effects is indicated by the weight of the path line.  Greater weight indicates 

greater relative effect. 
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 An alternative model, placing dyslipidemia at the origin of the system, was also 

tested and revised to produce the best feeling model.  Model revisions discarded 

nonsignificant regressions and added residual correlations as non-casual relationships, 

while preserving the general directionality of effects from lipid to inflammatory to 

glucoregulatory biomarkers as per a well-known hypothesis that is still claimed by many 

epidemiological studies on cardiovascular disease risk.  The resulting model contained 

the following significant regression estimates: HDL was predicted by age; BMI was 

predicted by triglycerides and HDL; IL-6 was predicted by age, BMI, HDL, and LDL; CRP 

was predicted by BMI and IL-6; ICAM-1 was predicted by age, CRP and HDL; HA1c was 

predicted by age, glucose, IL-6 and BMI; and finally, insulin was predicted by glucose, IL-

6, BMI, triglycerides and HDL.  Other causal covariances were not significant.  Many 

components of this model that remained significant overlapped with our hypothetical 

model.  Other causal effects, while mathematically associated, do not have physiological 

precedents.  The resulting model also did not pass the Chi-Square test, and produced a 

statistically significant p-value (𝜒²(28)=42.409, p=0.040), indicating that the model 

covariance matrix is significantly different from the data covariance matrix.  However, the 

significant Chi-Square value could be a product of the large number of cases.  While the 

RMSEA analysis (RMSEA=0.30, p=0.987, 95% C.I. 0.007 - 0.047) was non-significant, 

the 95% confidence interval indicated a near close-fitting model (null model).  On the 

contrary, other indices of absolute fit were within acceptable values (SRMR=0.026, 

CFI=0.988 and TLI=0.976).  Overall, the alternative model fits the data well enough to 

proceed to model comparisons.   The relative fit indices were produced and compared 

between the hypothetical (see Table 4) and alternative model (-LL=25915.152, 



197 

AIC=51928.305, BIC=52145.755 and SABIC=51990.186).  The alternative model 

produced larger indices of relative fit, indicating that it does not fit the data as well as our 

hypothetical model. 

 

Moderation by diabetic status 

 Data from participants who were not being treated with insulin targeted or statin 

medications were compared across categories of diabetes status, based on their HA1c.  

Because the hypothetical model was revised using data from non-diabetic and pre-

diabetic participants, it would be less likely to find differences in the model fit between 

those two categories (the number of non-diabetic participants was too low to use them 

alone as originally intended).  Nevertheless, we expected to observe differences in 

regression effects between the two categories.  Yet, differences between non-diabetics 

and pre-diabetics were large enough to produce a statistically significant difference in the 

model fit.  We found distinctions in model fit across all three categories (Table 6).  Further, 

the differences in regression effects produced were in keeping with physiological changes 

expected in diabetes (Table 7), as further validating the use of our model.  Specifically, 

we observed an increased effect of glucose on HA1c and triglycerides, while insulin was 

less influenced by glucose and exerted a diminished effect on triglycerides and BMI.  

Accordingly, we observed increases in mean glucose, insulin, HA1c and triglycerides 

(Table 8, and Figure 2A-D).  All causal relationships to and from LDL were decreased 

among diabetics (Table 7).  There were no significant differences in LDL levels across 

diabetic statuses (Table 8), but there was an apparent increase in variance (Figure 2E).  

These findings may be a product of a wrong estimation of LDL-C by Friedewald’s equation 
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for individuals with diabetes or dyslipidemia.  We also observed weakened effects (both 

positive and negative) on HDL, BMI and IL6 in diabetics (Table 7), also with worsened 

mean concentration levels (Table 8 and Figure 2F, G, H), which may be indicative of lipid 

and inflammatory deregulation.  On the other hand, diabetics presented higher mean 

levels on CRP with intensified effects (Table 7 and Figure 2I).  While the effect of CRP on 

ICAM-1 was diminished among diabetics (Table 7), ICAM-1 levels increased across 

diabetic statuses (Figure 2J) again indicating possible deregulation of the system or the 

effect of other physiological component not assessed in our study.  In keeping with 

previous studies demonstrating that HDL may exert antiinflammatory effects on the 

vasculature, we observed a largely increased effect of HDL on ICAM-1 levels (Table 7), 

perhaps indicative of an antiinflammatory response.  
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Moderation by statins 

 Data from non-diabetic participants were compared between non-users and users 

of statins.  The Chi-Square difference test indicated a statistically significant difference 

between modeling non-users and users of statins separately, rather than modeling them 

without distinction (Table 9).  The effects acting on HA1c, insulin, LDL and BMI among 

statin users resembled those found among diabetic participants, except for a greater 

effect of glucose on BMI (Table 10).  Accordingly, statin users also presented with higher 

levels of glucose, insulin, HA1c, triglycerides, as well as greater BMI (Table 11 and Figure 

3A-D).  Therefore, these results indicate a higher risk of diabetes among statin users.  

While statin users may have presented pre-existing, pro-diabetic profiles, we attempted 

to remove such confounds by excluded participants who exhibited a diabetic HA1c value 

from these analyses.  Further, there is growing evidence that statin medication may 

induce diabetes.  Moreover, glucose also exerted a weakened effect on triglycerides, 

while insulin exerted a stronger effect. It is important to note that the effect of insulin on 

triglycerides were of much higher magnitude than the effects of glucose (Table 5).  Despite 

higher triglyceride levels, statin users exhibited lower LDL (Figure D and E), accompanied 

by a weakening of the triglyceride-LDL relationship.  These effects are expected because 

of the use of statins, which specifically target cholesterol.  However, amongst statin users, 

we also observed a sizable reduction in HDL levels (Figure 3F).  Statin users presented 

with 22.35% lower LDL and 7.64% lower HDL when compared to non-statin users.  

Additionally, we observed that except for the increased effect of HDL on IL-6, all effects 

acting on the proinflammatory biomarkers were largely decreased (often to 

nonsignificance) among statin users in relation to non-users (Table 10).  This finding may 
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suggest that statins potentially attenuate the links connecting dysregulated metabolism 

to inflammation, as well as the pathways connecting the inflammatory biomarkers (Table 

10).  Accordingly, statin users did not show statistically higher or lower levels of IL-6, CRP 

or ICAM-1 (Table 11).  Our finding is in keeping with previous studies that suggest that 

statins may benefit individuals presenting metabolic syndrome through antiinflammatory 

effects.  Appropriately, statin users also exhibited lower effect of IL-6 on insulin (Table 10).  
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DISCUSSION 

 

 Much of the population sample in the MIDUS Biomarker project was on the verge of 

obesity. According to HA1c and fasting glucose values, the majority was, at least, pre-

diabetic.  Although, their lipid panels were almost optimal by most measures, they present 

CRP levels that placed them in a clinical category of “moderate risk.”  Further, nearly a 

quarter of the sample was on statin drugs.  While cholesterol levels for both users and 

non-users of statins were well controlled, their glucoregulatory and inflammatory systems 

were not.  Hence, our models, their effects and the difference in their effects across 

subgroups should be interpreted in context of a population that show signs of metabolic 

syndrome. 

 

Path and directionality of effects 

 We used structural equation modeling to infer causal relationships among various 

biomarkers of health based on known metabolic and inflammatory physiology.  We 

assessed the fit and effects of a hypothetical model that placed glucoregulatory 

biomarkers at the causal root of a system, affecting markers of markers of lipid 

metabolism, systemic and vascular inflammation.  Through analyses of the mediation and 

directionality of effects, we optimized the model to a near homogeneous participant 

subset, confirming our primary hypothesis that such a model better fits the data.  These 

analyses also indicate that the main route of deleterious effects linking glucoregulation to 

vascular inflammation follows primarily through the effect of glucose and insulin on BMI, 

BMI on IL-6 and CRP, IL-6 on CRP, and CRP on ICAM-1.  While we detected the effect 
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of triglycerides on LDL, the effects of LDL were either weak (on BMI) or antiinflammatory 

[on IL-6].  The weak effects of LDL were indicative of a few possibilities: (1) LDL 

cholesterol is not a main driver of inflammation as once thought, in keeping with the more 

recent literature; (2) That most of the LDL is not proinflammatory, and rather a subtraction 

that is oxidized or glycated; (3) or that the estimated LDL cholesterol is not a useful 

measure of lipid metabolism for a population that shows strong signs of metabolic 

syndrome, as suggested by previous studies.  On the other hand, HDL exhibited 

beneficial relationships to BMI, IL-6 and ICAM-1, acting as an antiinflammatory factor 

towards the markers of inflammation.  While we found a positive effect of glucose and 

insulin on triglycerides, we did not find any direct inflammatory effects of glucose on 

inflammatory markers, as we expected from multiple studies (Kim, Kim, & Kim, 2011; 

Rizzo, Barbieri, Marfella, & Paolisso, 2012; Yan et al., 2003).   

 

Carbohydrate metabolism at the genesis of obesity and inflammation 

 Our application of Structural Equation Modeling to this data allowed us to assess 

the directionality and mediation of effects and to compare competing models in order to 

better understand how the relationships within a biological system change across different 

participant samples.  This strategy generated a system-wide view of the biomarker 

physiology, provided insight into the systems-level effect of type 2 diabetes and statins 

treatment.  We compared the fit of competing mathematical models on population data, 

selecting the model that best represents the parsing of variances found within that 

population sample, thereby testing the path and directionality of effects through 

mathematical means.   Our hypothetical model indicates that glucoregulation and 
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adiposity may be the two major components driving systemic and vascular inflammation.  

To further support our hypotheses, we compared the relative fit of our model to a 

mathematically optimized model placing dyslipidemia at the causal root of the model.  We 

found that our hypothetical model better fits this data than this alternative model, 

confirming that a causal effect of glucodysregulation better explains the metabolic-

inflammatory profiles than lipid dysregulation.  Our model also points to body adiposity as 

one of the main mediator of the inflammatory effects.  Although BMI is an imperfect 

measure of body adiposity, it is an appropriate marker in a population characterized by 

overweight, pre-obese profiles.  Additionally, our model indicates that blood cholesterol 

pathways are secondary to other effect routes that exert stronger inflammatory pathways: 

glucose, insulin and triglycerides.  Accordingly, recent studies point to triglycerides as an 

important predictors of Insulin resistance, LDL particle size and cardiovascular disease 

(Boizel et al., 2000; da Luz, Favarato, Faria-Neto, Lemos, & Chagas, 2008; Frohlich & 

Dobiášová, 2003; Gonzalez-Chavez, Simental-Mendia, & Elizondo-Argueta, 2011; 

Maruyama, Imamura, & Teramoto, 2003) 

 

Diabetic status 

 We compared the model effects across three levels of diabetic status according to 

clinical HA1c cutoffs and found differences in the relationships among the various 

biomarkers between non-diabetics and diabetics, and also between non-diabetics and 

pre-diabetics and pre-diabetics and diabetics.  The differences in effects across diabetic 

statuses were consistent with the biological alterations as expected in the 

pathophysiology of Diabetes Mellitus.  For instance, all relationships to and from insulin 



206 

are weaker among diabetics then non-diabetics, reflective of reduced insulin sensitivity 

and greater insulin resistance.  These effects suggest that metabolic dysfunction takes 

place far earlier than clinical diagnosis, as pre-diabetics already exhibited pro-diabetic 

profiles.  In addition, specific and system-wide differences in lipid and inflammatory effects 

were evident from one level of diabetic status to the next. These differences in model 

effects were also accompanied by increasing mean levels of inflammatory biomarkers 

and BMI.  These results are in keeping with the recent research that favors low glycemic 

diets and addressing insulin sensitivity over low fat diets and cholesterol target treatments 

(Boden, 2009; Hite et al., 2011; Volek et al., 2009; Westman et al., 2007). 

 

Statin Treatment 

 In assessing the differences in effects between non-users and users of statin 

medications, we found that glucoregulatory alterations were similar to those found in the 

assessment of diabetes.  These differences may suggest a greater risk of diabetes among 

statin users, especially considering that they also present higher mean levels of the 

glucoregulatory biomarker than non-users. This difference reflects recent evidence that 

statin medications may drive diabetic processes (Ganda, 2016; Riordan, 2012).  In 

addition, we found weaker relationships amongst the biomarkers of inflammation within 

those statin users.  This finding would support recent evidence that suggests the benefit 

of statins may come from antiinflammatory effects (Blake & Ridker, 2000; Li et al., 2010; 

Liao & Laufs, 2009; Sukhova et al., 2002).  However, statin users did not exhibit lower 

mean levels of inflammatory biomarkers than non-users.  That could be an indication that 
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statins weaken some of the proinflammatory drivers in the system but may not necessarily 

exert antiinflammatory effects that would reduce inflammation. 

 

Significance 

 There is still controversy in the scientific literature and governmental guidelines on 

the dietary and metabolic causes of obesity and inflammatory disease.  In opposition to 

biochemistry and molecular biology based studies, many population studies still support 

the notion that dietary lipids are the main drivers of obesity, metabolic and inflammatory 

disease.  Many population and clinical studies also point to total cholesterol or LDL bound 

cholesterol as the main markers of inflammatory and cardiovascular disease.  Structural 

equation modeling allowed us to build systems-level pathway models connecting 

biomarkers of glucose and lipid metabolism, body adiposity, systemic and vascular 

inflammation, to test and compare different hypothetical models, and to statistically decide 

which best fit the data.  We sought to test whether carbohydrate or lipid metabolism drive 

glucodysregulation, dyslipidemia, obesity and inflammation, and the pathway of effects 

connecting those physiological systems.  Our analyses showed that carbohydrate and 

not lipid metabolism or inflammation sit at the genesis of metabolic and inflammatory 

dysfunction.  The best fitting model indicated that glucose and insulin directly feed onto 

triglycerides and BMI, that triglycerides feed on LDL then BMI, both LDL and HDL exerted 

antiinflammatory effect on IL-6, while BMI exerted proinflammatory effect, HDL also 

exerted antiinflammatory effect on ICAM-1, CRP was driven by both BMI and IL-6, and 

ICAM-1 was driven by CRP.   The strongest pathways effects followed from 

glucoregulation to BMI to IL-6 and CRP.  According to our predictions, BMI was the main 
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gateway linking macronutrient metabolism and inflammation.  By testing across diabetic 

status, we detected changes in biomarkers and pathways that were consistent with insulin 

resistance and diabetes, which serve as further support for our theoretical model.  

Biomarker and pathways were also affected by statin medications use, and showed a 

number of similarities to the alterations observed across diabetic status.  Testing by statin 

use also indicated that the beneficial effects of statins may not be due to its cholesterol 

lowering effect, but rather by weakening proinflammatory pathways.  Both findings 

regarding statins are in keeping with the recent examinations on the specific effects of 

statins.  The results from these analyses corroborate with those of previous studies 

included in this thesis.  It provides support that carbohydrate and not lipid metabolism is 

the main driver of obesity and inflammation and that body adiposity exerts important 

mediative effect and directly affecting inflammatory status.  While these pathways have 

been individually characterized in small experimental models, our study was the first to 

examine them using a systems level perspective with epidemiological data. 
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Thesis Conclusion 

 

Hypotheses and conclusions 

 The overarching goals of this dissertation were to assess the impact of body 

adiposity on two common population markers of chronic inflammation and to assess the 

mediating role of body adiposity on those markers of inflammation with focus on lipid and 

carbohydrate metabolism. I hypothesized that body adiposity would exert a major 

influence on both IL-6 and CRP, above and beyond diet and other metabolic factors, 

mediating a large proportion of the genetic, dietary and metabolic effects on 

CRP.  Secondarily, I hypothesized that carbohydrates, at the dietary and metabolic levels, 

would have greater influence of adiposity and CRP than lipids.  These questions were 

addressed through four studies, and determined: 

 1.1  How various measures of body adiposity predict inflammatory status: I 

hypothesized that BMI would be a good proxy for total body fat, and an acceptable 

predictor of visceral and non-visceral fat depots, especially in the context of its 

inflammatory effects.  I further hypothesized that visceral body fat would exhibit the 

greatest influence over both IL-6 and CRP.  Similarly, I expected that visceral fat would 

best reflect the effect of BMI on both IL-6 and CRP.  Our results indicated that BMI is 

indeed a good proxy of total body fat in the study population.  However, body fat non-

uniformly reflected body fat depots; it better represented non-viscera than visceral stores.  
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Further, visceral and non-visceral fat depots differed in their effect on IL-6 and CRP.  While 

visceral fat exerted a greater effect on IL-6 as hypothesized, non-visceral fat exhibited a 

greater influence on CRP than did visceral fat.  That said, the differences in the 

contribution of visceral and non-visceral compartments was smaller for CRP than for IL-

6.  Further, visceral fat mediated the effect of BMI on IL-6 while non-visceral fat mediated 

the effect of BMI on CRP, meaning that the effect observed for BMI on IL-6 and CRP may 

reflect different anatomical and physiological pathways.  In addition, we detected the 

effect of visceral and non-visceral fat on CRP was partially mediated by IL-6, suggesting 

the fat tissues influence CRP directly and indirectly through IL-6.  These analyses support 

the role of body adiposity as a major predictor of baseline inflammation, and elucidate the 

proportional contribution of visceral and non-visceral fat depots.  They also support the 

use of BMI as a measure of body adiposity, with the caveat that BMI reflects distinct fat 

depots in the prediction of IL-6 and CRP. 

 1.2.  The extent to which the heritability of inflammation is associated with body 

adiposity:  I hypothesized that the additive genetic effect unique to IL-6 is small or 

insignificant.  Rather, that the additive genetic effect observed in the heritability of IL-6 is 

inflated by the influence of BMI.  According to the hypothesis that BMI exerts defining 

influence over baseline levels of IL-6, I expected matched controls to exhibit an intra-class 

correlation that is similar in magnitude to that of monozygotic co-twins.  I also 

hypothesized that both IL-6 and BMI would exert influence over the heritability of CRP.  

However, I expected the additive genetic effect on CRP to be influenced to a lesser extent 

by BMI than IL-6.  We found no additive genetic effect acting uniquely on IL-6.  Rather, 

the heritability of IL-6 was explained by its co-inheritance with BMI.  BMI also influenced 
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the heritability of CRP.  However, the additive genetic effects acting on CRP were only 

partially influenced by BMI.  The heritability of CRP was not influenced by IL-6.  Rather, 

they shared common environmental influences.  While this may seem surprising given 

that BMI exerts strong heritable influence over both of them, according to the previous 

study, the effect of BMI on IL-6 and CRP were reflective of different anatomical pathways 

(visceral vs non-visceral), which may exhibit differential heritable effects.  These analyses 

study build on the first study by elucidating the shared heritability between BMI, IL-6 and 

CRP, thereby demonstrating the extent to which body adiposity affects inflammatory 

biology.  

 2.1.  The effect of dietary lipids and carbohydrates on body adiposity and 

inflammation, as well as the extent to which body adiposity mediates the effect of diet on 

inflammation:  I hypothesized that diet would explain a significant proportion of the 

variance in BMI, and that dietary carbohydrates would exert a greater effect on adipose 

accumulation than lipids.  Similarly, I hypothesized greater direct and indirect effect of 

carbohydrates on CRP, as well as a greater proportion of the effect of carbohydrates than 

lipids to be mediated through BMI.  I also hypothesized that BMI would exert a greater 

effect on CRP than other markers of metabolic status.  We found that carbohydrates 

accounted for the largest proportion of the effect of diet on BMI and CRP, while lipids 

accounted for very little. Specifically, dietary fiber and sugar exerted greatest effects 

among the macronutrients, while the effect of dietary cholesterol and saturated fat were 

relatively minor.  We also found that diet exerted a direct as well as indirect effect on CRP, 

and that BMI mediated the effects of dietary carbohydrates but not lipids.  Further, we 

showed that BMI is a potent predictor of CRP, far more than the other markers of 
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metabolic status, including blood cholesterol.  Our analyses also identified dietary factors 

that were high in multicollinearity in the prediction of CRP – starch, monounsaturated fat 

and protein — while significant, their effects could not be reliably estimated.  These 

analyses corroborate on the past two studies by further supporting the role of body 

adiposity as the major metabolic influence on inflammation and the major mediator of the 

effects of diet.  Further, these analyses support that carbohydrates, not lipids, are major 

contributors to obesity and inflammation. 

 2.2. The pathways underlying the relationship between lipid and carbohydrate 

nutrient metabolism, adiposity and inflammation:  I hypothesized a model in which 

carbohydrate metabolism would drive lipid metabolism and body adiposity and where the 

three systems would directly affect the measures of inflammation.  I further hypothesized 

that this model would better fit the data than one that places lipid metabolism at the origin 

of the system.  I also hypothesized that the magnitude of effects in the model would 

demonstrate that the flux of effects would point to BMI as a major mediator of the effects 

of carbohydrate metabolism on the inflammatory biomarkers.  In addition, I expected that 

when diabetics and non-diabetics are compared in this model that we would observe 

alterations in path effects that are consistent with insulin resistance and diabetes.  I also 

expected similar path effect alterations when users and non-users of statin medications 

are compared in the model, and that such model would reflect a weakening of the 

inflammatory pathways.   

 Our model showed that carbohydrates do indeed sit at the origin of the system, 

directly influencing lipid metabolism and adiposity, but only indirectly affecting 

inflammatory status.  Path analyses showed that the indirect effect of carbohydrate 
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metabolism on inflammation was largely mediated by body adiposity.  Our model better 

fitted the data than a model which was optimized with lipid metabolism at the origin of the 

system.  Comparing across diabetic status also showed path effect alterations that were 

consistent with insulin resistance.  In addition, our model indicated a weakening of the 

proinflammatory pathways as well as key resemblances to the diabetic profile.  In further 

support to the thesis, and in accord to our previous studies, these analyses showed that 

carbohydrate metabolism sits at the origin of lipid dysfunction, obesity and inflammation 

and places body adiposity as the main mediator of those effects. 

 In conclusion, this thesis emphasizes the role of body adiposity as a proximal and 

defining influence on inflammatory status, and carbohydrates as the main driver behind 

metabolic dysregulation, adipose accumulation, and, ultimately, inflammation. 
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Appendix 1.1. 

Body Fat Distribution Differentially Predicts Interleukin-6 and C-Reactive Protein 

 

Neuroendocrine interactions 

 Neuroendocrine factors exert metabolic and inflammatory effects at the systems 

level, orchestrating responses to stress, injury, infection, as well as energetic shifts 

(Straub, 2014).  Cortisol and epinephrine exhibit varied regulatory effects on adipose 

tissue, including lipolysis, glucose uptake, cellular proliferation, differentiation and cell 

death (Hauner, Schmid, & Pfeiffer, 1987; Nomellini, Gomez, Gamelli, & Kovacs, 2009; 

Peckett, Wright, & Riddell, 2011; Romijn & Fliers, 2005; Straub, 2014).  Systemically, the 

evidence suggests that cortisol and epinephrine can exert pro- or antiinflammatory effects 

depending on the magnitude and duration of the stimulus (Engdahl, Opperman, Yerrum, 

Monroy, & Daly, 2007; Yeager, Pioli, & Guyre, 2011), but their effects could also vary by 

tissue.  Epinephrine has been shown to increase IL-6 production and release in fat 

(Goossens et al., 2008; Keller, Keller, Robinson, & Pedersen, 2004; V Mohamed-Ali et 

al., 2000; Vidya Mohamed-Ali et al., 2011) and muscle tissues during exercise (Frost, 

Nystrom, & Lang, 2004; Goossens et al., 2008; Steensberg, Toft, Schjerling, Halkjaer-

Kristensen, & Pedersen, 2001), contributing significantly to systemic levels. However, this 

is not observed in peripheral blood cells (V Mohamed-Ali et al., 2000).  Conversely, 

cortisol has been shown to suppress stimulated IL-6 in both muscle and fat tissues (Fried 

et al., 1998).  To our knowledge, acute changes in either epinephrine or cortisol have not 

been shown to up- or down-regulate CRP in fat or muscle tissue. Additionally, it is not 
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known whether individual differences in cortisol and epinephrine at baseline levels might 

influence the regulation of IL-6 or CRP in those tissues. 

 Because catecholamines and glucocorticoids are known to influence IL-6 release as 

well as tissue function, we determined whether measures of systemic epinephrine and 

cortisol moderate the effect of body composition on the circulating levels of IL-6.  To our 

knowledge, the effect of catecholamines and glucocorticoids on CRP production across 

body composition measures has not been reported.  However, because neuroendocrine 

factors exert powerful effects over various tissues, we explored the possible interactions 

between each body composition measure and epinephrine or cortisol in predicting on 

CRP. 

 

Methods 

 Urine Cortisol: Urine was collected overnight during the hospital stay.  Urine 

specimens were aliquoted and frozen until analyses in the -60° to -80° freezer.  High-

Pressure Liquid Chromatography (HPLC) coupled with electrochemical detection was 

used for quantification.  The assay was performed at Mayo Medical Laboratories (MN).  

Urinary cortisol was adjusted for creatinine concentration to control for blood filtration rate, 

thus estimating the concentration in the blood.  Epinephrine: Urine was collected 

overnight during the hospital stay.  Urine species were stabilized to ph ≤ 5, then frozen 

until analyses in the -60° to -80° freezer.  HPLC mass spectrometry was used for 

quantification.  The assay was performed at MN.  Urinary epinephrine was adjusted for 

creatinine excretion to control for blood filtration rate and therefore estimate the 

concentration in the blood.  
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 To test the interactive effects of neuroendocrine factors and DXA body composition 

components, the regression models were adjusted for potentially confounding covariates 

(i.e., age, gender, race, HDL-cholesterol, non-HDL-C, and the use of blood pressure or 

corticosteroid medications). 

 

Results 

 Simultaneous multiple regression models were designed where the interaction of 

systemic measures of cortisol and epinephrine with each of the three DXA components 

were tested in predicting IL-6 and CRP.  These models also included covariates for model 

adjustments. VIFs were checked in each regression model for all independent variables.  

All variables exhibited low multicollinearity, indicating acceptable accuracy in coefficient 

estimations.  In the regression of IL-6 in the adjusted model, we found two significant 

interactions. These were observed between cortisol and lean body mass (β=-7.816x10^-

7, F(1,190)=8.34, p=0.004), as well as non-visceral fat and epinephrine (β=-4.281x10^-6, 

F(1,190)=5.83, p=0.017).  While these interactions predicted small changes in tissue 

effect on IL-6, they explained 3.07% and 2.15% of the variance, respectively.  The main 

effect of cortisol was shown to be non-significant, therefore considered negligible 

(F(1,190)=1.568, p=0.212). As baseline cortisol levels increased in the population 

sample, the effect of lean body mass on IL-6 became increasingly negative.  However, 

these analyses indicate that the effect of increased cortisol may work, in part, through 

lean tissue to lower IL-6.  As with cortisol, the main effect of epinephrine in predicting IL-

6 was negligible (F(1,190)=0.129, p=0.720).  However, as baseline epinephrine levels 

increased in the sample, the effect of non-visceral fat on IL-6 was attenuated.  This may 
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reflect antiinflammatory actions of epinephrine on non-visceral adipose tissue.  

Notwithstanding, the non-variance based effects sizes for both interactions were relatively 

small, which may be expected at non-stimulated systemic levels.  No interactions were 

found to act on visceral fat’s effect on IL-6.  In the regression of CRP, adjusted for the 

aforementioned covariates, we did not detect any neuroendocrine interactions in regard 

to visceral fat, non-visceral fat or lean tissue. 

 

Discussion 

 Our test for neuroendocrine interactions showed that higher levels of baseline 

cortisol predicted a greater antiinflammatory effect of lean body mass on IL-6.  An 

interaction effect was not detected between cortisol and adipose tissues.  This may be 

reflective of higher cortisol sensitivity by muscle in the production or release of IL-6.  One 

study has suggested that muscle expression of glucocorticoid receptors is elevated in 

metabolic syndrome, which may help explain our findings (Whorwood, Donovan, 

Flanagan, Phillips, & Byrne, 2002).  In turn, higher levels of epinephrine were associated 

with an attenuation of the proinflammatory effect of non-visceral fat on IL-6.  This finding 

is in keeping with another study that showed beta-adrenergic receptor sensitivity in 

subcutaneous adipose tissue, was greater in individuals with high visceral adiposity 

(Wajchenburg, 2014).  Other interactions of cortisol and epinephrine with DXA body 

composition measures did not predict differences in IL-6 levels.  In addition, no interaction 

between these neuroendocrine biomarkers and DXA measures predicted differences in 

systemic CRP.  Small or absent effects for both cortisol and epinephrine are similar to 

results from other studies showing likewise neutral effects of neuroendocrine factors at 
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baseline.  Cortisol and epinephrine are powerful stimulants and orchestrators of energy 

metabolism, immunologic and neurological alteration. While acute changes may bring 

about easily detectable physiological alterations, baseline levels are likely to contribute to 

fine adjustments to homeostatic balance.  In this study, we did not find other interaction 

effects due to a relatively small number of participants, given measures (neuroendocrine) 

that usually show a high individual variability.  Our measures of cortisol and epinephrine 

were also distal, urine samples that were adjusted for creatinine.  Direct blood 

neuroendocrine analyses would likely yield more reliable measures that may help 

disclose other interactive effects with fat or lean tissues.  
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Appendix 1.2. 

Shared Heritability Between Adiposity and Inflammation 

 

The Soluble Interleukin-6 Receptor (sIL-6r) 

 Although blood levels of IL-6 are often quantified in isolation, its biological actions 

are determined by two distinct membrane bound glycoproteins expressed on the surface 

of target cells: 1) a classical transmembrane IL-6 receptor (mIL-6r), and 2) a signal-

transducing non-ligand binding subunit, gp130, which is activated by a complex formed 

by IL-6 and the soluble form of the IL-6 receptor (sIL-6r) (Kallen, 2002; Peters, Müller, & 

Rose-John, 1998).  Further, the sIL-6r has also been shown to moderate central actions 

of IL-6 within the brain (Schöbitz, Pezeshki, & Pohl, 1995).  Therefore, to more completely 

understand variation in IL-6 synthesis and responses across individuals, it is important to 

also quantify the soluble receptor, which was done in the following study.  IL-6 and sIL-6r 

are coded by different genes and controlled by distinct mechanisms of expression 

(Crichton, Nichols, Zhao, Bulun, & Simpson, 1996; S. A. Jones, Horiuchi, Topley, 

Yamamoto, & Fuller, 2001; Lust et al., 1992). In addition, sIL-6r may be produced either 

by alternative mRNA splicing or by proteolytic cleavage and shedding from the surface of 

cells (S. A. Jones et al., 2001; Müllberg et al., 1993). Thus, it is of significance to 

determine the extent and similarity of the genetic constraints on IL-6 and its soluble 

receptor.   SNPs affecting sIL-6r production appear to be more consistently associated 

with its levels in systemic circulation (Galicia et al., 2004; Rafiq, Frayling, Murray, & Hurst, 

2007; Sasayama et al., 2012; van Dongen et al., 2014).  sIL-6r can serve as an 

independent biomarker for certain pathological conditions. It does not always react to the 
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same physiological stimuli as IL-6; it is not always responsive to changes in IL-6 levels, 

and it does not play a role in all IL-6 pathways (Hurst et al., 2001; Kallen, 2002; Lamas et 

al., 2013; Mehra et al., 2006; Montero-Julian, 2001; Peters et al., 1998).  Hence, we could 

infer whether BMI and demographics (e.g., age, gender and SEI) accounted for the 

concordance between matched controls and co-twins.  Given the likelihood of strong 

genetic constraints on sIL-6r, we anticipated small or negligible ICCs for sIL-6r with the 

unrelated, matched controls.   

 

Methods 

Sandwich ELISA kits were also employed to quantify sIL-6r levels (Quantikine, 

R&D Systems). Sera were diluted 1:100 so values would fall on the standard reference 

curve from 7 to 2000 pg/mL. Thus, the effective assay range for sIL-6r was 0.7–200 

ng/mL. The intra-assay and inter-assay CVs was 6.9%.  sIL-6r was natural log-

transformed before statistical calculations. The same approach described for IL-6 and 

CRP was used in order to test the genetic covariance shared between BMI and sIL-6r. 

 

Results 

After adjusting the regression models for age and gender by including them as 

covariates, BMI accounted for only 0.3% of the variance in sIL-6r (β = 0.07, F[1,829] = 

3.2, p = 0.02).  Although sIL-6r also showed some covariance with genetic factors 

associated with BMI (33.7%, Table 4), path coefficients indicated the effects attributable 

to BMI were minimal (Figure 2). In addition, a much larger portion of the total phenotypic 

variance was unique to sIL-6r (Figure 2).  In contrast to IL-6, the sIL-6r levels were more 
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similar for MZ twins, while DZ twins were divergent, supporting the greater heritability of 

sIL-6r.  Stronger genetic constraints on sIL-6r were also clearly evident when comparing 

the trait ICCs between the twins and unrelated adult controls who had been matched on 

BMI, gender, age, and SEI (Table 2).  

 

 

Fig. 2 The path coefficient estimates for the bivariate BMI X sIL-6r model also parsed the 

genetic effects specific to sIL-6r from those shared with BMI.  This model similarly points 

to a shared covariance between genetic and unshared environmental effects.  However, 

most of the additive genetic effects explaining the sIL-6r phenotype were independent of 

BMI, thus very distinct from the pattern of genetic constraints found for IL-6. 
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Fig. 5 Levels of sIL-6r in MZ co-twins were highly correlated (C), while sIL-6r values were 

not significantly correlated between MZ cases and their unrelated, matched controls (D). 

 

Discussion 

 By taking advantage of the fact that monozygotic twins are genetically more similar 

than dizygotic twins, our analyses demonstrated that the genetic constraints on IL-6 and 

its soluble receptor are clearly distinct. In addition, the association between BMI and IL-6 

was more evident than for sIL-6r. This differential relationship with adiposity affected the 

heritability estimates.  In contrast to IL-6, the sIL-6r values were markedly discordant, 

confirming that the genetic constraint on the soluble receptor was less influenced by life 

style and other environmental factors.   

Several polymorphisms that affect the production and shedding of the soluble IL-6 

receptor, including rs2228145, rs2228146, rs2229238, rs4072391, rs4537545 and 

rs8192284, reliably account for variation in basal levels (Ferreira et al., 2013; Lamas et 

al., 2013; Marinou, Walters, Winfield, Bax, & Wilson, 2010; Rafiq et al., 2007; Reich et al., 
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2007; Rodríguez-Rodríguez et al., 2011; Sasayama et al., 2012; H. Wang et al., 2005).  

These SNPs have already been linked to poor prognosis in clinical conditions, including 

chronic inflammation, metabolic and psychological disorders (Ferreira et al., 2013; Hamid 

et al., 2004; Huth et al., 2006; Lamas et al., 2013; Marinou et al., 2010; Sasayama et al., 

2012; Stephens et al., 2012; Zhang, Feng, Wu, & Xie, 2013). Genetic admixture mapping 

also indicates robust correlations of the sIL-6r variation in blood to ancestry (Reich et al., 

2007).  Although both IL-6 and its soluble receptor play important roles in inflammatory 

processes, the production of sIL-6r seems to be more tightly regulated, while IL-6 is more 

sensitive to life style, diet and other factors associated with adiposity. 
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Appendix 1.3. 

The Effect of Dietary Carbohydrates and Lipids on Adiposity and Inflammation in 

the Context of the American Diet 

 

The effect of Protein on BMI and CRP 

 At average intake, protein intake predicts greater BMI.  However, that relationship 

becomes smaller with increasing protein intake (β=1.98, F(1, 14923)=21.973, p<0.001, 

ΔR²= 0.13%, VIF=6.746).  One standard deviation increase in protein intake (SD=36.52 

grams) predicted 1.98% greater BMI, but for every standard deviation increase in protein 

intake, its effect dropped by 0.68% (β=0.68, F(1, 14923)=22.981, p<0.001, ΔR²= 0.14%, 

VIF=4.321). 

 Protein also predicted higher CRP values before and after accounting for metabolic 

status (β=12.79, F(1,14918)=26.75, p<0.001, ΔR²=0.16% and β=6.11, F(1,14918)=7.57, 

p=0.006, ΔR²=0.04%, respectively).  Although protein showed a quadratic relationship 

where its effect increased with higher protein intake, this relationship was negligibly small 

for both before and after accounting for metabolic status (β=0.00, F(1,14918)=16.34, 

p<0.001 and β=0.00, F(1,14888)=4.35, p=0.04, respectively).  However, the estimated 

effects of protein intake on CRP showed low reliability due to multicollinearity (VIF=6.28), 

hence these estimates should be very cautiously considered.  Mediation analyses 

showed that BMI did not mediate the effect of protein on CRP (p=0.65). 

 

The effect of specific fatty acids on CRP 
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 When specific fatty acids were tested by VIF-based stepwise backward elimination, 

only eicosapentaenoic acid (EPA) (PUFA 20:5) remained (VIF=1.102).  One standard 

deviation increase in EPA (SD=0.11 grams) intake predicted 2.66% lower CRP (β=-2.66, 

F(1,14923)=6.65, p=0.010, ΔR²=0.04%) before accounting for metabolic status, but not 

after (β=-1.36, F(1,14888)=2.21, p=0.138, ΔR²=0.01%), indicating that most of its effect 

may have been mediated by metabolic factors.  When specific fatty acids were tested by 

significance-based stepwise backward elimination, five fatty acids remained significant: 

docosahexaenoic acid (DHA) (PUFA 22:6), caproic acid (SFA 6:0), caprylic acid (SFA 8:0), 

capric acid (SFA 10:0) and stearic acid (SFA 18:0).  One standard deviation increase in 

DHA (SD=0.17 grams) intake reliably predicted 2.15% lower CRP before but not after 

accounting for metabolic status (β=-2.15, F(1,14918)=3.91, p=0.048, ΔR²=0.02% and β=-

1.19, F(1,14888)=1.39, p=0.238, ΔR²=0.01%, respectively, and VIF= 1.21), indicative of 

mediation by metabolic factors.  While these effect estimates seem low, it is noteworthy 

that the average consumption of EPA and DHA in these population samples were very 

low (0.04 and 0.08 grams, respectively).  Non-standardized effect sizes indicated that for 

every one gram increase in EPA and DHA intake, CRP is predicted to decrease by 23.8% 

and 12.7%, respectively.  The medium chain fatty acids, caproic acid, caprylic acid and 

capric acid were significant before (β=8.89, F(1,14918)=7.66, p=0.006, ΔR²=0.05%, 

β=6.56, F(1,14918)=5.62, p=0.018, ΔR²=0.03% and β=-14.69, F(1,14918)=9.83, 

p=0.002, ΔR²=0.06%, respectively), as well as after accounting for metabolic factors 

(β=13.50, F(1,14888)=22.16, p<0.001, ΔR²=0.0.11%, β=2.47%, F(1,14888)=9.34, 

p=0.002, ΔR²=0.05% and β=-17.68, F(1,14888)=17.88, p<0.001, ΔR²=0.09%, 

respectively).  However, none of them were reliable predictors based on their VIFs (10.56, 
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7.85 and 22.45, respectively).  Stearic acid was significant before but not after accounting 

for metabolic status, though this fatty acid too exhibited low reliability (β=7.73, 

F(1,14918)=8.82, p=0.004, ΔR²=0.05% and β=0.79, F(1,14888)=0.11, p=0.74, 

ΔR²=0.00%, VIR=7.37, respectively).  Overall, when saturated fatty acids appeared to 

significantly predict CRP, their VIFs exhibited high degrees of multicollinearity, indicating 

that their effect estimates were not sufficiently reliable for interpretations. 

 

Exploratory effects and interactions predicting CRP 

 Adjusted for the intake of macronutrients, total caloric intake only exhibited a 

significant effect before, but not after, accounting for metabolic status (β=-18.79, 

F(1,14918)=12.94, p<0.001, ΔR²=0.08% and β=-4.31, F(1,14888)=0.84, p=0.358, 

ΔR²=0.00%, respectively).  However, analyses of multicollinearity indicated unacceptable 

estimate reliability (VIF=28.22). 

 Sodium, potassium and magnesium have previously been associated to metabolic 

health and inflammatory physiology, hence these were also included in our models.  

Sodium predicted higher CRP, while magnesium predicted lower CRP before accounting 

for metabolic status (β=5.52, F(1,14918)=12.63, p<0.001, ΔR²=0.08%, VIF=2.47, and β=-

10.33, F(1,14918)=26.74, p<0.001, ΔR²=0.16%, VIF=4.11, respectively).  Magnesium, 

but not sodium, remained significant after accounting for metabolic status (β=-6.49, 

F(1,14888)=13.16, p,<0.001 ΔR²=0.06% and β=2.25, F(1,14888)=2.64, p=0.104, 

ΔR²=0.01%, respectively).  The decrease in variance and non-variance based effect sizes 

for sodium intake were suggestive of mediation by metabolic status.  Potassium exhibited 

no effect on CRP (statistics not shown). 
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 The only non-linear macronutrient effect found was for protein intake after 

accounting for metabolic status, such that the effect of protein on CRP decreased with 

higher protein intake (β=-1.44, F(1,14888)=4.35, p=0.037, ΔR²=0.02%). 

 Certain macronutrients also seemed to affect individuals differently by gender and 

race.  The effect of protein and starch on CRP were more proinflammatory (or less 

antiinflammatory) for women than for men before accounting for metabolic status (β=7.90, 

F(1,14918)=6.87, p=0.009, ΔR²=0.04% and β=7.50, F(1,14918)=6.29, p=0.012, 

ΔR²=0.04%, respectively).  Gender continued to predict a more proinflammatory effect of 

protein on CRP for females then for men after accounting for metabolic factors (β=8.92, 

F(1,14888)=9.83, p=0.002, ΔR²=0.05%).  That was not the case for the effect of starch 

which seemed to have been mediated by metabolic status (β=-1.07, F(1,14888)=0.60, 

p=0.438, ΔR²=0.00%).  The effect of starch on CRP was also less antiinflammatory for 

Caucasians then for Non-Hispanic blacks before and after accounting for metabolic status 

(β=-8.89, F(1,14918)=6.57, p=0.010, ΔR²=0.09% and β=-7.28, F(1,14888)=5.48, 

p=0.019, ΔR²=0.08%, respectively). 

 Our regression models also revealed an interaction between magnesium intake and 

one marker of metabolic health, as well as interactions between various metabolic factors.  

Increased magnesium intake was associated with the attenuation of HA1c’s 

proinflammatory effect on CRP (β=2.61, F(1,14888)=10.54, p=0.001, ΔR²=0.05%). 

Higher HDL was also predictive of a lessened effect of HA1c on CRP (β=-3.27, 

F(1,14888)=10.469, p=0.001, ΔR²=0.05%).  Conversely greater total blood cholesterol 

was associated with a diminished effect of HDL on CRP (β=3.61, F(1,14888)=15.288, 

p<0.001, ΔR²=0.07%). Further, greater BMI predicted a smaller effect of systolic blood 



255 

pressure on CRP (β=-7.55, F(1,14888)=59.07, p<0.001, ΔR²=0.29%), perhaps indicating 

that higher systolic blood pressure at higher BMI is at least partially due to the increased 

demand of a larger body mass, rather than a sole product of metabolic dysfunction.  

Greater BMI also predicted a lowering effect of diastolic blood pressure on CRP (β=4.09, 

F(1,14888)=17.95, p<0.001, ΔR²=0.09%). 

 We also found a significant interaction between starch and the year of data collection 

both before and after adjusting for metabolic status (Β=1.29, F(1,14918)=8.137, p=0.004, 

ΔR²=0.05% and β=1.11, F(1,14918)=7.546, p=.006, ΔR²=0.4%, respectively), where the 

effect of starch on CRP is more proinflammatory across time than other macronutrients.  

NHANES reports that there were no changes in CRP assay technique, equipment or 

location, and no intra-assay differences, nor changes in dietary data survey strategies for 

the cohorts included in this study.  Hence, our results raise the possibility of a change in 

the starch quality or composition (resistant versus non-resistant starch) over time in the 

population. 
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Appendix 1.4. 

Pathways Linking Carbohydrate and Lipid Metabolism, Adiposity and 

Inflammation 

 

Differences by race and sex 

 Model effects were also compared across sex and race.  Prior investigations of this 

and other datasets have shown differences in adiposity and inflammation between 

Caucasian and African Americans, but the systems-levels assessment of the relationship 

between those biomarkers has not been examined.  To test the effect of race and sex, 

insulin targeted and statin medication users as well as diabetics were excluded from 

analysis.  

 

Results 

 A subsample of non-diabetic participants who were not being treated with insulin or 

statin medications were used to assess SEM differences by race and sex.  Chi-Square 

difference tests show that fitting our hypothetical model to the data parsed by either race 

or sex was significantly different than fitting the model to all participants without distinction 

of race or sex (Tables 12 & 14). Thus, SEM regression estimates were computed and 

compared between Caucasian and African Americans, and between Males and Females. 

 Compared to Caucasians, African Americans exhibited a markedly greater effect of 

glucose on insulin and triglycerides, but a lower effect of insulin on triglycerides (Table 

13).  A greater effect of glucose on insulin may be indicative of greater insulin sensitivity.  

However, a greater effect of glucose on triglycerides may be indicative of consumption of 
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high glycemic loads.  While most effects on BMI were weaker in African Americans than 

in Caucasians, they exhibited a slightly greater effect of insulin (Table 13).  On the other 

hand, BMI exhibited much greater effect on IL-6 and CRP in African Americans, whereas 

other pathway effects feeding onto those IL-6 ad CRP were weaker (Table 13). ICAM-1 

was also under greater influence of CRP and lesser influence of HDL among African-

Americans.  In general, HDL and LDL exerted weaker outward path effects amongst 

African Americans (Table 13).  In this subsample, the major route of effects was mediated 

through insulin and BMI, reflecting effect routes of vulnerability.  In addition, African 

Americans presented greater average levels of all metabolic and systemic inflammation 

biomarkers, except for having lower triglycerides and LDL (Table 16).  Despite the 

unfavorable biomarker profile, there were no mean difference in ICAM-1, possibly 

indicating greater vascular tolerance to metabolic stress and systemic inflammation. 

 When looking at gender, females exhibited a higher effect of glucose on insulin, 

which may be indicative of greater insulin sensitivity (Table 15).  In comparison to the 

effect of IL-6 on insulin, glucose and insulin on triglycerides, and biomarkers on ICAM-1 

- females exhibited overall greater sensitivity throughout systems of metabolism and 

systemic inflammation (Table 15).  While females presented with more favorable mean 

biomarker levels than males, they also presented greater indices of systemic 

inflammation (Table 17).  According to our results, ICAM-1 appeared less sensitive in 

females, which could also reflect greater inflammatory tolerance at the vascular level. 

 

Discussion 
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 We also found differences across race as well as sex.  Compared to Caucasian 

participants, African American participants presented with more pro-diabetic profiles, as 

well as greater adiposity and higher levels of systemic inflammation.  However, they 

presented with better blood lipid profiles and no sign of vascular inflammation.  

Accordingly, our SEM path analyses indicated multiple differences in model effects that 

resembled diabetes and a greater effect of BMI on both IL-6 and CRP, in metabolic and 

inflammatory systems.  While the effect of CRP on ICAM-1 were found to be higher 

compared to Caucasian participants, their ICAM-1 levels were no different.  Altogether, 

this data indicates a greater risk of metabolic syndrome and greater proinflammatory 

potential of adiposity among African Americans, but with lesser vascular inflammatory 

response.  While this finding could indicate greater vascular resilience, reports show a 

greater incidence of cardiovascular disease among African-Americans than among 

Caucasians (Dariush Mozaffarian et al., 2016).  While African American showed higher 

mean HA1c levels, path analyses showed that the effect of glucose on HA1c were smaller 

than for Caucasians.  This may be a reflection that HA1c assessment were biased by 

race because of differences in the molecular structure of hemoglobin by race, which 

interfere with accurate assay detectability of the glycated hemoglobin molecules (Herman 

& Cohen, 2012; Ziemer et al., 2010).  Females exhibited greater overall sensitivities 

throughout whole systems, some of which may be beneficial (e.g., greater insulin 

sensitivity to glucose) and others that may pose higher risk (e.g., greater effects of age 

and BMI on downstream components, and greater general effects on BMI, IL-6 and CRP).  

Accordingly, females exhibited healthier metabolic profiles and worse inflammatory 

profiles.  In spite of higher systemic inflammatory markers, females also exhibited smaller 
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effects on ICAM-1, while exhibiting similar concentrations, which may indicate greater 

tolerance to systemic inflammation.  Females also showed greater HA1c while predicted 

to be under less of an impact of glucose when compared to males, which is in accordance 

with the sex differences in blood hemoglobin levels (J. C. Bae et al., 2014). 

 

 

 



260 

 

 



261 

 

 



262 

 



263 

 

 

  



264 

APPENDIX 2. PhD Projects 

 

Published Projects 

Amaral, W.Z., Lubach G.R., Kapoor, A., Proctor, A., Phillips, G.J., Lyte, M., Coe, C.L. 
(2017). Low Lactobacilli abundance and polymicrobial diversity in the lower 
reproductive tract of female rhesus monkeys do not compromise their reproductive 
success. American Journal of Primatology, e22691. 

 
Amaral, W.Z., Lubach, G.R., Proctor, A., Lyte, M., Phillips, G.J., & Coe, C.L. (2017). Social 

Influences on Prevotella and the Gut Microbiome of Young Monkeys. American 
Psychosomatic Medicine. 79(8):888-897. 

 
Amaral, W. Z., Krueger, R. F., Ryff, C. D., & Coe, C. L. (2015). Genetic and environmental 

determinants of population variation in interleukin-6, its soluble receptor and C-
reactive protein: Insights from identical and fraternal Caucasian twins. Brain, 
Behavior, and Immunity. 49:171-81. ** 

 
Amaral, W. Z., Lubach, G. R., Bennett, A. J., & Coe, C. L. (2013). Inflammatory 

vulnerability associated with the rh5-HTTLPR genotype in juvenile rhesus 
monkeys. Genes, Brain, and Behavior. 12(3): 353-60.  

 

Unpublished Projects 

Amaral, W.Z., Lubach, G.R., Proctor, A., Lyte, M., Phillips, G.J., & Coe, C.L. (In 
preparation). Profiling of the female rhesus monkey microflora indicates 
differences across reproductive phases in the cervicovaginal compartment but not 
in the distal rectum.  

 
Amaral, W.Z. & Coe, C.L. (In preparation) Pathways Linking Carbohydrate and Lipid 

Metabolism, Adiposity and Inflammation. ** 
 
Amaral, W.Z., Galles, N.C. & Coe, C.L. (In preparation) The Effect of Dietary 

Carbohydrates and Lipids on Adiposity and Inflammation in the Context of the 
American diet. ** 

 
Amaral, W.Z. & Coe, C.L. (In preparation) Peripheral catecholamines interact with 

visceral fat and blood glucose to influence metabolic and inflammatory status in 
subsample of MIDUS adults. ** 

 
Amaral, W.Z., Davidson, R.J. & Coe, C.L. EEG brain asymmetry predicts systemic 

interleukin-6 in a MIDUS subsample. (revising analyses) 



265 

Amaral, W.Z. & Coe, C.L. Negative affectivity predicts daily rhythms and weekly patterns 
of saliva cortisol in the MIDUS population sample. (revising analyses) 

 
Amaral, W.Z., Mayneris-Perxachs J., Swann, J.R., Lyte, M., Phillips, G.J., & Coe, C.L. 

Long-term influence of iron deficiency anemia on the gut microbiota and 
metabolome of developing rhesus monkeys. (Pending metabolomics from 
collaborators) 

 

** Denote studies included in the dissertation project. 


